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Diffusion Facial Forgery Detection
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Figure 1: DiFF – a diffusion-generated facial forgery dataset encompassing over half a million images. The dataset contains
manipulated images created by thirteen state-of-the-art methods under four distinct conditions.

ABSTRACT
Detecting diffusion-generated images has recently grown into an
emerging research area. Existing diffusion-based datasets predomi-
nantly focus on general image generation. However, facial forgeries,
which pose severe social risks, have remained less explored thus far.
To address this gap, this paper introduces DiFF, a comprehensive
dataset dedicated to face-focused diffusion-generated images. DiFF
comprises over 500,000 images that are synthesized using thirteen
distinct generation methods under four conditions. In particular,
this dataset utilizes 30,000 carefully collected textual and visual
prompts, ensuring the synthesis of images with both high fidelity
and semantic consistency. We conduct extensive experiments on
the DiFF dataset via human subject tests and several representative
forgery detection methods. The results demonstrate that the binary
detection accuracies of both human observers and automated de-
tectors often fall below 30%, revealing insights on the challenges in
detecting diffusion-generated facial forgeries. Moreover, our exper-
iments demonstrate that DiFF, compared to previous facial forgery
datasets, contains a more diverse and realistic range of forgeries,
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showcasing its potential to aid in the development of more gener-
alized detectors. Finally, we propose an edge graph regularization
approach to effectively enhance the generalization capability of
existing detectors.
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• Information systems→Multimedia databases; •Computing
methodologies→ Computer vision.

KEYWORDS
Diffusion-based Generation, Deepfake Detection, Facial Forgery
Detection
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1 INTRODUCTION
Conditional Diffusion Models (CDMs) have achieved impressive re-
sults in the field of image generation [3, 49]. Utilizing simple inputs,
such as natural language prompts, CDMs can generate images with
a high degree of semantic consistency [14, 24, 71]. However, the
precise control over the generation process offered by CDMs has
also raised concerns regarding security and privacy. For instance,
malicious attackers can mass-produce counterfeit images of victims
at a minimal cost, thus engendering negative social impacts.
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Table 1: Comparison of DiFF and mainstream diffusion datasets. Existing diffusion datasets primarily focus on general arts and
utilize limited conditional input. For generation conditions – T2I: Text-to-Image, I2I: Image-to-Image, FS: Face Swapping, FE:
Face Editing. Pertaining to the Real Images column, Source represents that whether there is a real image collection process.

Dataset Venue Type #Synthetic #Diffusion Conditions Real Images Prompts
Images Methods T2I I2I FS FE Source Labels

Stöckl et al. [56] Arxiv’22 General 260K 1 ✓ × × × ✓ × Nouns of WordNet
De-Fake [52] Arxiv’22 General 40K 2 ✓ ✓ × × ✓ ✓ Captions of the image dataset
Ricker et al. [45] Arxiv’22 General 70K 7 × × × × × × Unconditional generation
TEdBench [25] CVPR’23 General 0.1K 1 × × × ✓ ✓ ✓ 100 handwritten prompts for editing
DiffusionForensics [61] ICCV’23 General 80K 8 ✓ × × × ✓ × 1 pre-defined template
DMDetection [9] ICASSP’23 General 200K 3 ✓ × × × ✓ ✓ Captions of the image dataset
GenImage [75] NeurIPS’23 General 1,300K 5 ✓ × × × ✓ × 1 pre-defined template

GFW [5] Arxiv’22 Facial 15K 3 ✓ × × × × × Captions of the image dataset
Mundra et al. [38] CVPRW’23 Facial 1.5K 1 ✓ × × × × × 10 pre-defined templates
DiFF (Ours) – Facial 500K 13 ✓ ✓ ✓ ✓ ✓ ✓ 30K+ filtered high-quality prompts

To address this problem, recent efforts have been made to collect
datasets containing diffusion-generated images, wherein distribu-
tion differences [61] or amplitude variations [9] offers important
cues for detection. Nevertheless, as shown in Table 1, these datasets
are inadequate when applied to detect facial forgeries, which pose
more significant threats than generic fake artifacts. Specifically,
most large-scale diffusion-based datasets prioritize generic im-
ages [9, 25, 45, 52, 56, 61], like bedrooms and kitchens [68]. Al-
though some face-related datasets have been introduced [5, 38],
they all yet suffer from their small scales (e.g., only 1.5K facial im-
ages in [38]). Moreover, these facial images are typically collected
under restricted conditions with a narrow range of prompts, lacking
comprehensive annotations as well. As a result, training a detector
with generalizability on these datasets remains less viable.

