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Abstract

In TD-learning, off-policy sampling is known to be more practical than on-policy
sampling, and by decoupling learning from data collection, it enables data reuse.
It is known that policy evaluation has the interpretation of solving a generalized
Bellman equation. In this paper, we derive finite-sample bounds for any general
off-policy TD-like stochastic approximation algorithm that solves for the fixed-
point of this generalized Bellman operator. Our key step is to show that the
generalized Bellman operator is simultaneously a contraction mapping with respect
to a weighted `p-norm for each p in [1,∞), with a common contraction factor.
Off-policy TD-learning is known to suffer from high variance due to the product of
importance sampling ratios. A number of algorithms (e.g. Qπ(λ), Tree-Backup(λ),
Retrace(λ), and Q-trace) have been proposed in the literature to address this
issue. Our results immediately imply finite-sample bounds of these algorithms.
In particular, we provide first-known finite-sample guarantees for Qπ(λ), Tree-
Backup(λ), and Retrace(λ), and improve the best known bounds of Q-trace in
[19]. Moreover, we show the bias-variance trade-offs in each of these algorithms.

1 Introduction
Reinforcement learning (RL) demonstrated its success in learning effective policies for a variety of
decision making problems such as autonomous driving [25, 26], recommender systems [1, 41], and
game-related problems [23, 27, 39]. In RL, there is an important sub-problem – called the policy
evaluation problem – of estimating the expected long term reward of a given policy. Solving the
policy evaluation problem is usually an itermediate step in many existing RL algorithms to ultimately
find an optimal policy, such as approximate policy iteration and actor-critic framework.

The policy evaluation problem is usually solved with the TD-learning method [30]. A key ingredient
in TD-learning is the policy used to collect samples (called the behavior policy). Ideally, we want
to generate samples from the target policy whose value function we want to estimate, and this is
called on-policy sampling. However, in many cases such on-policy sampling is not possible due
to practical reasons [16, 40], and hence we need to work with historical data that is generated by a
possibly different policy (i.e., off-policy sampling). Although off-policy sampling is more practical
than on-policy sampling, it is more challenging to analyze and is known to have high variance
[15], which is a fundamental difficulty in off-policy learning. To overcome this difficulty, many
variants of off-policy TD-learning algorithms have been proposed in the literature, such as Qπ(λ)
[17], Tree-Backup(λ) (henceforth denoted by TB(λ)) [24], Retrace(λ) [22], and Q-trace [19], etc.

1.1 Main Contributions

In this work, we establish finite-sample bounds of a general n-step off-policy TD-learning algorithm
that also subsumes several algorithms presented in the literature. The key step is to show that such
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algorithm can be modeled as a Markovian stochastic approximation (SA) algorithm for solving a
generalized Bellman equation. We present sufficient conditions under which the generalized Bellman
operator is contractive with respect to a weighted `p-norm for every p ∈ [1,∞), with a uniform
contraction factor for all p. Our result shows that the sample complexity scales as Õ(ε−2), where ε is
the required accuracy. It also involves a factor that depends on the problem parameters, in particular,
the generalized importance sampling ratios, and explicitly demonstrates the bias-variance trade-off.

Our result immediately gives finite-sample guarantees for variants of multi-step off-policy TD-
learning algorithms including Qπ(λ), TB(λ), Retrace(λ), and Q-trace. For Qπ(λ), TB(λ), and
Retrace(λ), we establish the first-known results in the literature, while for Q-trace, we improve the
best known results in [19] in terms of the dependency on the size of the state-action space. The
weighted `p-norm contraction property with a uniform contraction factor for all p ∈ [1,∞) is crucial
for us to establish the improved sample complexity. Based on the finite-sample bounds, we show
that all four algorithms overcome the high variance issue in Vanilla off-policy TD-learning, but their
convergence rates are all affected to varying degrees.

1.2 Generalized Bellman Operator and Stochastic Approximation

In this section, we illustrate the interpretation of off-policy multi-step TD-learning as an SA algorithm
for solving a generalized Bellman equation. Consider the policy evaluation problem where the goal
is to estimate the state-action value function Qπ of a given policy π. In the simplest setting where
TD(0) with on-policy sampling is employed, it is well known that the algorithm is an SA algorithm
for solving the Bellman equationQ = Hπ(Q), whereHπ(·) is the Bellman operator. The generalized
Bellman operator B(·) we consider in this paper is defined by:

B(Q) = T (H(Q)−Q) +Q, (1)

where T (·) and H(·) are two auxiliary operators. In the special case where T (·) = I(·) and
H(·) = Hπ(·), the generalized Bellman operator B(·) reduces to the regular Bellman operatorHπ(·).
Note that any fixed point ofH(·) is also a fixed point of B(·), as long as T (·) is such that T (0) = 0.
Thus, the operatorH(·) controls the fixed-point of the generalized Bellman operator B(·), and as we
will see later, the operator T (·) can be used to control its contraction properties.

To further understand the operatorB(·), we demonstrate in the following that both on-policy n-step TD
and TD(λ) can be viewed as SA algorithms for solving the generalized Bellman equation B(Q) = Q,
with different auxiliary operators T (·) and H(·). On-policy n-step TD is designed to solve the
n-step Bellman equation Q = Hnπ(Q), which can be explicitly written as Q =

∑n−1
i=0 (γPπ)iR +

(γPπ)nQ. Here R is the reward vector, γ is the discount factor, and Pπ is the transition probability
matrix under policy π. By reverse telescoping, the n-step Bellman equation is equivalent to Q =∑n−1
i=0 (γPπ)i(R + γPπQ − Q) + Q = T (Hπ(Q) − Q) + Q, where T (Q) =

∑n−1
i=0 (γPπ)iQ.

Similarly, one can formulate the TD(λ) Bellman equation in the form of B(Q) = Q, where T (Q) =

(1− λ)
∑∞
i=0 λ

i
∑i−1
j=0(γPπ)iQ andH(·) = Hπ(·).

In these examples, the operator T (·) determines the contraction factor of B(·) by controlling the
degree of bootstrapping. In this work, we show that in addition to on-policy TD-learning, variants of
off-policy TD-learning with multi-step bootstrapping and generalized importance sampling ratios can
also be interpreted as SA algorithms for solving the generalized Bellman equation. Moreover, under
some mild conditions, we show that the generalized Bellman operator B(·) is a contraction mapping
with respect to some weighted `p-norm for any p ∈ [1,∞), with a common contraction factor. This
enables us to establish finite-sample bounds of general multi-step off-policy TD-like algorithms.

1.3 Related Literature

The TD-learning method was first proposed in [30] for solving the policy evaluation problem. Since
then, there is an increasing interest in theoretically understanding TD-learning and its variants.

On-Policy TD-Learning. The most basic TD-learning method is the TD(0) algorithm [30]. Later it
was extended to using multi-step bootstrapping (i.e., the n-step TD-learning algorithm [11, 37, 38]),
and using eligibility trace (i.e., the TD(λ) algorithm [28, 30]). The asymptotic convergence of TD-
learning was established in [13, 18, 35]. As for finite-sample analysis, a unified Lyapunov approach is
presented in [10]. To overcome the curse of dimensionality in RL, TD-learning is usually incorporated
with function approximation in practice. In the basic setting where a linear parametric architecture is
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used, the asymptotic convergence of TD-learning was established in [36], and finite-sample bounds
in [5, 12, 29, 34]. Very recently, the convergence and finite-sample guarantee of TD-learning with
neural network approximation were studied in [7, 8].

Off-Policy TD-Learning. In the off-policy setting, since the samples are not necessarily generated by
the target policy, usually importance sampling ratios (or “generalized” importance sampling ratios)
are introduced in the TD-learning algorithm. The resulting algorithms are Qπ(λ) [24], TB(λ) [17],
Retrace(λ) [22], and Q-trace [19] (which is an extension of V -trace [14]), etc. The asymptotic
convergence of these algorithms has been established in the papers in which they were proposed.
To the best of our knowledge, finite-sample guarantees are established only for Q-trace and V -trace
[9, 10, 19]. In the function approximation setting, TD-learning with off-policy sampling and function
approximation is a typical example of the deadly triad [31], and can be unstable [2, 31]. To achieve
convergence, one needs to significantly modify the original TD-learning algorithm, resulting in two
time-scale algorithms such as GTD [21], TDC [32], and emphatic TD [33], etc.

1.4 Preliminaries

In this section, we cover the background of RL and the TD-learning method for solving the policy
evaluation problem. The RL problem is usually modeled as a Markov decision process (MDP). In
this work, we consider an MDP with a finite set of states S , a finite set of actionsA, a set of unknown
action dependent transition probability matrices P = {Pa ∈ R|S|×|S| | a ∈ A}, an unknown reward
functionR : S ×A 7→ [0, 1], and a discount factor γ ∈ (0, 1). In order for an MDP to progress, we
must specify the policy of selecting actions based on the state of the environment. Specifically, a
policy π is a mapping from the state-space to probability distributions supported on the action space,
i.e., π : S 7→ ∆|A|. The state-action value function Qπ associated with a policy π is defined by
Qπ(s, a) = Eπ[

∑∞
k=0 γ

kR(Sk, Ak) | S0 = s,A0 = a] for all (s, a). The goal in policy evaluation
is to estimate the state-action value function Qπ for a given policy π.

Since the transition probabilities as well as the reward function are unknown, such state-action value
function cannot be directly computed. The TD-learning algorithm is designed to estimate Qπ using
the SA method. Specifically, in TD-learning, we first collect a sequence of samples {(Sk, Ak)} from
the model using some behavior policy πb. Then the value function Qπ is iteratively estimated using
the samples {(Sk, Ak)}. When πb = π, the algorithm is called on-policy TD-learning, otherwise the
algorithm is referred to as off-policy TD-learning.

2 Finite-Sample Analysis of General Off-Policy TD-Learning

In this section, we present our unified framework for finite-sample analysis of off-policy TD-learning
algorithms using generalized importance sampling ratios and multi-step bootstrapping. The proofs of
all technical results presented in this paper are provided in the Appendix.

