
Priority-Aware Clinical Pathology Hierarchy
Training for Multiple Instance Learning

Sungrae Hong1 , Kyungeun Kim2 , Juhyeon Kim1 , Sol Lee1 ,
Jisu Shin1 , Chanjae Song1 , and Mun Yong Yi⋆1

1 Graduate School of Data Science, KAIST, Daejeon, South Korea
{sr5043, wedsed123, leesol4553, jisu3389, chan4535, munyi}@kaist.ac.kr

2 Seegene Medical Foundation, Seoul, South Korea
kekim@mf.seegene.com

Abstract. Multiple Instance Learning (MIL) is increasingly being used
as a support tool within clinical settings for pathological diagnosis de-
cisions, achieving high performance and removing the annotation bur-
den. However, existing approaches for clinical MIL tasks have not ade-
quately addressed the priority issues that exist in relation to pathological
symptoms and diagnostic classes, causing MIL models to ignore priority
among classes. To overcome this clinical limitation of MIL, we propose
a new method that addresses priority issues using two hierarchies: verti-
cal inter-hierarchy and horizontal intra-hierarchy. The proposed method
aligns MIL predictions across each hierarchical level and employs an
implicit feature re-usability during training to facilitate clinically more
serious classes within the same level. Experiments with real-world pa-
tient data show that the proposed method effectively reduces misdiag-
nosis and prioritizes more important symptoms in multiclass scenarios.
Further analysis verifies the efficacy of the proposed components and
qualitatively confirms the MIL predictions against challenging cases with
multiple symptoms.

Keywords: Multiclass Priority · Class Hierarchy · Multiple Instance
Learning.

1 Introduction

The exponential increase in the demand for pathological diagnoses after the
COVID-19 pandemic has significantly burdened a limited number of patholog-
ical specialists [4,2]. At the same time, the deep learning (DL) community has
actively pursued alleviating this workload by developing automated diagnostic
models to assist pathological decision making [7]. Recently, Multiple Instance
Learning (MIL), which uses only weak labels at the Whole Slide Image (WSI)
level for model training, not pixel-level annotations by experts, has emerged as
the golden standard in digital pathology diagnosis [22].
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Fig. 1: (a) A diagram illustrating class relationships and hierarchy. We denote the
structure from root to leaves as H = 0 to H = 2. (b) The proposed framework
offers a two-phase design, which is trained end-to-end manner.

Although MIL offers promising results for expert assistance in clinical set-
tings, it reveals shortcomings in multiclass scenarios, as most MIL studies have
been conducted in binary settings [18,21]. Unlike binary classification, a mul-
ticlass task commonly involves a hierarchy because lower-level classes can be
organized into groups of higher levels [1], potentially reflecting priorities or dif-
ferent clinical urgencies between those higher groups. The DL community has
made several attempts to leverage hierarchy, such as loss-centric methodologies,
which penalize predictions based on class relationships [1,5]. Structure-based
methods try to establish these class relationships within the framework [17],
graphs [3], and hyperbolic space [15]. The underlying objective of these inter-
hierarchy approaches is to prevent networks from making critical fine-level errors
in classification, which correspond to type II errors in medical field (e.g., A model
might mistake a stage of tumor, but should not confuse a cancerous cell with a
normal one).

Despite previous attempts to address the hierarchy issues, the inherent prop-
erties of WSIs impose limitations on conventional multiclass hierarchy approaches.
Although WSI training uses only one label, clinical inference often involves mul-
tiple symptoms, which requires pathologists to identify the most urgent problem
[20,19]. As models are trained with the assumption of a strict label, they are
prone to concentrate on the most probable class, rather than the most haz-
ardous sign [11,10]. We refer to this issue, ignoring priority within the horizontal
hierarchy, as an intra-hierarchy problem.

We address the hierarchy issues in multiple ways. For inter-hierarchy, we
utilize a probability alignment term between each hierarchy. Concurrently, we
propose a probability adjustment that allows the coarse-grained hierarchy to in-
fluence the predictions of the fine-grained hierarchy. We also present an implicit
feature remix to handle the intra-hierarchy problem. Given that the input of
MIL is a set of multiple instances, we implicitly train class priority by mixing
instances from two samples. We have confirmed that it enables the model to
focus on the more urgent class in a complex test set where two cases are mixed.
The proposed framework flexibly employs MIL architectures and leverages mul-
timodal data. Experiments conducted on real-world clinical data show that the
proposed method outperforms the extant methods while properly respecting
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Table 1: Data distribution over the classes. The values in parentheses represent
the number of extra test samples.

TA TVA TSA HP SSL IP LP
∑

Train 317 232 300 257 130 99 266 1,601
Validation 69 51 65 55 29 21 57 347

Test 164(95) 57(6) 84(18) 64(8) 84(55) 21 57 531(182)

multi-class hierarchies. Through ablation studies, we confirm the contribution of
each component. Additional qualitative evaluations examine the predictions of
the proposed methodology on challenging diagnostic images.