This paper fills the gap by introducing the Diffusion Facial
Forgery dataset, dubbed DiFF. There are three notable merits that
make our dataset distinct from existing ones. i) To the best of our
knowledge, our DiFF is the first comprehensive dataset that ex-
clusively focuses on diffusion-generated facial forgery. It contains
more than 500,000 facial forgery images, a scale that significantly
surpasses previous facial datasets (as shown in Table 1). ii) DiFF
is curated using a rich variety of diffusion methods and prompts.
Specifically, it encompasses thirteen state-of-the-art diffusion tech-
niques across four different conditions, including Text-to-Image,
Image-to-Image, Face Swapping, and Face Editing. These methods
are applied to generate high-quality images using over 20,000 care-
fully collected textual and 10,000 visual prompts, derived from 1,070
selected identities. iii) It is worth noting that each forged image in
DiFF is meticulously annotated with the forgery method employed
and the corresponding prompt.

We conduct in-depth human studies and extensive experiments
upon the DiFF dataset. The results show that our DiFF includes
forged images with more diversity and better reality than previous
mainstream diffusion datasets, achieving over a 30% improvement
in Fréchet Inception Distance (FID). Moreover, experiments with
several deepfake and diffusion detectors [42, 48, 57, 61] reveal that
existing detectors exhibit limited reliability in detecting diffusion-
synthesized facial forgeries. For instance, the Xception model [48],
originally designed for deepfake detection, achieves an Area Under

the receiver operating characteristic Curve (AUC) of only 60% on
DiFF (versus 99% on conventional deepfake datasets). To overcome
this issue, we propose a new regularization approach that lever-
ages the edge graph of images to discern high-level facial features,
thereby enhancing the generalizability of models. Our approach
can be seamlessly integrated into existing detectors, achieving an
average of 10% AUC improvements when applied to four popular
detectors. This approach establishes an effective benchmark for the
task of diffusion facial forgery detection.

The contributions of this paper are three-fold:
• We construct a diffusion-based facial forgery dataset with

more than half a million images. To the best of our knowl-
edge, this is the first large-scale dataset that focuses on
high-quality diffusion-synthesized faces1.

• We conduct extensive experiments on this dataset, which
demonstrate that DiFF contains a richer and more realis-
tic collection of synthetic images compared to previous
diffusion datasets.

• We devise an approach based on edge graphs to identify
the manipulated faces. Our approach can be seamlessly in-
tegrated into existing detection models, enhancing their
detection ability and establishing comprehensive bench-
marks for diffusion-generated face forgery detection.

2 RELATEDWORK
2.1 Image Generation with Diffusion Models
Following the paradigm of introducing and then removing small
perturbations from original images, diffusion models demonstrate
the capability to generate high-quality images fromwhite noise [54].
Early methods require no supervision signals and often perform
unconditionally. For instance, Ho et al. [18] proposed a reverse
learning process by estimating the noise in the image at each step.
Subsequently, researchers have explored several optimization direc-
tions, including backbone architectures [4, 11, 49], sampling strate-
gies [33, 39, 66], and adaptation for downstream tasks [1, 28, 70].
For example, Sinha et al. [53] proposed mapping latent representa-
tions to images using a diffusion decoding model. Song et al. [55]

1The dataset will be released upon the acceptance of this paper.
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employed a non-Markovian forward process to construct denoising
diffusion implicit models, resulting in a faster sampling procedure.

In contrast to the above unconditional approaches, recent dif-
fusion models have shifted their focus toward conditional image
synthesis [7, 22, 46, 50, 67, 69]. These conditions rely on various
source signals, including class labels, textual prompts, and visual
information, which generally describe specific image attributes.
For instance, Cascaded Diffusion Models [19] initially generate
low-resolution images from class labels and then employ subse-
quent models to increase resolutions. Furthermore, to achieve more
detailed control, Text-to-Image Synthesis, which combines visual
concepts and natural language, has emerged as one of the most
notable approaches in diffusion models. These studies, exemplified
by Stable Diffusion [41, 47], DALL-E [44], and Imagen [51], aim
to align different modalities through pre-trained vision language
models such as CLIP [43]. Additionally, some approaches leverage
images as conditional inputs. Zhao et al. [72] utilized an energy-
based function trained on both the source and target domains to
generate images that preserve domain-agnostic characteristics. Lug-
mayr et al. [35] proposed an inpainting method that is agnostic
to mask forms, altering reverse diffusion iterations by sampling
unmasked regions from provided images.

2.2 Synthetic Image Detection
Detecting generated images has long been a popular research focus
in computer vision. Earlier methods concentrate on the detection of
specific types of forgeries, such as splicing [23], copy-move [34], or
inpainting [30]. Thereafter, deep learning-based approaches have
been applied to identify high-quality forgeries generated by GANs
or diffusion models [59]. For instance, Frank et al. [13] proposed
using frequency-domain features to detect forged images, as GAN
models inevitably introduce artifacts during up-sampling. Guo et
al. [15] presented a hierarchical fine-grained model to learn both
comprehensive features and the inherent hierarchical nature of
different forgery attributes.