2.1 A Generic Model for Multi-Step Off-Policy TD-Learning

Algorithm 1 presents our generic algorithm model. Due to off-policy sampling, the two functions
c, ρ : S × A 7→ R+ are introduced in Algorithm 1 to serve as generalized importance sampling
ratios in order to account for the discrepancy between the target policy π and the behavior policy
πb. We denote cmax = maxs,a c(s, a) and ρmax = maxs,a ρ(s, a). We next show how Algorithm 1
captures variants of off-policy TD-learning algorithms in the literature by using different generalized
importance sampling ratios c(·, ·) and ρ(·, ·).

Vanilla IS. When c(s, a) = ρ(s, a) = π(a|s)/πb(a|s) for all (s, a), Algorithm 1 is the standard
off-policy TD-learning with importance sampling [24]. We will refer to this algorithm as Vanilla IS.
Although Vanilla IS was shown to converge to Qπ [24], since the product of importance sampling
ratios

∏i
j=k+1

π(Aj |Sj)
πb(Aj |Sj) is not controlled in any way, it suffers the most from high variance.

The Qπ(λ) Algorithm. When c(s, a) = λ and ρ(s, a) = π(a|s)/πb(a|s), Algorithm 1 is the Qπ(λ)
algorithm [17]. The Qπ(λ) algorithm overcomes the high variance issue in Vanilla IS by introducing
the parameter λ. However, the algorithm converges only when λ is sufficiently small [22].

The TB(λ) Algorithm. When c(s, a) = λπ(a|s) and ρ(s, a) = π(a|s)/πb(a|s), we have the TB(λ)
algorithm [24]. The TB(λ) algorithm also overcomes the high variance issue in Vanilla IS and is
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Algorithm 1 A Generic Algorithm for Multi-Step Off-Policy TD-Learning
1: Input: K, {αk}, Q0, π, πb, generalized importance sampling ratios c, ρ : S × A 7→ R+, and

sample trajectory {(Sk, Ak)}0≤k≤K+n collected under the behavior policy πb.
2: for k = 0, 1, · · · ,K − 1 do
3: αk(s, a) = αkI{(s, a) = (Sk, Ak)} for all (s, a)
4: ∆(Si, Ai, Si+1, Ai+1, Qk) = R(Si, Ai)+γρ(Si+1, Ai+1)Qk(Si+1, Ai+1)−Qk(Si, Ai) for

all i ∈ {k, k + 1, ..., k + n− 1}.
5: Qk+1(s, a) = Qk(s, a)+αk(s, a)

∑k+n−1
i=k γi−k

∏i
j=k+1 c(Sj , Aj)∆(Si, Ai, Si+1, Ai+1, Qk)

for all (s, a)
6: end for
7: Output: QK

guaranteed to converge to Qπ without needing any strong assumptions. However, as discussed in
[22], the TB(λ) algorithm lacks sample efficiency as it does not effectively use the multi-step return.

The Retrace(λ) Algorithm. When c(s, a) = λmin(1, π(a|s)/πb(a|s)) and ρ(s, a) = π(a|s)/πb(a|s),
we have the Retrace(λ) algorithm, which overcomes the high variance and converges to Qπ. The
convergence rate of Retrace(λ) is empirically observed to be better than TB(λ) in [22].

The Q-trace Algorithm. When we choose c(s, a) = min(c̄, π(a|s)/πb(a|s)) and ρ(s, a) =
min(ρ̄, π(a|s)/πb(a|s)), where ρ̄ ≥ c̄, Algorithm 1 is the Q-trace algorithm [19]. The Q-trace
algorithm is an analog of the V -trace algorithm [14] in that Q-trace estimates the Q-function instead
of the V -function. The two truncation levels c̄ and ρ̄ in these algorithms separately control the
variance and the asymptotic bias in the algorithm respectively. Note that due to the truncation level ρ̄,
the algorithm no longer converges to Qπ , but to a biased limit point, denoted by Qπ,ρ [19].

From now on, we focus on studying Algorithm 1. We make the following assumption about the
behavior policy πb, which is fairly standard in off-policy TD-learning.
Assumption 2.1. The behavior policy πb satisfies πb(a|s) > 0 for all (s, a). In addition, the Markov
chain {Sk} induced by the behavior policy πb is irreducible and aperiodic.

Irreducibility and aperiodicity together imply that the Markov chain {Sk} has a unique stationary
distribution, which we denote by κS ∈ ∆|S|. Moreover, the Markov chain {Sk} mixes geometrically
fast in that there exist C > 0 and σ ∈ (0, 1) such that maxs∈S ‖P k(s, ·) − κS(·)‖TV ≤ Cσk

for all k ≥ 0, where ‖ · ‖TV is the total variation distance [20]. Let κSA ∈ ∆|S||A| be such that
κSA(s, a) = κS(s)πb(a|s) for all (s, a). Note that κSA ∈ ∆|S||A| is the stationary distribution of
the Markov chain {(Sk, Ak)} under the behavior policy πb. Let KS = diag(κS) ∈ R|S|×|S|, and
let KSA = diag(κSA) ∈ R|S||A|×|S||A|. Denote the minimal (maximal) diagonal entries of KS and
KSA by KS,min (KS,max) and KSA,min (KS,max) respectively.

2.2 Identifying the Generalized Bellman Operator

In this section, we identify the generalized Bellman equation which Algorithm 1 is trying to solve,
and also the corresponding generalized Bellman operator and its asynchronous variant. Let Tc,Hρ :

R|S||A| 7→ R|S||A| be two operators defined by

[Tc(Q)](s, a) =

n−1∑
i=0

γiEπb [
i∏

j=1

c(Sj , Aj)Q(Si, Ai) | S0 = s,A0 = a], and

[Hρ(Q)](s, a) = R(s, a) + γEπb [ρ(Sk+1, Ak+1)Q(Sk+1, Ak+1) | Sk = s,Ak = a]

for all (s, a). Note that the operator Tc(·) depends on the generalized importance sampling ratio
c(·, ·), while the operatorHρ(·) depends on the generalized importance sampling ratio ρ(·, ·).

With Tc(·) andHρ(·) defined above, Algorithm 1 can be viewed as an asynchronous SA algorithm
for solving the generalized Bellman equation Bc,ρ(Q) = Q, where the generalized Bellman operator
Bc,ρ(·) is defined by Bc,ρ(Q) = Tc(Hρ(Q)−Q) +Q. Since Algorithm 1 performs asynchronous
update, using the terminology in [10], we further define the asynchronous variant B̃c,ρ(·) of the
generalized Bellman operator Bc,ρ(·) by

B̃c,ρ(Q) := KSABc,ρ(Q) + (I −KSA)Q = KSATc(Hρ(Q)−Q) +Q. (2)
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Each component of the asynchronous generalized Bellman operator B̃c,ρ(·) can be thought of as a
convex combination with identity, where the weights are the stationary probabilities of visiting state-
action pairs. This captures the fact that when performing asynchronous update, the corresponding
component is updated only when the state-action pair is visited. It is clear from its definition that
B̃c,ρ(·) has the same fixed-points as Bc,ρ(·) (provided that they exist). See [10] for a more detailed
explanation about asynchronous Bellman operators.

Under some mild conditions on the generalized importance sampling ratios c(·, ·) and ρ(·, ·), we will
show in the next section that both the asynchronous generalized Bellman operator B̃c,ρ(·) and the
operatorHρ(·) are contraction mappings. Therefore, since Tc(0) = 0, the operatorsHρ(·), Bc,ρ(·),
B̃c,ρ(·) all share the same unique fixed-point. Since the fixed-point of the operator Hρ(·) depends
only on the generalized importance sampling ratio ρ(·, ·), but not on c(·, ·), we can flexibly choose
c(·, ·) to control the variance while maintaining the fixed-point of the operator B̃c,ρ(·). As we will
see later, this is the key property used in designing variants of variance reduced n-step off-policy
TD-learning algorithms such as Qπ(λ), TB(λ), and Retrace(λ).

2.3 Establishing the Contraction Property

In this section, we study the fixed-point and the contraction property of the asynchronous gen-
eralized Bellman operator B̃c,ρ(·). We begin by introducing some notation. Let Dc, Dρ ∈
R|S||A|×|S||A| be two diagonal matrices such that Dc((s, a), (s, a)) =

∑
a′∈A πb(a

′|s)c(s, a′) and
Dρ((s, a), (s, a)) =

∑
a′∈A πb(a

′|s)ρ(s, a′) for all (s, a). We denote Dc,min (Dc,max) and Dρ,min

(Dρ,max) as the minimal (maximal) diagonal entries of the matrices Dc and Dρ respectively.

In view of the definition of B̃c,ρ(·) in Eq. (2), any fixed-point ofHρ(·) must also be a fixed-point of
B̃c,ρ(·). We first study the fixed point ofHρ(·) by establishing its contraction property.
Proposition 2.1. Suppose that Dρ,max < 1/γ. Then the operator Hρ(·) is a contraction
mapping with respect to the `∞-norm, with contraction factor γDρ,max. In this case, the
fixed-point Qπ,ρ of Hρ(·) satisfies the following two inequalities: (1) ‖Qπ − Qπ,ρ‖∞ ≤
γmaxs∈S

∑
a∈A |π(a|s)−πb(a|s)ρ(s,a)|

(1−γ)(1−γDρ,max) , and (2) ‖Qπ,ρ‖∞ ≤ 1
1−γDρ,max

.

Observe from Proposition 2.1 (1) that when ρ(s, a) = π(a|s)/πb(a|s), which is the case for Qπ(λ),
TB(λ), and Retrace(λ), the unique fixed-point Qπ,ρ is exactly the target value function Qπ. This
agrees with the definition of the operator Hρ(·) in that it reduces to the regular Bellman operator
Hπ(·) when ρ(s, a) = π(a|s)/πb(a|s) for all (s, a). If ρ(s, a) 6= π(a|s)/πb(a|s) for some (s, a),
then in general the fixed-point ofHρ(·) is different from Qπ . See Appendix A.2 for more details. In
that case, Proposition 2.1 provides an error bound on the difference between the potentially biased
limit Qπ,ρ and Qπ . Such error bound will be useful for us to study the Q-trace algorithm in Section
3. Proposition 2.1 (2) can be viewed as an analog to the inequality that ‖Qπ‖∞ ≤ 1/(1− γ) for any
policy π. SinceHρ(·) is no longer the Bellman operatorHπ(·), the corresponding upper bound on
the size of its fixed-point Qπ,ρ also changes.

Note that Proposition 2.1 guarantees the existence and uniqueness of the fixed-point of the operator
Hρ(·), hence also ensures the existence of fixed-points of the asynchronous generalized Bellman
operator B̃c,ρ(·). To further guarantee the uniqueness of the fixed-point of B̃c,ρ(·), we establish its
contraction property. We begin with the following definition.
Definition 2.1. Let {µi}1≤i≤d be such that µi > 0 for all i. Then for any x ∈ Rd, the weighted
`p-norm (p ∈ [1,∞)) of x with weights {µi} is defined by ‖x‖µ,p = (

∑
i µi|xi|p)1/p.

We next establish the contraction property of the operator B̃c,ρ(·) in the following theorem. Let
ω = KSA,minf(γDc,min)(1 − γDρ,max), where the function f : R 7→ R is defined by f(x) = n

when x = 1, and f(x) = 1−xn
1−x when x 6= 1.

Theorem 2.1. Suppose c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ. Then we have the
following results: (1) For any θ ∈ (0, 1), there exists a weight vector µ ∈ ∆|S||A| satisfying
µ(s, a) ≥ ω(1−θ)

(1−θω)|S||A| for all (s, a) such that the operator B̃c,ρ(·) is a contraction mapping with

respect to ‖ · ‖µ,p for any p ∈ [1,∞), with contraction factor γc = (1−ω)1−1/p(1− θω)1/p, (2) The
operator B̃c,ρ(·) is a contraction mapping with respect to ‖ · ‖∞, with contraction factor γc = 1− ω.
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Consider Theorem 2.1 (1). Observe that we can further upper bound γc = (1− ω)1−1/p(1− θω)1/p

by 1 − θω, which is independent of p and is the uniform contraction factor we are going to use.
Theorem 2.1 (2) can be viewed as an extension of Theorem 2.1 because limp→∞ ‖x‖µ,p = ‖x‖∞ for
any x ∈ Rd and weight vector µ, and limp→∞(1− ω)1−1/p(1− θω)1/p = 1− ω.

Theorem 2.1 is the key result for our finite-sample analysis, and we present its proof in the next
section. The weighted `p-norm (especially the weighted `2-norm) contraction property we established
for the operator B̃c,ρ(·) has a far-reaching impact even beyond the finite-sample analysis of tabular
RL in this paper. Specifically, recall that the key property used for establishing the convergence and
finite-sample bound of on-policy TD-learning with linear function approximation in the seminal
work [36] is that the corresponding Bellman operator is a contraction mapping not only with respect
to the `∞-norm, but also with respect to a weighted `2-norm. We establish the same property in
the off-policy setting, and hence lay down the foundation for extending our results to the function
approximation setting. This is an immediate future research direction.

2.4 Proof of Theorem 2.1

We begin by explicitly computing the asynchronous generalized Bellman operator B̃c,ρ(·). Let πc
and πρ be two policies defined by πc(a|s) = πb(a|s)c(s,a)

Dc((s,a),(s,a)) and πρ(a|s) = πb(a|s)ρ(s,a)
Dρ((s,a),(s,a)) for all

(s, a). Let R ∈ R|S||A| be the reward vector defined by R(s, a) = R(s, a) for all (s, a). For any
policy π′, let Pπ′ be the transition probability matrix of the Markov chain {(Sk, Ak)} under π′, i.e.,
Pπ′((s, a), (s′, a′)) = Pa(s, s′)π′(a′|s′) for all state-action pairs (s, a) and (s′, a′).

Proposition 2.2. The operator B̃c,ρ(·) is explicitly given by B̃c,ρ(Q) = AQ + b, where A =

I −KSA
∑n−1
i=0 (γPπcDc)

i(I − γPπρDρ) and b = KSA
∑n−1
i=0 (γPπcDc)

iR.

In light of Proposition 2.2, to prove Theorem 2.1, it is enough to study the matrix A. To proceed, we
require the following definition.
Definition 2.2. Given β ∈ [0, 1], a matrix M ∈ Rd×d is called a substochastic matrix with modulus
β if and only if Mij ≥ 0 for all i, j and

∑
jMij ≤ 1− β for all i.

Remark. Note that for any non-negative matrix M , we have ‖M‖∞ = maxi
∑
jMij . Therefore, a

matrix M being a substochastic matrix with modulus β automatically implies that ‖M‖∞ ≤ 1− β.

We next show in the following two propositions that (1) the matrix A given in Proposition 2.2 is
a substochastic matrix with modulus ω, and (2) for any substochastic matrix M with a positive
modulus, there exist weights {µi} such that the induced matrix norm ‖M‖µ,p is strictly less than 1.
These two results together immediately imply Theorem 2.1.
Proposition 2.3. Suppose that c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ. Then the matrix
A given in Proposition 2.2 is a substochastic matrix with modulus ω.

The condition c(s, a) ≤ ρ(s, a) ensures that the matrixA is non-negative, and the conditionDρ,max <
1/γ ensures that the each row of the matrix A sums up to at most 1 − ω. Together they imply the
substochasticity of A. The modulus ω is an important parameter for our finite-sample analysis. In
view of Theorem 2.1, we see that large modulus gives smaller (or better) contraction factor of B̃c,ρ(·).

Proposition 2.4. For any substochastic matrix M ∈ Rd×d with a positive modulus β ∈ (0, 1), for
any θ ∈ (0, 1), there exists a weight vector µ ∈ ∆d satisfying µi ≥ β(1−θ)

(1−θβ)d for all i such that

‖M‖µ,p ≤ (1− β)1−1/p(1− θβ)1/p for any p ∈ [1,∞). Furthermore, if M is irreducible 1, then
we can choose θ = 1.

The result of Proposition 2.4 further implies ‖M‖µ,p ≤ 1− θβ, which is independent of the choice
of p. This implies that B̃c,ρ(·) is a uniform contraction mapping with respect to ‖ · ‖µ,p for all p ≥ 1.
In general, for different p and p′, an operator being a ‖ · ‖p-norm contraction does not imply being a
‖ · ‖p′ -norm contraction. The reason that we have such a strong uniform contractive result is that the
operator B̃c,ρ(·) has a linear structure, and involves a substochastic matrix.

Note that Proposition 2.4 introduces the tunable parameter θ. It is clear that large θ gives better
contraction factor of B̃c,ρ(·) but worse lower bound on the entries of the weight vector µ. In

1A non-negative matrix is irreducible if and only if its associated graph is strongly connected [4].
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general, when M is not irreducible, we cannot hope to choose a weight vector µ ∈ ∆d with
positive components and obtain ‖M‖µ,p ≤ 1 − ω. To see this, consider the example where M =
(1−ω)[0,0, · · · ,1], which is clearly a substochastic matrix with modulus ω, but is not an irreducible
matrix. For any weight vector µ ∈ ∆d, we have ‖M‖µ,p = (1 − ω) maxx∈Rd:‖x‖µ,p=1 |xd| =

(1− ω)/µ
1/p
d > 1− ω. However, by choosing µd close to unity, we can get ‖M‖µ,p arbitrarily close

to 1− ω. This is analogous to choosing θ close to one in Proposition 2.4. Since Proposition 2.4 is the
major result for proving Theorem 2.1, we provide its proof sketch in Section 4.

2.5 Finite-Sample Convergence Guarantees

In light of Theorem 2.1, Algorithm 1 is a Markovian SA algorithm for solving a fixed-point equation
B̃c,ρ(Q) = Q, where the fixed-point operator B̃c,ρ(·) is a contraction mapping. Therefore, to
establish the finite-sample bounds, we use a Lyapunov drift argument where we choose W (Q) =
‖Q−Qπ,ρ‖2µ,p as the Lyapunov function. This leads to a finite-sample bound on E[‖Qk−Qπ,ρ‖2µ,p].
However, since µ is unknown, to make the finite-sample bound independent of µ, we use the lower
bound on the components of µ provided in Theorem 2.1, and also tune the parameters p and θ to
obtain a finite-sample bound on E[‖Qk − Qπ,ρ‖2∞]. The fact that we have a uniform contraction
factor 1− θω (cf. Theorem 2.1) plays an important role in such tuning process.

To present the results, we need to introduce more notation. For any δ > 0, define tδ(MCS) as
the mixing time of the Markov chain {Sk} (induced by πb) with precision δ, i.e., tδ(MCS) =
min{k ≥ 0 : maxs∈S ‖P k(s, ·) − κS(·)‖TV ≤ δ}. Under Assumption 2.1, one can easily verify
that tδ(MCS) ≤ L(log(1/δ) + 1) for some constant L > 0, which depends only on C and δ. Let
τδ,n = tδ(MCS) + n+ 1. The parameters c1, c2 and c3 used in stating the following theorem are
numerical constants, and will be explicitly given in the Appendix. For ease of exposition, we here
only present the finite-sample bound for using constant stepsize.
Theorem 2.2. Consider {Qk} of Algorithm 1. Suppose that: (1) Assumptions 2.1 is satisfied, (2)
c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ, and (3) the constant stepsize α is chosen such
that ατα,n ≤ c1ω

log(2|S||A|/ω)f(γcmax)2(γρmax+1)2 . Then we have for all k ≥ τα,n:

E[‖Qk−Qπ,ρ‖2∞]≤ζ1
(

1−ωα
2

)k−τα,n
+ ζ2

f(γcmax)2(γρmax + 1)2 log(2|S||A|/ω)

ω
ατα,n, (3)

where ζ1 = c2(‖Q0 −Qπ,ρ‖∞ + ‖Q0‖∞ + 1)2, and ζ2 = c3(3‖Qπ,ρ‖∞ + 1)2.