Many recent studies have been dedicated to facial forgery detec-
tion [6, 60, 62]. Thus far, the majority of them have focused on the
detection of swapped faces generated by VAE or GAN, i.e., deep-
fakes [32]. For example, Masi et al. [36] introduced a two-branch
network to extract optical and frequency artifacts separately. Real-
Forensics [16] leverages visual and auditory correspondences in real
videos to improve detection performance. Huang et al. [21] derived
explicit and implicit embeddings using face recognition models,
and the distance between these features serves as the foundation
for distinguishing real from fake faces. With the rapid develop-
ment of diffusion models, the risk posed by using them to generate
counterfeit faces is gradually increasing [27]. However, research
on the detection of diffusion-generated faces remains relatively
unexplored. Although preliminary efforts have contributed to the
detection of diffusion-generated outputs [9, 45, 61], they often lack
generalizability and do not specifically focus on the detection of
facial forgery.

3 DATASET CONSTRUCTION
In this work, our objective is to construct a high-quality dataset
for diffusion-based facial forgery. The dataset is composed of three

20

60

Age Group

Figure 2: Gender and age group distribution of pristine and
forgery subsets.Within each subset, percentages for different
ages (ranging from 20 to 60) are calculated separately for
males (blue bars) and females (red bars).

A actor in...
A with … 

man …

Pristine Images Collection
(Section 3.1)

Human collected
1,070 identities,
23,661 images

Prompts Construction and Modification
(Section 3.2)

2,531 Filtered Faces !𝐼!

Prompt Reverse

Manual Rewrite

a. Filtration
b. Annotation

Manual 
Modification

A brunette actor in…
A woman with 

Facial Forgery Generation
(Section 3.3)

Input: prompts

Image-to-Image
Input: filtered images

Face Editing
Input: modified prompts
and filtered faces

Modified
Prompts

Prompts

(a) Pristine images collection and prompts annotation (Section 3.1) (b) Facial forgeries generation (Section 3.2)

A brunette actor in…
A woman with … 
A happy man …

Textual prompts 𝒫"#$% Modified prompts 𝒫&"'% Visual prompts 𝒫(

Facial Analysis

Figure 3: Pipeline of prompts construction and modification.

essential components: pristine images, prompts, and forged images.
The pristine images constitute the real (original) instances of our
dataset. Derived from these pristine images, the prompts serve as
textual descriptions or visual cues that guide the diffusion model in
generating forged images. We maintain a high degree of semantic
consistency between pristine and forged images via these prompts.

3.1 Pristine Image Collection
Our pristine images are sourced from a pool of celebrity identities.
Specifically, we manually select 1,070 celebrities from established
celebrity datasets such as VoxCeleb2 and CelebA [2, 8, 29]. Figure 2
illustrates that we have ensured a balanced gender distribution and
diverse age groups among these identities. In particular, the age
distribution of the selected celebrities ranges from 20 to 60 across
different subsets. Subsequently, we curate approximately 20 images
per identity from public resources, resulting in a pristine collection,
denoted as I𝑝𝑟𝑖 , which encompasses a total of 23,661 images.
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Figure 4:Word cloud of the top 200most frequent and content
words inP𝑡

𝑜𝑟𝑖
. Eachword size is proportioned to its frequency.

3.2 Prompts Construction and Modification
Prior studies have demonstrated a positive correlation between
the quality of conditional inputs and that of diffusion-generated
images [40]. As a result, diverse and precise prompts are particu-
larly useful for generating high-quality images in CDMs. Figure 3
illustrates that the construction of our dataset includes three cate-
gories of prompts: original textual prompts P𝑡

𝑜𝑟𝑖
, modified textual

prompts P𝑡
𝑚𝑜𝑑

, and visual prompts P𝑣 . These prompts serve as
conditions to guide the sampling process of diffusion models. The
construction processes of these prompts are detailed below.

• Original textual prompts P𝑡
𝑜𝑟𝑖

. We generate diverse and
natural textual prompts via a semi-automated approach. Ini-
tially, we curate a set of 2,531 high-quality images Î𝑠 ⊂ I𝑝𝑟𝑖
by selecting the clearest images of the frontal face for each
identity. These images are then converted into textual de-
scriptions using prompt inversion tools [10, 37]. These de-
scriptions are reviewed and rewritten by experts to remove
irrelevant terms and improve clarity. Consequently, we ob-
tain 10,084 polished prompts, and some frequent words are
shown in Figure 4.

• Modified textual prompts P𝑡
𝑚𝑜𝑑

. To broaden the diver-
sity of prompts and enable the generation of images with
specific modifications, P𝑡

𝑚𝑜𝑑
involves alterations in key

attributes of P𝑡
𝑜𝑟𝑖

. In particular, we randomly modify the
salient words that describe identities inP𝑡

𝑜𝑟𝑖
, such as gender,

hair color, or facial expression. For instance, we transform
a prompt like ‘A man with an emotive face’ into ‘A woman
with an emotive face.’