Theorem 2.2 enables one to design a wide class of off-policy TD variants with provable finite-sample
guarantees by choosing appropriate generalized importance sampling ratios c(·, ·) and ρ(·, ·). The
first term on the RHS of Eq. (3) is usually called the bias in SA literature [6], and it goes to zero at a
geometric rate. The second term on the RHS of Eq. (3) stands for the variance in the iterates, and it is
a constant proportional to ατα,n. To see more explicitly the bias-variance trade-off, we derive the
sample complexity of Algorithm 1 in the following.
Corollary 2.2.1. For an accuracy ε > 0, to obtain E[‖Qk −Qπ,ρ‖∞] ≤ ε, the sample complexity is

O
(

log2(1/ε)

ε2

)
︸ ︷︷ ︸

T1

Õ
(

1

ω2

)
︸ ︷︷ ︸

T2

Õ
(
nf(γcmax)2(γρmax + 1)2

(1− γDρ,max)2

)
︸ ︷︷ ︸

T3

. (4)

In Corollary 2.2.1, the Õ(ε−2) dependence on the accuracy is the same as n-step TD-learning in the
on-policy setting [10], and is in general not improvable. The term T2 can be equivalently written
as Õ(1/(1 − Contraction factor)2), hence capturing the impact from the contraction factor. This
agrees with our intuition that smaller contraction factor leads to better sample complexity. The
term T3 arises because of the variance term on the RHS of Eq. (3). The linear dependence on n is
due to using n-step bootstrapping. By optimizing the sample complexity in terms of n, we have
noptimal ∼ 1/ log(1/(γDc,min)). This is analogous to the optimal n in the on-policy setting, which is
1/ log(1/γ) [10]. The additional Dc,min factor arises because of using off-policy learning. The rest
of parameters in T3 are determined by the choice of the generalized importance sampling ratios c(·, ·)
and ρ(·, ·). It is clear that smaller cmax and ρmax lead to smaller variance. As we will see later, this is
the reason for the variance reduction of various off-policy TD-learning algorithms in the literature. In
light of the previous analysis, the bias-variance trade-off in general off-policy multi-step TD-learning
algorithm 1 is intuitively of the form Õ

(
Variance

(1− Contraction factor)2

)
.

7



3 Application to Various Off-Policy TD-Learning Algorithms
In this section, we apply Theorem 2.2 to various off-policy n-step TD-learning algorithms in
the literature. We begin by introducing some notation. Let πmax (πmin) and πb,max (πb,min) be
the maximal (minimal) entry of the target policy π and the behavior policy πb respectively. Let
rmax = maxs,a(π(a|s)/πb(a|s)) (rmin = mins,a(π(a|s)/πb(a|s))) be the maximum (minimum)
ratio between π and πb. We will overload the notation of ζ1 and ζ2 from Theorem 2.2. Note that
Qπ,ρ = Qπ in Qπ(λ), TB(λ), and Retrace(λ), but Qπ,ρ 6= Qπ in Q-trace.

3.1 Finite-Sample Analysis of Vanilla IS

We first present the sample complexity bound of the Vanilla IS algorithm, where c(s, a) = ρ(s, a) =
π(a|s)/πb(a|s) for all (s, a).
Theorem 3.1. Consider Algorithm 1 with Vanilla IS update, where we note that cmax = ρmax = rmax,
Dc = Dρ = I , and ω = KSA,min(1 − γn). Suppose that Assumption 2.1 is satisfied. Then, to

achieve ε-accuracy, the sample complexity is O
(

log2(1/ε)
ε2

)
Õ
(

1
ω2

)
Õ
(
n((γrmax)n+1)2

(1−γ)2

)
.

In the special case where π = πb (i.e., on-policy n-step TD), the sample complexity bound reduces
to Õ

(
n log2(1/ε)

ε2K2
SA,min(1−γn)2(1−γ)2

)
, which is comparable to the results in [10]. See Appendix C.2 for

more details. In the off-policy setting, note that the factor ((γrmax)n + 1)2 appears in the sample
complexity. When γrmax > 1 (which can usually happen), the sample complexity bound involves an
exponential factor (γrmax)n. The reason is that the product of importance sampling ratios c(·, ·) are
not at all controlled by any means in Vanilla IS. Therefore, the variance can be very large. On the
other hand, since the importance sampling ratios are not modified, Vanilla IS effectively uses the full
n-step return. As a result, the parameter ω = KSA,min(1− γn) within Vanilla IS is the largest (best)
among all the algorithms we study.

3.1.1 Finite-Sample Analysis of Qπ(λ)

In this section, we present the sample complexity of the Qπ(λ) algorithm, where c(s, a) = λ and
ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).
Theorem 3.2. Consider Algorithm 1 with Qπ(λ) update, where we note that cmax = λ,
ρmax = rmax, Dc = λI , Dρ = I , and w = KSA,minf(γλ)(1 − γ). Suppose that Assump-
tion 2.1 is satisfied, and λ ≤ rmin. Then, to achieve ε-accuracy, the sample complexity is
O
(

log2(1/ε)
ε2

)
Õ
(

1
ω2

)
Õ
(
nf(γλ)2(γrmax+1)2

(1−γ)2

)
.

To see how Qπ(λ) overcomes the high variance issue in Vanilla IS, observe that since γλ ≤ γrmin ≤
γ < 1, we have f2(γλ) ≤ 1/(1− γλ)2. Therefore, by replacing c(s, a) = π(a|s)/πb(a|s) in Vanilla
IS with a properly chosen constant λ, Qπ(λ) algorithm successfully avoids an exponential large
factor in the sample complexity. However, choosing a small λ to control the variance has a side effect
on the contraction factor. Intuitively, when λ is small, Qπ(λ) does not effectively use the n-step
return. Hence the parameter ω in Qπ(λ) is less (worse) than the one in Vanilla IS.

3.1.2 Finite-Sample Analysis of TB(λ)

In this section, we present the sample complexity of the TB(λ) algorithm, where c(s, a) = λπ(a|s)
and ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).
Theorem 3.3. Consider Algorithm 1 with TB(λ) update, where we note that cmax = λπmax,
ρmax = rmax,Dc(s, a) = λ

∑
a πb(a|s)π(a|s),Dρ(s, a) = 1, and ω = KSA,minf(γDc,min)(1−γ).

Suppose that Assumption 2.1 is satisfied, and λ ≤ 1/πb,max. Then, to achieve ε-accuracy, the sample

complexity is O
(

log2(1/ε)
ε2

)
Õ
(

1
ω2

)
Õ
(
nf(γλπmax)2(γrmax+1)2

(1−γ)2

)
.

Suppose we further choose λ < 1/(γπmax), the TB(λ) algorithm also overcomes the high variance
issue in Vanilla IS because f(γλπmax) ≤ 1/(1− γλπmax), which does not involve any exponential
large factor. When compared to Qπ(λ), an advantage of TB(λ) is that the constraint on λ is much
relaxed. However, the same side effect on the contraction factor is also present here. To see this, since
Dc,min = λmins,a

∑
a πb(a|s)π(a|s) ≤ 1, the TB(λ) algorithm does not effectively use the n-step

return, hence the parameter ω in TB(λ) is less (worse) than the one in Vanilla IS.
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3.1.3 Finite-Sample Analysis of Retrace(λ)

In this section, we present the sample complexity of the Retrace(λ) algorithm, where c(s, a) =
λmin(1, π(a|s)/πb(a|s)) and ρ(s, a) = π(a|s)/πb(a|s) for all (s, a).
Theorem 3.4. Consider Algorithm 1 with Retrace(λ) update, where we note that cmax = λ, ρmax =
rmax, Dc(s, a) = λ

∑
a min(πb(a|s), π(a|s)), Dρ(s, a) = 1, and ω = KSA,minf(γDc,min)(1− γ).

Suppose that Assumption 2.1 is satisfied, and λ ≤ 1. Then, to achieve ε-accuracy, the sample
complexity is O

(
log2(1/ε)

ε2

)
Õ
(

1
ω2

)
Õ
(
nf(γλ)2(γrmax+1)2

(1−γ)2

)
.

The Retrace(λ) algorithm overcomes the high variance issue in Vanilla IS by truncating the importance
sampling ratio at 1, which prevents an exponential large factor in the variance term. In addition, it
does not require choosing λ to be extremely small as required in Qπ(λ). As for the compromise in
the contraction factor, note that min(1, π(a|s)/πb(a|s)) ≥ π(a|s), which implies that Dc(s, a) (and
hence Dc,min) is larger in the Retrace(λ) algorithm than the TB(λ) algorithm. As a result, Retrace(λ)
does not truncate the n-step return as heavy as TB(λ), and hence the parameter ω is larger (better) in
Retrace(λ) than in TB(λ).

3.1.4 Finite-Sample Analysis of Q-Trace
Lastly, we present the sample complexity of the Q-trace algorithm, where c(s, a) =
min(c̄, π(a|s)/πb(a|s)) and ρ(s, a) = min(ρ̄, π(a|s)/πb(a|s)) for all (s, a).
Theorem 3.5. Consider Algorithm 1 with Q-trace update, where we note that cmax = c̄,
ρmax = ρ̄, Dc(s, a) =

∑
a min(c̄πb(a|s), π(a|s)), Dρ(s, a) =

∑
a min(ρ̄πb(a|s), π(a|s)), and

ω = KSA,minf(γDc,min)(1− γDρ,max). Suppose that Assumption 2.1 is satisfied, and c̄ ≤ ρ̄. Then,

to achieve ε-accuracy, the sample complexity is O
(

log2(1/ε)
ε2

)
Õ
(

1
ω2

)
Õ
(
nf(γc̄)2(γρ̄+1)2

(1−γDρ,max)2

)
.

To avoid an exponential large variance, in view of the term f(γc̄) in our bound, we need to choose
c̄ ≤ 1/γ. The major difference between Q-trace and Retrace(λ) is that the importance sampling ratio
ρ(·, ·) inside the temporal difference (line 4 of Algorithm 1) also involves a truncation. As shown
in Section 2.3, due to introducing the truncation level ρ̄, the algorithm converges to a biased limit
Qπ,ρ instead of Qπ . Such truncation bias can be controlled using Proposition 2.1. These observations
agree with the results [19], where the finite-sample bounds of Q-trace were first established.

Compared to [19], we have an improved sample complexity. Specifically, the result in [19] implies
a sample complexity of Õ( log2(1/ε)nf(γc̄)2(γρ̄+1)2

ε2ω3(1−γDρ,max)2 ), which has an additional factor of ω−1. Since

ω−1 ∝ K−1
SA,min ≥ |S||A|, our result improves the dependency on the size of the state-action space

by a factor of at least |S||A| compared to [19]. Similarly, since the V -trace algorithm [14] is an
analog of the Q-trace algorithm, we can also improve the sample complexity for V -trace in [10].

In addition to analyzing existing algorithms, observe that our results, especially Theorem 2.2, provide
sufficient conditions under which Algorithm 1 has provable finite-sample guarantees, and hence
enable us to design new algorithms. As an example, in light of the Retrace(λ) algorithm and the Q-
trace algorithm, one can take advantage of both algorithms to let c(s, a) = λc min(c̄, π(a|s)/πb(a|s))
and ρ(s, a) = λρ min(ρ̄, π(a|s)/πb(a|s)), where λc, λρ, c̄, and ρ̄ are tunable parameters. As long as
λcc̄ ≤ λρρ̄ < 1/γ, Theorem 2.2 is applicable and hence finite-sample convergence is guaranteed. To
avoid an exponentially large variance, we choose λcc̄ ≤ 1/γ so that there are no exponentially large
terms in the term T3 of sample complexity bound. After that, we can tune the rest of the parameters
to further optimize the performance of the algorithm.

Sample Complexity Comparison. Now that we have derived the sample complexity bounds of
various off-policy n-step TD-learning algorithms, we summarize them in the following table. For
ease of exposition, we omit the common factor log2(1/ε)/(ε2K2

SA,min) when presenting the sample
complexity, and use a ∧ b (a ∨ b) to denote the minimum (maximum) of two real numbers a and b.

In view of Table 1, when rmax < 1/γ, which indicates that the target policy π and the behavior
policy πb are relatively close to each other, Vanilla IS has the best performance since it has the best
contraction factor, and the cumulative product of the generalized importance sampling ratios does
not result in exponentially large variance. When rmax > 1/γ, then Vanilla IS can potentially have
exponentially large variance, while other four algorithms do not. In this case, among Qπ(λ), TB(λ),
and Retrace(λ), Qπ(λ) has the best sample complexity bound. However, we need to point out that
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Table 1: Summary of the Sample Complexity Bounds

Algorithm c(s, a) ρ(s, a) Requirements Sample Complexity

Vanilla IS π(a|s)
πb(a|s)

π(a|s)
πb(a|s) None Õ

(
(γrmax)n+1)2

(1−γn)2(1−γ)2

)
Qπ(λ) λ π(a|s)

πb(a|s) λ≤rmin Õ
(

(γrmax+1)2

(1−γ)4

)
TB(λ) λπ(a|s) π(a|s)

πb(a|s) λ< 1
(πb,max∨γπmax) Õ

(
f(γλπmax)2(γrmax+1)2

f(γDc,min)2(1−γ)4

)
Retrace(λ) λ[1∧ π(a|s)

πb(a|s) ] π(a|s)
πb(a|s) λ≤1 Õ

(
f(γλ)2(γrmax+1)2

f(γDc,min)2(1−γ)4

)
Q-trace c̄∧ π(a|s)

πb(a|s) ρ̄∧ π(a|s)
πb(a|s) c̄≤ ρ̄, c̄< 1

γ Õ
(

f(γc̄)2(γρ̄+1)2

f(γDc,min)2(1−γDρ,max)4

)

the requirement λ ≤ rmin for Qπ(λ) is most restrictive, and the algorithm can easily diverge when
this requirement is not satisfied, as evidenced by the numerical experiments presented in [22]. As
for the Q-trace algorithm, although rigorously speaking it is not directly comparable with the other
algorithms as it converges to a biased limit point, it is clear that using truncated importance sampling
ratio for ρ(·, ·) can further reduce the sample complexity.

We want to mention that our comparison is based on the upper bounds we derived for the sample
complexity, which may not be tight. To complete the story, one should also derive lower bounds
on the sample complexity, which is an interesting future direction. Nevertheless, our comparison
provides insight into the behavior of off-policy n-step TD-learning algorithms,

4 Proof sketch of Proposition 2.4
The idea is to construct a stochastic matrix M ′′ such that: (1) M ′′ dominates M in the sense that
M ′′ij ≥Mij for all i, j, and (2) the Markov chain associated with M ′′ is irreducible, hence admits a
unique stationary distribution µ > 0. Using µ as weights and we have the desired result. The detailed
analysis is presented in Appendix A.5. We here present the construction of the stochastic matrix M ′′.

First of all, consider the special case where M itself is irreducible. Then we first scale up M by a
factor of 1/(1− ω) to obtain M ′ = M

1−ω , which is clearly a substochastic matrix, with modulus zero.
Hence there exists a stochastic matrix M ′′ that dominates M ′ (and also M ). Moreover, since M ′′ is
also irreducible, its associated Markov chain has a unique stationary distribution µ. This is equivalent
to choosing θ = 1 in Proposition 2.4. In fact, the matrix M being irreducible is only a sufficient
condition to choose θ = 1. What we need is the existence of a strictly positive stationary distribution
of the stochastic matrix M ′′, which is guaranteed when M ′′ does not have transient states.

Now consider the general case where M is not necessarily irreducible. We construct the intermediate
matrix M ′ by performing a convex combination of the matrix M

1−ω and the uniform stochastic matrix
E
d , where E is the all one matrix, with weight 1−ω

1−θω . Specifically, for any θ ∈ (0, 1), we define

M ′ =
(

1−ω
1−θω

)
M

1−ω +
(

1− 1−ω
1−θω

)
E
d . Note that M ′ is a non-negative matrix. In addition, since

M ′1 ≤ 1−ω
1−θω1 +

(
1− 1−ω

1−θω

)
1 = 1, where 1 is the all one vector, the matrix M ′ is a substochatic

matrix with modulus zero, and is also irreducible because all its entries are strictly positive. Therefore,
there exists a stochastic matrix M ′′ such that M ′′ ≥ M ′. In addition, since M ′′ also has strictly
positive entries, the Markov chain associated withM ′′ is irreducible, hence admits a unique stationary
distribution µ ∈ ∆d. By our construction, we can show a lower bound on the components of the
stationary distribution µ.

5 Conclusion
In this work, we establish finite-sample guarantees of general n-step off-policy TD-learning algo-
rithms. The key in our approach is to identify a generalized Bellman operator and establish its
contraction property with respect to a weighted `p-norm for each p ∈ [1,∞), with a uniform contrac-
tion factor. Our results are used to derive finite-sample guarantees of variants of n-step off-policy
TD-learning algorithms in the literature. Specifically, for Qπ(λ), TB(λ), and Retrace(λ), we provide
the first-known results, and for Q-trace, we improve the result in [19]. The finite-sample bounds we
establish also provide insights about the trade-offs between the bias and the variance.
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Appendices
A Technical Details in Section 2

A.1 Proof of Proposition 2.1

For any Q1, Q2 ∈ R|S||A|, and state-action pairs (s, a), using the definition ofHρ(·) and we have

|[Hρ(Q1)](s, a)− [Hρ(Q2)](s, a)|

= γ

∣∣∣∣∣∑
s′∈A

Pa(s, s′)
∑
a′∈A

πb(a
′|s′)ρ(s′, a′)(Q1(s′, a′)−Q2(s′, a′))

∣∣∣∣∣
≤ γ

∑
s′∈A

Pa(s, s′)
∑
a′∈A

πb(a
′|s′)ρ(s′, a′)|Q1(s′, a′)−Q2(s′, a′)|

≤ γ‖Q1 −Q2‖∞
∑
s′∈A

Pa(s, s′)
∑
a′∈A

πb(a
′|s′)ρ(s′, a′)

≤ γ
∑
s′∈A

Pa(s, s′)Dρ,max‖Q1 −Q2‖∞

= γDρ,max‖Q1 −Q2‖∞.

It follows that ‖Hρ(Q1)−Hρ(Q2)‖∞ ≤ γDρ,max‖Q1−Q2‖∞. Since Dρ,max < 1/γ, the operator
Hρ(·) is a contraction mapping with respect to ‖ · ‖∞, with contraction factor γDρ,max.

(1) We now derive the upper bound on ‖Qπ−Qπ,ρ‖∞. SinceQπ = Hπ(Qπ) andQπ,ρ = Hρ(Qπ,ρ),
we have

|Qπ(s, a)−Qπ,ρ(s, a)|
= |[Hπ(Qπ)](s, a)− [Hρ(Qπ,ρ)](s, a)|
= |[Hπ(Qπ)](s, a)− [Hρ(Qπ)](s, a) + [Hρ(Qπ)](s, a)− [Hρ(Qπ,ρ)](s, a)|
≤ |[Hπ(Qπ)](s, a)− [Hρ(Qπ)](s, a)|+ |[Hρ(Qπ)](s, a)− [Hρ(Qπ,ρ)](s, a)|

= γ

∣∣∣∣∣∑
s′∈S

Pa(s, s′)
∑
a′∈A

(π(a′|s′)− πb(a′|s′)ρ(s′, a′))Qπ(s′, a′)

∣∣∣∣∣+ γDρ,max‖Qπ −Qπ,ρ‖∞

≤ γ

1− γ
∑
s′∈S

Pa(s, s′)
∑
a′∈A

|π(a′|s′)− πb(a′|s′)ρ(s′, a′)|+ γDρ,max‖Qπ −Qπ,ρ‖∞ (∗)

≤ γ

1− γ
max
s∈S

∑
a∈A
|π(a|s)− πb(a|s)ρ(s, a)|+ γDρ,max‖Qπ −Qπ,ρ‖∞,

where in Eq. (∗) we used the inequality |Qπ(s, a)| ≤
∑∞
k=0 γ

k = 1
1−γ for all (s, a). Therefore,

we have

‖Qπ −Qπρ‖∞ ≤
γ

1− γ
max
s∈S

∑
a∈A
|π(a|s)− πb(a|s)ρ(s, a)|+ γDρ,max‖Qπ −Qπ,ρ‖∞.

Rearranging terms and we obtain the desired result.

(2) To prove the upper bound on ‖Qπ,ρ‖∞, we begin with the fixed-point equation

Qπ,ρ = Hρ(Qπ,ρ) = R+ γPπρDρQ
π,ρ, (5)

where we recall the definition of Dρ and πρ in Section 2. Eq. (5) is equivalent to Qπ,ρ =
(I − γPπρDρ)

−1R. Therefore, we have

‖Qπ,ρ‖∞ = ‖(I − γPπρDρ)
−1R‖∞ ≤ ‖(I − γPπρDρ)

−1‖∞‖R‖∞ ≤
1

1− γDρ,max
.
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A.2 On the Fixed-Point of the OperatorHρ(·)

Suppose that for the state-action pair (s0, a0), we have ρ(s0, a0) 6= π(a0|s0)/πb(a0|s0). Let an
MDP be that the transition probability matrix is an identity matrix for each action, and the reward is
zero for all state-action pairs except at (s0, a0), where it is equal to 1.