• Visual prompts P𝑣 . These prompts comprise comprehen-
sive facial features - such as sketches, landmarks, and seg-
mentations - extracted from each image in Î𝑠 . These fea-
tures are applied for diffusion models conditioned on visual
cues, which is particularly useful in tasks like face editing.

3.3 Facial Forgery Generation
As illustrated in Figure 5, we categorize existing CDMs into four
main subsets based on their input types: Text-to-Image (T2I), which
operates on textual prompts; Image-to-Image (I2I) and Face Swap-
ping (FS), both of which utilize visual inputs; and Face Editing (FE),
which incorporates a combination of text and visual conditions.

Table 2: Detailed statistics of DiFF. We employ thirteen dif-
ferent methods to synthesize high-quality results based on
2.5K pristine images and their corresponding 20k textual and
10k visual prompts.

Subset Method #Images Remarks

T2I

Midjourney [37] 40,684 Web Service
SDXL [41] 40,336 Enhanced Stable Diffusion
FreeDoM_T [69] 18,207 ICCV’23
HPS [64] 36,464 ICCV’23

I2I

LoRA [20] 42,800 LoRA adaption for diffusion
DeamBooth [50] 40,526 CVPR’23
SDXL Refiner [41] 40,336 Refine module for SDXL
FreeDoM_I [69] 43,593 ICCV’23

FS DiffFace [26] 55,693 First diffusion-based FS work
DCFace [27] 44,721 CVPR’23

FE
Imagic [25] 40,508 CVPR’23
CoDiff [22] 48,672 CVPR’23
CycleDiff [63] 44,926 ICCV’23

Total 537,466 -

Figure 5a demonstrates that T2I methods receive textual prompts
(e.g., ‘A man in uniform’) and synthesize images that align with
the inputs’ semantic content [47]. In contrast, models processing
visual input are further divided into I2I and FS categories based
on their manipulation processes. Specifically, I2I, as illustrated in
Figure 5b, pertains to methods that replicate a single identity. On
the other hand, FS models simultaneously handle two identities and
perform identity swaps as presented in Figure 5c. Lastly, Figure 5d
highlights that FE models utilize multi-modal inputs to modify
facial attributes, such as expressions or lip movements, while pre-
serving other attributes. These four subsets achieve comprehensive
coverage of the conditions under which existing diffusion models
operate. Moreover, to ensure the diversity of generated faces, we
utilize multiple cutting-edge techniques within each category. A
detailed introduction to these methods is as follows:
Text-to-Image. We employ four state-of-the-art methods - Mid-
journey [37], Stable Diffusion XL (SDXL) [41], FreeDoM_T [69], and
HPS [64] - for this subset. The first two are the most influential
web services for which we employ official APIs. The latter two
are recently released T2I models, and we apply their pre-trained
models. These models are guided by textual prompts P𝑡

𝑜𝑟𝑖
.

Image-to-Image. We apply four methods in this context: Low-
Rank Adaption (LoRA) [20], DreamBooth [50], SDXL Refiner [41],
and FreeDoM_I. Among these approaches, the former two require
fine-tuning of diffusion models to capture specific facial features.
We employ I𝑝𝑟𝑖 to train these two models. SDXL Refiner optimizes
results from SDXL, whereas FreeDoM_I substitutes the textual
encoder in FreeDoM_T with a visual encoder to reconstruct faces.
Face Swapping. In this subset, we implement DiffFace [26] and
DCFace [27] for the face swapping task. For each image in Î𝑠 , we
randomly choose ten targets from other identities to perform face
swaps. In particular, to prevent information leakage, we divide the
1,070 identities into disjoint training, validation, and testing sets in
an 8:1:1 ratio.
Face Editing. This subset involves three approaches. In particular,
the modified textual prompt set P𝑡

𝑚𝑜𝑑
and the pristine image set

Î𝑠 are both used in Imagic [25] and Cycle Diffusion (CycleDiff) [63]
4
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Figure 5: Facial forgery generation under four conditions.

Table 3: Human performance (%) on DiFF.

Text-to-Image Image-to-Image Face Swapping Face Editing

Method ACC Method ACC Method ACC Method ACC

Midjourney 65.32 SDXL Refiner 71.85 DiffFace 36.33 Imagic 68.17
SDXL 72.11 LoRA 33.33 DCFace 66.67 CoDiff 27.78
FreeDoM_T 25.47 DreamBooth 76.65 CycleDiff 40.65
HPS 75.68 FreeDoM_I 56.67

to edit faces. Moreover, we use visual prompts P𝑣 to guide the
training of Collaborative Diffusion (CoDiff) [22].

In summary, we show the statistics pertaining to the images
generated by the aforementioned methods in Table 2. As can be
observed, the total number of generated images is over 500K from
thirteen diffusion methods.

4 DATASET EVALUATION
Following the methodologies in deepfake detection [48], we cast
the detection of diffusion-generated facial forgeries as a binary
classification task.