In this case, it is clear that for any policy π, we have Qπ(s, a) = 0 for all (s, a) 6= (s0, a0), and
Qπ(s0, a0) = 1

1−γ . Suppose that Qπ = Qπ,ρ. then we have

0 = Qπ(s0, a0)−Qπ,ρ(s0, a0)

= γ
∑
s′∈S

Pa0(s0, s
′)
∑
a′∈A

(π(a′|s′)− πb(a′|s′)ρ(s′, a′))Qπ(s′, a′)

= (π(a0|s0)− πb(a0|s0)ρ(s0, a0))Qπ(s0, a0)

=
1

1− γ
(π(a0|s0)− πb(a0|s0)ρ(s0, a0)) .

This contradicts to the fact that ρ(s0, a0) 6= π(a0|s0)/πb(a0|s0). Therefore, we have Qπ 6= Qπ,ρ.

A.3 Proof of Proposition 2.2

Recall the definition of B̃c,ρ(·) in Eq. (2):

B̃c,ρ(Q) = KSA(Bc,ρ(Q)−Q) +Q = KSATc(Hρ(Q)−Q) +Q.

We first explicitly compute the operators Tc(·) andHρ(·). For the operatorHρ(·), we have from its
definition that

[Hρ(Q)](s, a) = R(s, a) + γEπb [ρ(Sk+1, Ak+1)Q(Sk+1, Ak+1) | Sk = s,Ak = a]

= R(s, a) + γ
∑
s′

Pa(s, s′)
∑
a′

πb(a
′|s′)ρ(s′, a′)Q(s′, a′)

= R(s, a) + γ
∑
s′

Pa(s, s′)
∑
a′

πb(a
′|s′)ρ(s′, a′)

Dρ(s′, a′)
Dρ(s

′, a′)Q(s′, a′)

= R(s, a) + γ
∑
s′,a′

Pa(s, s′)πρ(a
′|s′)Dρ(s

′, a′)Q(s′, a′)

= [R+ PπρDρQ](s, a).

Note that Pπρ ∈ R|S||A|×|S||A| here is the transition probability matrix of the Markov chain
{(Sk, Ak)} under πρ, i.e., Pπρ((s, a), (s′, a′)) = Pa(s, s′)πρ(a

′|s′) for any (s, a) and (s′, a′). Hence
we have

Hρ(Q) = R+ PπρDρQ.

As for the operator Tc(·), similarly using the Markov property and the tower property of conditional
expectation, we have Tc(Q) =

∑n−1
i=0 (γPπcDc)

iQ. It follows that

B̃c,ρ(Q) = KSATc(Hρ(Q)−Q) +Q

= KSA
n−1∑
i=0

(γPπcDc)
i(R+ γPπρDρQ−Q) +Q

=

[
I −KSA

n−1∑
i=0

(γPπcDc)
i(I − γPπρDρ)

]
︸ ︷︷ ︸

A

Q+KSA
n−1∑
i=0

(γPπcDc)
iR︸ ︷︷ ︸

b

.

A.4 Proof of Proposition 2.3

Consider the matrix A given in Proposition 2.2. To show that A is a substochastic matrix with a
positive modulus, we first show that A is non-negative. Observe that

A = I −KSA
n−1∑
i=0

(γPπcDc)
i +KSA

n−1∑
i=0

(γPπcDc)
iγPπρDρ
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= (I −KSA)−KSA
n−1∑
i=1

(γPπcDc)
i +KSA

n−1∑
i=0

(γPπcDc)
iγPπρDρ

= (I −KSA)−KSA
n−2∑
i=0

(γPπcDc)
i+1 +KSA

n−1∑
i=0

(γPπcDc)
iγPπρDρ

= (I −KSA) +KSA
n−2∑
i=0

(γPπcDc)
iγ(PπρDρ − PπcDc) +KSA(γPπcDc)

n−1γPπρDρ. (6)

It remains to show that the matrix PπρDρ − PπcDc has non-negative entries. For any (s, a) and
(s′, a′), since c(s′, a′) ≤ ρ(s′, a′) for all (s′, a′), we have

[PπρDρ − PπcDc]((s, a), (s′, a′)) = Pa(s, s′)πb(a
′|s′)(ρ(s′, a′)− c(s′, a′)) ≥ 0.

We next show that A1 ≤ (1− ω)1, where 1 ∈ Rd is the all one vector. Since A is non-negative and
Dρ,max < 1/γ for all (s, a), we have

KSA
n−1∑
i=0

(γPπcDc)
i(I − γPπρDρ)1 ≥ KSA

n−1∑
i=0

(γPπcDc)
i(I − γPπρDρ,max)1

= (1− γDρ,max)KSA
n−1∑
i=0

(γPπcDc)
i1

≥ KSA,min

n−1∑
i=0

(γDc,min)i(1− γDρ,max)1

= KSA,minf(γDc,min)(1− γDρ,max)1.

It follows that

A1 =

[
I −KSA

n−1∑
i=0

(γPπcDc)
i(I − γPπρDρ)

]
1 ≤ [1−KSA,minf(γDc,min)(1− γDρ,max)]1.

This implies that A is a substochastic matrix with modulus ω = KSA,minf(γDc,min)(1− γDρ,max).

A.5 Proof of Proposition 2.4

Consider a substochastic matrix M ∈ Rd×d with modulus β ∈ (0, 1). For any θ ∈ (0, 1), let

M ′ =
M

1− θβ
+
β(1− θ)
1− θβ

E

d
,

where E is the all one matrix. It is clear that M ′ > 0. Moreover, since

M ′1 ≤ 1− β
1− θβ

1 +
β(1− θ)
1− θβ

1 = 1,

the matrix M ′ is a substochastic matrix with modulus 0, there exists a stochastic matrix M ′′ such
that M ′′ ≥ M ′ > 0. Since M ′′ has strictly positive entries, the Markov chain associated with the
stochastic matrix M ′′ is irreducible and aperiodic, hence admits a unique stationary distribution
µ ∈ ∆d. In the special case where M itself is irreducible, we are allowed to choose θ = 1 in the
preceding construction process, and the resulting stochastic matrix M ′′ is also guaranteed to be
irreducible, and hence has a unique stationary distribution µ. Since µ> = µ>M ′′, we have

µ> = µ>M ′′ ≥ µ>M ′ ≥ µ> β(1− θ)
1− θβ

E

d
=

β(1− θ)
(1− θβ)d

1>.

This proves the lower bound on the entries of µ.

Now using µ as the weight vector and we have for any p ∈ [1,∞) and x ∈ Rd:

‖Mx‖pµ,p =
∑
i

µi

∣∣∣∣∣∣
∑
j

Mijxj

∣∣∣∣∣∣
p

16



=
∑
i

µi

(∑
`

Mi`

)p ∣∣∣∣∣∣
∑
j

Mij∑
`Mi`

xj

∣∣∣∣∣∣
p

≤
∑
i

µi

(∑
`

Mi`

)p−1∑
j

Mij |xj |p (Jensen’s inequality)

≤ (1− β)p−1
∑
i

µi
∑
j

Mij |xj |p

≤ (1− β)p−1(1− θβ)
∑
i

µi
∑
j

M ′ij |xj |p (definition of M ′)

≤ (1− β)p−1(1− θβ)
∑
i

µi
∑
j

M ′′ij |xj |p (definition of M ′′)

= (1− β)p−1(1− θβ)
∑
j

|xj |p
∑
i

µiM
′′
ij (change of summation order)

= (1− β)p−1(1− θβ)
∑
j

µj |xj |p (µ>M ′′ = µ>)

= (1− β)p−1(1− θβ)‖x‖pµ,p.

It follows that ‖Mx‖µ,p ≤ (1− ω)1−1/p(1− θβ)1/p‖x‖µ,p for any x ∈ Rd and p ∈ [1,∞). Using
the definition of induced matrix norm immediately gives the result.

A.6 Proof of Theorem 2.2

We first state a more general result in the following, which implies Theorem 2.2.
Theorem A.1. Consider the iterates {Qk} generated by Algorithm 1. Suppose that Assumption 2.1 is
satisfied, and c(s, a) ≤ ρ(s, a) for all (s, a) and Dρ,max < 1/γ. Then for any θ ∈ (0, 1), there exists
a weighted `p-norm with weights µ ∈ ∆|S||A| satisfying µmin ≥ ω(1−θ)

(1−θω)|S||A| such that the following

inequality holds when the constant stepsize α is chosen such that ατα,n ≤
θµ

2/p
minω

2052pf(γcmax)2(γρmax+1)2 :

E[‖Qk −Qπ,ρ‖2µ,p] ≤ ζ̃1(1− θωα)k−τα,n + ζ̃2
pf(γcmax)2(γρmax + 1)2

µ
2/p
minω

ατα,n,

where ζ̃1 = (‖Q0 −Qπ,ρ‖µ,p + ‖Q0‖µ,p + 1)2, and ζ̃2 = 228(3‖Qπ,ρ‖µ,p + 1)2.

By using the inequality that µ1/p
min‖ · ‖p ≤ ‖ · ‖µ,p (where ‖ · ‖p is the unweighted `p-norm), Theorem

A.1 implies the following finite-sample bound on E[‖Qk −Qπ,ρ‖p].
Corollary A.1.1. Under same assumptions as Theorem 2.1, we have for all k ≥ τα,n:

E[‖Qk −Qπ,ρ‖2p] ≤
ζ̃1

µ
2/p
min

(1− θωα)k−τα,n +
ζ̃2

µ
2/p
min

pf(γcmax)2(γρmax + 1)2

µ
2/p
minω

ατα,n,

To proceed and prove Theorem 2.2, observe that for any p ≥ 1 we have

E[‖Qk −Qπ,ρ‖2∞] ≤ E[‖Qk −Qπ,ρ‖2p]

≤ ζ̃1

µ
2/p
min

(1− θωα)k−τα,n +
ζ̃2pf(γcmax)2(γρmax + 1)2

µ
4/p
minω

ατα,n.