4.1 Human Evaluation
We conducted comprehensive human studies involving 70 par-
ticipants. In this study, participants are instructed to classify the
authenticity of randomly selected images that are generated from
varied approaches. The image selection followed a 50:50 split be-
tween pristine and fake images, with each identity appearing only
once to prevent bias. Each participant is required to carefully ex-
amine 200 images, yielding 14,000 human results in total.

Table 3 presents the accuracy (ACC) of this experiment across all
forgery methods under four conditions. One can observe that hu-
man observers struggle to distinguish the vast majority of forgery
methods, as accuracy falls below the chance level (50%). For instance,
participants achieved an accuracy of 27.78% when identifying im-
ages generated by CoDiff. Among the four conditions, FE poses the
most challenge for human observers. This result can be attributed
to the fact that this subset involves manipulations of modifying a
single real image, which allows for a more faithful reproduction of
original features.

4.2 Comparison with Existing Datasets
4.2.1 Statistics analysis. We presented the Fréchet Inception Dis-
tance (FID) and Peak Signal-to-Noise Ratio (PSNR) metrics in Ta-
ble 4. The reported results reveal notable improvements in DiFF.
For instance, the FID of DiFF shows an approximate improvement
of 30% and 20% over the previous diffusion datasets GFW and Dif-
fusionForensics (DFor), respectively, which suggesting that the
images in our dataset bear a closer resemblance to reality.

Table 4: FID and PSNR comparison across various datasets.

Dataset FF++ [48] ForgeryNet [17] DFor [61] GFW [5] DiFF

FID ↓ 33.87 36.94 31.79 39.35 25.75
PSNR ↑ 18.47 18.98 19.17 19.14 19.95

Table 5: AUC (%) of detectors trained and tested on same
datasets.

Method Dataset

FF++ [48] GFW [5] DiFF

Xception 98.12 99.72 93.87
F3-Net 98.89 99.17 98.47
EfficientNet 98.51 97.58 94.34
DIRE 99.43 99.59 96.35

Table 6: AUC (%) of detectors trained on different datasets.

Method Train Test Set

Set FF++ [48] DFor [61] GFW [5] DiFF DFDC [12] ForgeryNet [17]

Xception

FF++ - 40.65 43.42 65.96 63.97 50.56
DFor 55.21 - 52.30 75.67 56.35 38.06
GFW 53.37 45.81 - 74.87 51.43 62.75
DiFF 65.33 55.30 63.50 - 67.10 65.78

4.2.2 Trained on DiFF and other face forgery datasets. Beyond the
observed benefits in terms of FID and PSNR, Table 5 indicates that
the scores of Area Under the receiver operating characteristic Curve
(AUC) of DiFF are relatively lower, highlighting the dataset’s higher
complexity. This can be attributed to the extensive diversity of
conditions and image synthesis methods in DiFF, both of which are
three times greater than those in GFW.

Moreover, we utilized FF++ (vanilla deepfake dataset, HQ ver-
sion), DFor (diffusion-generated general forgery dataset), GFW
(diffusion-generated facial forgery dataset), and our DiFF as training
datasets to compare their generalization capabilities. Additionally,
we utilized two widely acknowledged deepfake datasets, DFDC [12]
and ForgeryNet [17], for further evaluation. From Table 6, it can
be seen that the detector trained on DiFF exhibits superior gener-
alization capabilities. It is worth noting that detectors trained on
other datasets achieve high accuracy when tested on DiFF. This
may be attributed to DiFF’s inclusion of a diverse array of image
types, effectively encompassing a wide spectrum of distributions.

4.3 Detection Results of Existing Methods
For this experiment, we split our DiFF dataset into training, val-
idation, and testing sets with a 8:1:1 ratio. We tuned the hyper-
parameters with the validation set, and reported results on the
testing set.
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Table 7: AUC (%) of detectors. Each detector is trained on the
deepfake dataset (FF++) and the diffusion-generated general
forgery dataset (DFor) separately, and tested on subsets of
the DiFF dataset. †: models for deepfake detection. ‡: models
for general diffusion detection.

Deepfake Test Subset

Method Train Set FF++ T2I I2I FS FE

Xception† [48]

FF++ [48]

98.12 62.43 56.83 85.97 58.64
F3-Net† [42] 98.89 66.87 67.64 81.01 60.60
EfficientNet† [57] 98.51 74.12 57.27 82.11 57.20
DIRE‡ [61] 99.43 44.22 64.64 84.98 57.72

General Diffusion Test Subset

Method Train Set DFor T2I I2I FS FE

Xception† [48]

DFor [61]

99.98 20.52 30.92 69.42 37.89
F3-Net† [42] 99.99 43.88 60.58 52.39 47.06
EfficientNet† [57] 98.99 27.23 44.79 61.25 30.86
DIRE‡ [61] 98.80 36.37 34.83 36.28 39.92

4.3.1 Cross-domain Detection. Following prior studies on forgery
detection [61], we adopted a cross-domain testing methodology
to explore the challenges of facial forgery detection. This involves
evaluating models that have performed well in related detection
domains. Initially, these models are trained on benchmark datasets
tailored to their respective tasks. We then evaluated their perfor-
mance on DiFF. Three widely recognized deepfake detection models
are utilized: Xception [48], F3-Net [42], and EfficientNet [57]. More-
over, we included DIRE [61], a state-of-the-art detector for gen-
eral diffusion-generated images, for this experiment. These models
are trained on the FF++ dataset [48] and the DiffusionForensics
dataset [61], respectively.

Table 7 displays the AUC scores for these detectors. From this
table, we can observe that these detectors encounter a significant
drop in performance upon domain transfer. For example, DIRE
exhibits an AUC drop of over 60%. This sharp degradation indicates
the inherent challenge of detecting diffusion-based facial forgeries
and suggests the considerable obstacles that pre-trained detectors
face when applied to this new task.

4.3.2 In-domain Detection. Given that existing deepfake and gen-
eral diffusion detectors cannot be seamlessly transferred to detect
diffusion facial forgery, one may question the efficacy of re-training
these detectors on DiFF. Therefore, we conducted experiments with
an in-domain setting. Similar to previous evaluation protocols for
the detection of deepfake and general diffusion forgery [31, 61],
detectors are trained on a single subset of DiFF, followed by the
test on the remaining ones.
Detection on re-training detectors.We presented the re-training
results in Figure 6. It can be observed that detectors perform sat-
isfactorily when trained and tested on the same subset. However,
when transferred to different subsets, they exhibit varying degrees
of performance degradation. The most significant drop reaches up
to 80% (e.g., Xception, trained on FS and tested on FE). This signifi-
cant drop highlights the challenges in developing a facial forgery
detector that effectively generalizes across various conditions.

It is worth noting that detectors trained on the T2I and I2I subsets,
which both rely on classical diffusion processes, demonstrate a
higher degree of similarity in performance. This is evident from
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Figure 6: AUC (%) comparison among re-trained detectors.
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Figure 7: AUC (%) of Xception with different training strate-
gies.

mutual benefits observed in the first two subplots of Figure 6. FE-
trained detectors show better generalization capability than those
trained in other subsets. This may be attributed to the FE subset’s
utilization of multi-modal inputs, leading to a wider diversity of
images, thereby enabling detectors trained on the FE subset to
capture more diffusion artifacts.
Detection on linear probing detectors. We introduced the strat-
egy of linear probing as an alternative to the full re-training ap-
proach. Specifically, we used Xception pre-trained on the FF++
dataset as described in Section 4.3.1 and optimized its last linear
layer to align with the data distribution of DiFF. The results are
presented in Figure 7.

One can observe that models using the linear probing strategy
significantly outperform the re-training ones in detecting FS and
FE forgeries. For instance, when trained on the I2I subset, the linear
probing model for detecting FS and FE forgeries surpass the re-
training models by 50% and 40%, respectively. A critical reason
is that the pre-training dataset, i.e., FF++, encompasses a large
number of GAN-based manipulated faces. This diversity enables
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Table 8: AUC (%) comparison among re-trained detectors
with different post-processing methods. Each row represents
the average performance when tested on all four DiFF sub-
sets. None: no processing methods. GN : Gaussian Noise; GB:
Gaussian Blur;MB: Median Blur; JPEG: JPEG Compression.

Method Train Processing Method

Subset None GN GB MB JPEG

Xception

T2I

59.52 47.65 15.02 56.59 58.69
F3-Net 76.08 48.04 74.67 71.68 74.61
EfficientNet 67.69 40.09 53.62 65.35 54.98
DIRE 66.28 34.07 32.78 41.36 40.99

Xception

I2I

66.74 19.70 54.09 58.07 63.66
F3-Net 68.39 21.38 58.77 66.17 63.61
EfficientNet 57.78 27.76 54.75 52.39 51.01
DIRE 67.40 35.69 26.63 65.19 65.67

Xception

FS

39.44 35.40 34.82 38.58 37.73
F3-Net 46.64 44.44 37.91 46.39 42.10
EfficientNet 37.29 36.74 23.82 36.12 35.13
DIRE 46.03 25.36 34.00 28.15 32.11