Let θ = 1/2 and p = 4 log(1/µmin). Then we have

1

µ
2/p
min

= µ
− 1

2 log(1/µmin)

min = µ
1

2 log(µmin)

min =
√
e ≤ 2, and

p

µ
4/p
min

≤ 4e log(1/µmin) ≤ 4e log

(
2|S||A|
ω

)
. (Using the lower bound on µmin)
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It follows that when ατα,n ≤ ω
32832 log(2|S||A|/ω)f(γcmax)2(γρmax+1)2 , we have for all k ≥ τα,n:

E[‖Qk −Qπ,ρ‖2∞] ≤ 2ζ̃1

(
1− ωα

2

)k−τα,n
+ 4eζ̃2

f(γcmax)2(γρmax + 1)2 log(2|S||A|/ω)

ω
ατα,n

= ζ1

(
1− ωα

2

)k−τα,n
+ ζ2

f(γcmax)2(γρmax + 1)2 log(2|S||A|/ω)

ω
ατα,n,

where in the last line we used 2ζ̃1 ≤ ζ1 = 2(‖Q0 − Qπ,ρ‖∞ + ‖Q0‖∞ + 1)2, and 4eζ̃2 ≤ ζ2 =
912e(3‖Qπ,ρ‖∞ + 1)2. This proves Theorem 2.2.

A.6.1 Proof of Theorem A.1

To prove Theorem A.1, we use a Lyapunov drift argument. We next present two approaches for
proving Theorem A.1. One is by directly using W (Q) = 1

2‖Q‖
2
µ,p as the Lyapunov function.

Another one is by applying [10, Theorem 2.1], which studies general stochastic approximation under
contraction assumption.

We begin by rewriting Algorithm 1 using simplified notation. Let Yk = (Sk, Ak, · · · , Sk+n, Ak+n)
for all k ≥ 0, which is clearly a Markov chain, with finite state-space denoted by Y . Note that under
Assumption 2.1 the Markov chain {Yk} has a unique stationary distribution κY ∈ ∆|Y|. Define an
operator F : R|S||A| × Y 7→ R|S||A| by

[F (Q, y)](s, a) = [F (Q, s0, a0, ..., sn, an)](s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)(R(si, ai) + γρ(si+1, ai+1)Q(si+1, ai+1)−Q(si, ai)) +Q(s, a).

Then the update equation of Algorithm 1 can be equivalently written byQk+1 = Qk+α(F (Qk, Yk)−
Qk). We next establish in the following proposition the properties of the operators F (·, ·) and the
Markov chain {Yk}, which will be useful in both approaches we present later.
Proposition A.1. The following statements hold.

(1) The operator F (·) satisfies for any Q1, Q2 and y:

(a) ‖F (Q1, y)− F (Q2, y)‖µ,p ≤ 2

µ
1/p
min

f(γcmax)(γρmax + 1)‖Q1 −Q2‖µ,p,

(b) ‖F (0, y)‖µ,p ≤ f(γcmax).

(2) For any k ≥ 0 and n ≥ 0, we have maxy∈Y ‖P k+n+1(y, ·)− κY (·)‖TV ≤ Cσk.

(3) For any Q, we have EY∼κY [F (Q,Y )] = B̃c,ρ(Q).

We now present our first approach of proving Theorem A.1, where we directly useW (Q) = 1
2‖Q‖

2
µ,p

as the Lyapunov function.

First Approach: Note that the function W (Q) = 1
2‖Q‖

2
µ,p is a (p − 1)-smooth function with

respect to ‖ · ‖µ,p [3], i.e., W (Q2) ≤W (Q1) + 〈∇W (Q1), Q2 −Q1〉+ p−1
2 ‖Q1 −Q2‖2µ,p for any

Q1, Q2 ∈ R|S||A|. Therefore, using the update equation of Algorithm 1, we have for any k ≥ 0:

E[W (Qk+1 −Qπ,ρ)] ≤ E[W (Qk −Qπ,ρ)] + αkE[〈∇W (Qk −Qπ,ρ), Qk+1 −Qk〉]

+
(p− 1)α2

k

2
E[‖Qk+1 −Qk‖2p].

The rest of the proof is identical to that of [10, Theorem 2.1] (where Proposition A.1 plays an
important role), and is omitted. Here, we can directly use W (Q) as a Lyapunov function because it
is smooth. In contrast, [9, 10] study the more general settings when it is not smooth. In that case,
the Lyapunov function is obtained by using a smoothing technique involving generalized Moreau
envelop and infimal convolution to obtain a smooth approximation of W (Q). One can of course,
directly apply the result in [9, 10], which we present as a second approach.
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Second Approach: We next present how to apply [10, Theorem 2.1] to obtain the results. We
begin by restating Theorem 2.1 of [10] in the case of weighted `p-norm contraction with weights
{µi}1≤i≤d. Using the notation of [10], we choose the smoothing norm ‖ · ‖s to be the same norm as
the contraction norm: ‖ · ‖µ,p.

Theorem A.2 (Theorem 2.1 in [10]). Consider the SA algorithm

xk+1 = xk + α(F (xk, Yk)− xk). (7)

Suppose that

(1) The random process {Yk} is a Markov chain (denoted byMCY ) with finite state-space Y . In
addition, {Yk} has a unique stationary distribution κY , and there exist C1 > 0 and σ1 ∈ (0, 1)
such that maxy∈Y ‖P k(y, ·)− κY (·)‖TV ≤ C1σ

k
1 for all k ≥ 0.

(2) The operator F : Rd × Y 7→ Rd satisfies for any x1, x2 ∈ Rd and y ∈ Y

(a) ‖F (x1, y)− F (x2, y)‖µ,p ≤ a1‖x1 − x2‖µ,p, where a1 > 0 is a constant,
(b) ‖F (0, y)‖µ,p ≤ b1, where b1 > 0 is a constant.

(3) The expected operator F̄ : Rd 7→ Rd defined by F̄ (x) = EY∼κY [F (x, Y )] satisfies F̄ (x∗) = x∗,
and is a contraction mapping with respect to ‖ · ‖µ,p, with contraction factor γc ∈ (0, 1).

(4) The constant stepsize α is chosen such that αtα(MCY ) ≤ 1−γc
228p(a1+1)2 .

Then we have for all k ≥ tα(MCY ) that

E[‖xk − x∗‖2µ,p] ≤ c̃1(1− (1− γc)α)k−tα(MCY ) +
228pc̃2
(1− γc)

αtα(MCY ),

where c̃1 = (‖x0 − x∗‖µ,p + ‖x0‖µ,p + b1/(a1 + 1))2 and c̃2 = ((a1 + 1)‖x∗‖µ,p + b1)2.

Proposition A.1 in conjunction with Theorem 2.1 imply that the requirements for applying Theorem
A.2 are satisfied. For any θ ∈ (0, 1), when the constant stepsize α is chosen such that ατα,n ≤

θµ
2/p
minω

2052pf(γcmax)2(γρmax+1)2 , we have for any k ≥ τα,n:

E[‖Qk −Qπ,ρ‖2µ,p] ≤ ζ̃1(1− θωα)k−τα,n + ζ̃2
pf(γcmax)2(γρmax + 1)2

µ
2/p
minω

ατα,n,

where ζ̃1 = (‖Q0 −Qπ,ρ‖µ,p + ‖Q0‖µ,p + 1)2, and ζ̃2 = 228(3‖Qπ,ρ‖µ,p + 1)2.

A.6.2 Proof of Proposition A.1

(1) For any Q1, Q2 ∈ R|S||A| and y = (s0, a0, · · · , sn, an) ∈ Y , we have

‖F (Q1, s0, a0, ..., sn, an)− F (Q2, s0, a0, ..., sn, an)‖µ,p

≤

[∑
s,a

µ(s, a)

(
I{(s,a)=(s0,a0)}

n−1∑
i=0

(γcmax)i(γρmax + 1)‖Q1 −Q2‖∞

)p]1/p

+ ‖Q1 −Q2‖µ,p (Triangle inequality)
= f(γcmax)(γρmax + 1)‖Q1 −Q2‖∞ + ‖Q1 −Q2‖µ,p.

≤ 2

µ
1/p
min

f(γcmax)(γρmax + 1)‖Q1 −Q2‖µ,p.

Similarly, for any y = (s0, a0, · · · , sn, an) ∈ Y , we have

‖F (0, s0, a0, ..., sn, an)‖µ,p ≤

[∑
s,a

µ(s, a)I{(s,a)=(s0,a0)}

(
n−1∑
i=0

(γcmax)i

)p]1/p

≤ f(γcmax).
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(2) Under Assumption 2.1, it is clear that {Yk} has a unique stationary distribution, which we have
denoted by κY , and is given by

κY (s0, a0, ..., sn, an) = κS(s0)

(
n−1∏
i=0

π(ai|si)Pai(si, si+1)

)
π(an|sn).

Now use the definition of total variation distance, and we have for any y = (s0, a0, ..., sn, an)
and k ≥ 0:

‖P k+n+1((s0, a0, ..., sn, an), ·)− κY (·)‖TV

=
1

2

∑
s′0,a

′
0,...,s

′
n,a

′
n

∣∣∣∣∣∑
s

Pan(sn, s)P
k
πb

(s, s′0)− κS(s′0)

∣∣∣∣∣
(
n−1∏
i=0

π(a′i|s′i)Pa′i(s
′
i, s
′
i+1)

)
π(a′n|s′n)

=
1

2

∑
s′0

∣∣∣∣∣∑
s

Pan(sn, s)P
k
πb

(s, s′0)− κS(s′0)

∣∣∣∣∣
≤ 1

2

∑
s′0

∑
s

Pan(sn, s)
∣∣P kπb(s, s′0)− κS(s′0)

∣∣
=

1

2

∑
s

Pan(sn, s)
∑
s′0

∣∣P kπb(s, s′0)− κS(s′0)
∣∣

≤ 1

2

∑
s

Pan(sn, s) max
s′

∑
s′0

∣∣P kπb(s′, s′0)− κS(s′0)
∣∣

= max
s∈S
‖P kπb(s, ·)− κS(·)‖TV

≤ Cσk.

(3) It is clear that EY∼KY [F (Q,Y )] = KSATc(Hρ(Q)−Q) +Q, which by definition is equal to
B̃c,ρ(Q).

B Connection to Linear SA Involving a Hurwitz Matrix

In view of Proposition 2.2, Algorithm 1 can be alternatively interpreted as a linear SA algorithm for
solving the equation (A− I)Q+ b = 0. In the case where the matrix A is substochastic, our results
imply finite-sample bounds for such linear SA algorithm, which is stated in the following.