Xception

FE

82.69 39.69 24.15 79.35 81.19
F3-Net 78.84 50.17 25.51 38.76 70.31
EfficientNet 77.33 51.95 39.65 71.10 71.14
DIRE 64.89 35.42 55.59 60.08 53.08

linear probing models to effectively identify face-swapping and
face-editing images. However, it is worth noting that linear probing
models show inferior results when trained and tested on the same
subset (e.g., both trained and tested on T2I), suggesting insufficient
capacity of this strategy.
Detection on fine-tuning detectors. In contrast to the linear
probing strategy, which updates only the final layer, the fine-tuning
approach optimizes all the model parameters. For this experiment,
we reduce the learning rate of models for stable training. Figure 7
illustrates that fine-tuning models demonstrate superior perfor-
mance compared to the re-training ones. For example, fine-tuning
models achieve higher AUCs in the detection of FS and FE forgeries,
regardless of the training subset used. This can also be attributed
to the pre-training on FF++. However, compared to linear probing
models, the generalizability of the fine-tuning approaches is some-
what limited. This may be due to a significant discrepancy between
diffusion-generated facial forgeries and GAN-based manipulated
faces. Such a domain gap could lead to catastrophic forgetting.
Detection with post-processing methods. We evaluated re-
training detectors under various image quality settings by apply-
ing several post-processing techniques. Following previous set-
tings [74], we processed real and forged images with Gaussian
Noise (GN), Gaussian Blur (GB), Median Blur (MB), and JPEG Com-
pression (JPEG). Table 8 reveals that, in most scenarios, applying
post-processing methods leads to a degradation in the detection
performance. For instance, the use of GB results in a 40% reduction
in the AUC for Xception when trained on the T2I subset.

5 EDGE GRAPH REGULARIZATION
5.1 Motivation
Compared to real human faces captured by cameras, generated
faces are more likely to evoke anomalies such as frequency transi-
tions or brightness fluctuations [45]. In particular, we extract the
edge graphs of pristine and forged images with the Sobel opera-
tor [58]. Figure 8 illustrates that the edge graphs of the pristine

images are significantly different from those of the synthesized
images. Specifically, edge graphs extracted from pristine images
often capture intricate facial details, such as fine wrinkles around
the cheeks. In contrast, the synthesized images lack these subtle
contours and are of considerable contrast.

One naive approach to exploit the discriminative capability of
edge graphs for facial forgery detection is to train a binary classifier
directly. However, our experiments indicate that this approach is
less favorable, as demonstrated in Section 5.3.3. Instead, we propose
an Edge Graph Regularization (EGR) method, which enhances the
discriminative ability of detectors by incorporating edge graphs
into the processing of original images.

5.2 Methodology
Vanilla deepfake and general diffusion detecors entails fitting the
distribution of a specific dataset to discriminate between pristine
and forged images. Let S = {(I𝑖 , 𝑦𝑖 )}𝑛𝑖=1 be the dataset, where I𝑖 is
the 𝑖-th image with respect to the target label𝑦𝑖 . For each parameter
set 𝜃 ∈ Θ, wherein Θ represents the continuous parameter space,
the empirical risk during training is formulated as follows:

𝑅S (𝜃 ) :=
1
𝑛

𝑛∑︁
𝑖=1

ℓ (𝜃, I𝑖 , 𝑦𝑖 ) , (1)

where ℓ (·) is the loss function such that,

ℓ (𝜃, I𝑖 , 𝑦𝑖 ) = −(𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )), (2)

where 𝑦𝑖 is the score from the predictive function 𝑓𝜃 : I𝑖 → [0, 1]
associated with 𝜃 . However, such training approaches are highly
susceptible to overfitting [31, 48, 65]. Therefore, many endeavors
have been made to improve generalizability using additional fea-
tures [21, 73]. In light of these studies, our method employs a novel
regularization method, which incorporates edge graphs as a regu-
larization term into the empirical risk. This strategy encourages the
model to simultaneously focus on the features of both the original
and edge graphs, thereby mitigating overfitting. Specifically, we
refine the empirical risk as follows:

𝑅S (𝜃 ) := 𝑅S (𝜃 ) + 𝜆
1
𝑛

𝑛∑︁
𝑖=1

(ℓ (𝜃, E𝑖 , 𝑦𝑖 )), (3)

where E𝑖 represents the edge graph of the 𝑖-th image, and 𝜆 ∈ [0, 1]
is a regularization parameter that calibrates the influence of edge
graphs.

5.3 Evaluation of EGR
5.3.1 Main results. In Table 9, we compared the performance of
baseline detectors and our method. Each model is trained on one
forgery condition and subsequently evaluated on all four conditions.
From the table, one can observe that our EGR method significantly
improves the generalizability of the baseline detectors. It is worth
noting that even when a model is trained and tested in the same
subset, EGR still contributes to performance enhancement, such as
improving Xception with 2.2% AUC on T2I.

5.3.2 RoC Curves. In Figure 9, we presented the ROC curves of
EfficientNet trained on the FE subset and tested on the T2I subset,
the full DiFF, and GFW. It can be observed that EGR significantly
enhances the model’s performance across various datasets, further
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Figure 8: Edge graphs of pristine images (first row) and non-cherry-picked forged facial images (last two rows).

Table 9: Model performance (%) with and without our EGR
method. Each row represents the performance of the model
trained on a specific subset and tested on all fourDiFF subsets.
Better results are highlighted in bold.

Method Train Test Subset

Backone +EGR Subset T2I I2I FS FE

Xception ×

T2I

93.32 86.85 34.65 23.28
Xception ✓ 95.57 89.48 43.74 55.50
F3-Net × 99.60 88.50 45.07 71.06
F3-Net ✓ 99.64 93.30 56.34 79.89
EfficientNet × 99.89 89.72 21.49 49.63
EfficientNet ✓ 99.93 97.89 40.86 52.36
DIRE × 95.04 84.07 35.15 50.86
DIRE ✓ 99.79 99.76 43.59 66.41

Xception ×

I2I

87.82 98.92 36.82 33.39
Xception ✓ 99.00 99.94 49.73 33.81
F3-Net × 87.23 99.50 40.62 46.19
F3-Net ✓ 96.85 99.70 48.69 47.66
EfficientNet × 84.39 99.80 19.47 27.46
EfficientNet ✓ 99.77 99.99 56.69 61.04
DIRE × 86.20 99.88 41.51 42.01
DIRE ✓ 97.65 99.99 51.84 58.68

Xception ×

FS

23.17 24.47 99.95 10.17
Xception ✓ 67.41 55.92 99.98 46.01
F3-Net × 35.43 30.39 99.98 20.79
F3-Net ✓ 63.51 63.75 99.99 31.14
EfficientNet × 16.88 22.17 99.87 10.21
EfficientNet ✓ 64.16 67.92 99.99 22.01
DIRE × 16.08 36.27 99.09 32.68
DIRE ✓ 66.21 70.91 99.99 35.45

Xception ×

FE

80.84 79.12 70.81 99.95
Xception ✓ 94.15 84.04 73.09 99.99
F3-Net × 82.32 76.92 56.27 99.60
F3-Net ✓ 97.91 93.46 79.33 99.61
EfficientNet × 80.41 63.06 66.62 99.24
EfficientNet ✓ 96.50 89.97 73.28 99.99
DIRE × 56.70 59.22 43.78 99.87
DIRE ✓ 81.40 76.40 74.23 99.99

(a) T2I Subset (c) GFW(b) DiFF

Figure 9: ROC curves of EfficientNet trained on the FE subset.

demonstrating the effectiveness of the EGR method in developing
generalized diffusion detectors.

5.3.3 Ablation study. To evaluate the impact of the proposed EGR
method, we conducted experiments using edge graphs as the only
input. In other words, we removed the 𝑅S (𝜃 ) in Equation (3), and

Table 10: AUC (%) comparison of detectors with the removal
of the regularization approaches. All models are trained on
the T2I subset.

Method Test Subset

T2I I2I FS FE

Xception 95.57 89.48 43.74 55.50
w/o regu. 95.54(-0.03) 88.91(-0.57) 43.31 (-0.43) 53.21 (-2.29)

F3-Net 99.64 93.30 56.34 79.89
w/o regu. 97.83(-1.81) 93.02(-0.28) 51.50 (-4.84) 64.80 (-15.09)

EfficientNet 99.93 97.89 40.86 52.36
w/o regu. 98.97 (-0.96) 96.34 (-1.55) 26.09(-14.77) 49.82(-2.54)

DIRE 99.79 99.76 43.59 66.41
w/o regu. 99.78(-0.01) 99.70 (-0.06) 32.36 (-11.23) 61.61 (-4.80)

optimized the model with E𝑖 . The results of these tests are presented
in Table 10. We can observe a significant decline in detector perfor-
mance upon removing the regularization approach. For instance,
in the FE subset, the AUC of F3-Net drops by 15%. The dominant
reason is that relying solely on edge graphs overlooks vital infor-
mation in original images, such as color and texture. On the other
hand, incorporating the EGR enables the model to capture a more
broad context, leading to better performance. In a nutshell, the
combined utilization of edge graphs and color information achieves
optimal results.

6 DISCUSSION AND CONCLUSION
We propose DiFF, a large-scale high-quality diffusion-generated
facial forgery dataset, to address limitations of existing datasets
that underestimate the risks associated with facial forgeries. Our
dataset comprises over 500,000 facial images. Each image maintains
high semantic consistency with its original counterpart, guided by
diverse prompts. We conduct extensive experiments using DiFF and
establish a facial forgery detection benchmark. Moreover, we de-
sign an edge graph regularization method that effectively improves
detector generalization performance. In the future, we plan to fur-
ther expand DiFF in terms of generative algorithms and conditions
and explore new tasks based on DiFF, such as the traceability and
retrieval of diffusion-generated images.
Potential Ethical Considerations.The pristine faces in our dataset
are sourced from publicly accessible celebrity online videos. We
have rigorously reviewed all prompts to ensure that they do not
describe specific biometric details. Each generated image has been
carefully examined to align with societal values. We will try our
best to control the acquisition procedure of our DiFF to mitigate
potential misuse.
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