Let {Yk} be a Markov chain with finite state-space Y and unique stationary distribution κY . Let
Ã : Y 7→ Rd×d be a matrix valued function and let b̃ : Y 7→ Rd be a vector valued function. Let
Ā = EY∼κY [Ã(Y )] and b̄ = EY∼κY [b̃(Y )]. Consider the following linear SA algorithm:

xk+1 = xk + α((Ã(Yk)− I)xk + b̃(Yk)), (8)

where α is the constant stepsize. Then, we have the following result.
Theorem B.1. Consider {xk} generated by Algorithm (8). Suppose that

(1) The Markov chain {Yk} has a unique stationary distribution κY , and maxy∈Y ‖P k(y, ·) −
κY (·)‖TV ≤ C ′σ′k for all k ≥ 0, where C ′ > 0 and σ′ ∈ (0, 1) are constants.

(2) There exist Amax, bmax > 0 such that ‖Ã(y)‖∞ ≤ Amax and ‖b̃(y)‖∞ ≤ bmax for all y ∈ Y .

(3) The matrix Ā is a sub-stochastic matrix with modulus ω′ ∈ (0, 1).

Then, for any θ ∈ (0, 1), when α is chosen such that αtα(MCY ) ≤ θω′µ
2/p
min

228p(Amax+1)2 , there exists a

weight vector µ ∈ ∆d satisfying µmin ≥ ω′(1−θ)
(1−θω′)d such that we have for all k ≥ tα(MCY ):

E[‖xk − x∗‖2µ,p] ≤ c̃1(1− θω′α)k−tα(MCY ) +
228pc̃2(Amax + 1)2

µ
2/p
minθω

′
αtα(MCY ),
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where c̃1 = (‖x0 − x∗‖µ,p + ‖x0‖µ,p +
bmaxµ

1/p
min

Amax+1 )2 and c̃2 = (‖x∗‖µ,p +
bmaxµ

1/p
min

Amax+1 )2.

Similarly, Theorem B.1 has the following two corollaries, where we provide finite-sample bounds on
E[‖xk − x∗‖2p] and E[‖xk − x∗‖2∞].

Corollary B.1.1. Under the same assumptions as Theorem B.1, we have for all k ≥ tα(MCY ):

E[‖xk − x∗‖2p] ≤
c̃1

µ
2/p
min

(1− θω′α)k−tα(MCY ) +
228pc̃2(Amax + 1)2

µ
4/p
minθω

′
αtα(MCY ).

Corollary B.1.2. Under the same assumptions as Theorem B.1, we have for all k ≥ tα(MCY ):

E[‖xk − x∗‖2∞] ≤ c̃1
√
e

(
1− ω′α

2

)k−tα(MCY )

+
1824e log(2d/ω′)c̃2(Amax + 1)2

ω′
αtα(MCY ).

An alternative approach of studying linear SA algorithm with Markovian noise was provided in [29],
which established convergence bounds for linear stochastic approximation when the matrix Ā− I is
Hurwitz. The bounds in [29] are in terms of solution of the Lyapunov equation:

(Ā− I)>Σ + Σ(Ā− I) + I = 0. (9)

In particular, the finite-sample bounds depend on the ratio between maximum eigenvalue λmax and
minimum eigenvalue λmin of the solution Σ. In general, it is not clear how this ratio can be evaluated
and it is unknown. In the context of off-policy TD algorithms, the dependence on the contraction
factor, the variance and the sizes of state-action spaces are hidden in this ratio, and so the trade-offs
that we presented in Section 2 are not evident.

In our approach, we overcome this challenge by finding a Σ that solves the inequality,

(Ā− I)>Σ + Σ(Ā− I) + ηΣ � 2 0 (10)

instead of the Lyapunov equation. Here, η > 0 is a constant. It turns out that this is sufficient to
obtain finite-sample bounds. We find such a Σ by essentially establishing the weighted `p-norm
contraction property, in particular, the weighted `2-norm contraction property. To see this, observe
that when the matrix Ā is a substochastic matrix with a positive modulus ω′ ∈ (0, 1), Theorem 2.1
implies that Ā>NĀ � (1− ω′)N , where N = diag(µ). Therefore, we have

(1− ω′)N � (Ā− I + I)>N(Ā− I + I) � (Ā− I)>N +N(Ā− I) +N ,

which implies (Ā − I)>N + N(Ā − I) + ω′N � 0. Thus, Σ = N satisfies (10) with η = ω′.
When compared to the approach in [29], we trade-off the unknown eigenvalues of the solution to
the Lyapunov equation for the weight vector µ. Since we are able to establish a lower bound on
µ, we can obtain a sample complexity bound that doesn’t involve any unknowns (except KSA,min,
which is inevitable in both approaches). As a result, we are able to fully characterize the impact
of the generalized importance sampling ratios in Corollary 2.2.1, and provide insights about the
bias-variance trade-offs in multi-step off-policy TD-learning algorithms.

In this section, we present finite-sample bounds for linear stochastic approximation involving a
substochastic matrix, whereas [29] considers Hurwitz matrices. However, these results are equivalent
because of the following lemma.
Lemma B.1. (1) Suppose M ∈ Rd×d is a substochastic matrix with a positive modulus, then the

matrix M ′ defined by M ′ = M − I is Hurwitz.

(2) Suppose M ′ ∈ Rd×d is a Hurwitz matrix, then there exists φ ∈ (0, 1) such that the matrix
M = φM ′ + I is a contraction mapping with respect to a norm induced by an inner product.

Proof. The proof of Part (1) is straight-forward and we skip it. Part (2) is also not challenging, and
we present an overview of the argument. When M ′ is Hurwitz, all its eigenvalues are located on the
open left half of the complex plane. Therefore, there exists φ ∈ (0, 1) such that the eigenvalues of
M ′ are within the unit ball centered at (−1, 0) of the complex plane. It follows that M = φM ′ + I
has eigenvalues located inside the unit ball centered at the origin of the complex plane. This implies
the desired contraction property.
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C Technical Details in Section 3

C.1 Proof of Theorem 3.1

Since Vanilla IS is a special case of Algorithm 1, one can directly apply Theorem 2.2 to obtain the
finite-sample bound. However, there is one special property of Vanilla IS we can exploit to obtain
a tighter finite-sample bound. In particular, consider Proposition A.1 (1) (a). In the case of Vanilla
IS, the corresponding Lispchitz constant is 2

µ
1/p
min

f(γrmax)(γrmax + 1). We next show that due to

c(s, a) = ρ(s, a) in Vanilla IS, we can use telescoping to improve the Lipschitz constant. Specifically,
in Vanilla IS, for any Q ∈ R|S||A|, y ∈ Y , and (s, a), we have

[F (Q, y)](s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)(R(si, ai) + γc(si+1, ai+1)Q(si+1, ai+1)−Q(si, ai)) +Q(s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)R(si, ai) + I{(s0,a0)=(s,a)}

n−1∑
i=0

γi+1
i+1∏
j=1

c(sj , aj)Q(si+1, ai+1)

− I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)Q(si, ai) +Q(s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)R(si, ai) + I{(s0,a0)=(s,a)}

n∑
i=1

γi
i∏

j=1

c(sj , aj)Q(si, ai)

− I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)Q(si, ai) +Q(s, a)

= I{(s0,a0)=(s,a)}

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)R(si, ai) + I{(s0,a0)=(s,a)}γ
n

n∏
j=1

c(sj , aj)Q(sn, an)

+ (1− I{(s0,a0)=(s,a)})Q(s, a).

Therefore, we have for any Q1, Q2 ∈ R|S||A|, and y ∈ Y:

‖F (Q1, y)− F (Q2, y)‖µ,p

≤

∑
s,a

µ(s, a)

∣∣∣∣∣∣I{(s0,a0)=(s,a)}γ
n

n∏
j=1

c(sj , aj)(Q1(sn, an)−Q2(sn, an))

∣∣∣∣∣∣
p1/p

+ ‖Q1 −Q2‖µ,p

≤

[∑
s,a

µ(s, a) |(γrmax)n‖Q1 −Q2‖∞|p
]1/p

+ ‖Q1 −Q2‖µ,p

≤ (γrmax)n‖Q1 −Q2‖∞ + ‖Q1 −Q2‖µ,p

≤ (γrmax)n + 1

µ
1/p
min

‖Q1 −Q2‖µ,p.

Using this improved Lipschitz constant and we obtain Theorem 3.1, where the rest of the proof is
identical to that of Theorem 2.2.

C.2 Comparison to the n-Step TD-Learning Results in [10]

The sample complexity of on-policy n-step TD-learning provided in [10, Corollary 3.3.1.] is

Õ

(
n log2(1/ε)

ε2K2
S,min(1− γ)2(1− γn)2

)
Õ(|S|1/2). (11)
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In this work, by setting πb = π, Theorem 3.1 implies a sample complexity of

Õ

(
n log2(1/ε)

ε2K2
SA,min(1− γn)2(1− γ)2

)
. (12)

These two results have the same dependency on ε, n, and 1/(1− γ), but have two differences. First
is that in Eq. (11) there is K−2

S,min while we have K−2
SA,min. This is because we are evaluating the

Q-function while [10] studies policy evaluation for the V -function. Another difference is that in Eq.
(11) there is an additional factor of |S|1/2. This is because we find the sample complexity to obtain
E[‖ · ‖∞] ≤ ε while [10] finds the sample complexity to achieve E[‖ · ‖2] ≤ ε.

C.3 Proof of Theorems 3.2 to 3.5

The results are obtained by directly applying Theorem 2.2.

C.4 Computing the Sample Complexity of Q-Trace from [19]

To compute the sample complexity of the Q-trace algorithm from [19], we will adopt the notation
from this paper for consistency. In view of [19, Theorem 2.1], to obtain E[‖Qk −Qπ,ρ‖∞] ≤ ε, we
need

α ∼ O
(

ε2

log(1/ε)

)
Õ

(
K2
SA,minf(γDc,min)2(1− γDρ,max)4

nf(γc̄)2(γρ̄+ 1)2

)
,

which implies

k ∼ O
(

log(1/ε)2

ε2

)
Õ

(
nf(γc̄)2(γρ̄+ 1)2

K3
SA,minf(γDc,min)3(1− γDρ,max)5

)

= Õ
(

log2(1/ε)nf(γc̄)2(γρ̄+ 1)2

ε2ω3(1− γDρ,max)2

)
.
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