Related Work There are several class hierarchy-aware classifiers. DeViSE [8]
optimizes cosine similarity between image embeddings from pretrained visual
models and label embeddings from Word2Vec [14]. Bertinetto et al. [1] introduced
hierarchy-sensitive loss adaptations to reduce hierarchical distance in top-k pre-
dictions while trading off top-1 accuracy. Chang et al. [5] addressed how coarse
class cross-entropy loss degrades fine-grained accuracy by partitioning the feature
space to disentangle coarse and fine-grained features. Garg et al. [9] proposed a
feature learning method that considers class hierarchies, using Jensen-Shannon
divergence and geometric constraints to train hierarchical semantic organization.
While previous studies exploited class hierarchies in a coarse-to-fine manner, the
lack of explicit class priority specification within hierarchies makes hierarchical
approaches worth exploring, particularly for multiclass clinical WSI settings.

2 Method

2.1 Data Description

We use 2,297 digital WSIs originated from patients in a real-world clinical setting
of Seegene Medical Foundation1, which comprises a total of the finest seven
classes in H = 2: tubular adenoma (TA), tubulovillous adenoma (TVA), tradi-
tional serrated adenoma (TSA), hyperplastic polyp (HP), sessile serrated lesion
(SSL), inflammatory polyp (IP), and lymphoid polyp (LP). These classes are
organized into three coarser categories (i.e., H = 1), as illustrated in Fig. 1 (a).
Among them, Adenoma is paramount due to its potential for malignant trans-
formation. Serrated is of secondary importance, necessitating more detailed di-
agnosis into SSL and HP. Each WSI has a Subsite indicating specimen location:
Proximal for near the oral cavity, Distal for near the anus, UNKNOWN otherwise.
We convert it into a three-dimensional one-hot vector s. This clinical dataset,
comprising WSIs each with a single symptom, was split into training, valida-
tion, and test sets at a 0.7:0.15:0.15 ratio. In addition, we have incorporated
an additional 182 complex samples (see Table. 1), which contain two or more
1 This study was performed in line with the principles of the Declaration of Helsinki.

Approval was granted by the Ethics Review Board SMF-IRB-2024-007 and KH2024-
059.
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symptoms, into the test set, to assess the proposed method’s performance in
challenging real-world multi-symptom conditions.

2.2 Proposed Two-phase Framework

Fig. 1 (b) shows the two-phase framework we propose in consideration of the
intra- and inter - hierarchical relationships. A WSI Xi is separated into n(Xi)
patches {xi,1, · · · , xi,n(Xi)}, and a pre-trained feature extractor outputs the cor-
responding instance bag Bi = {zi,1, · · · , zi,n(Xi)}. The Bi is fed into each H
MIL, fθ1(·) and fθ2(·). We denote the softmax outputs of fθ1(·) and fθ2(·) as
p̂H=1 ∈ R3 and p̂H=2 ∈ R7, respectively. Observing that pathologists closely ex-
amine the acquisition site in the diagnosis of HP and SSL, we concatenate s with
the input to feed into fθ2(·) if argmaxc(p̂

H=1) is Serrated. Consequently, each
hierarchy MIL is trained in an end-to-end manner with the proposed framework
using the following cross-entropy term:

LCE = −1

2

∑
h∈H

∑
c∈CH=h

yH=h
c log(p̂H=h

c ) (1)

where CH indicates the classes that are allocated in H.

2.3 Inter-Hierarchy Alignment

Although hierarchical MILs predict a different number of classes, they share
the same input. That is, given that both MILs evaluate the same samples, the
lower-level probability distribution, aggregated to match the higher-level classes,
should ideally match the higher-level probability distribution. Inspired by this
motivation and [9], we enforce p̂H=1 and p̂H=2 to be aligned:

LIHA = JS(p̂H=1||ṗH=1) =
1

2

(
KL(p̂H=1||m) + KL(ṗH=1||m)

)
(2)

where m = 1
2×(p̂H=1+ṗH=1). JS and KL denote Jensen-Shannon Divergence and

Kullback-Leibler Divergence, respectively. We perform the following operation to
obtain the average distribution m ∈ R3 and the aligned probability ṗH=1 ∈ R3

from H = 2 to H = 1:

ṗH=1
c =

∑
c′⊂c

p̂H=2
c′ , where c ∈ CH=1 and c′ ∈ CH=2. (3)

2.4 Upper-Hierarchy-Dependent Probability

Classifying the three classes of H = 1 is a simpler task than the seven classes of
H = 2. In other words, if fθ1(·) and fθ2(·) refer to each other, it is reasonable
to do so from the coarse to the fine level. Therefore, we adjust the probabilities
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Fig. 2: Visualization of the probability of event E not occurring (Equ. 5). P (Ec)
is visualized for the median, average, and maximum counts of n = |Bi|. In each
plot, the blue percentage indicates the proportion of cases with a probability of
99% or less out of feasible events.

p̂H=2 of fθ2(·), so that it aligns with the predictions of the fθ1(·) while also
allowing for some dependence:

LUHD = KL(||p̃H=2||1||yH=2)

, where p̃H=2
c =

{
p̂H=2
c × p̂H=1

c′ , if c ⊂ c′

p̂H=2
c , otherwise.

(4)

2.5 Implicit Feature Remix for Intra-Hierarchy

We still have the second component of the class hierarchy: Intra-hierarchy.
Given that a B is a collection of multiple instances, a random proportion β ∼
Uniform(0.4, 0.8) of instances is sampled from Bi and mixed into the 1− β pro-
portion of Bj to synthesize bag Bi+j , where Bi has higher priority than Bj within
the same H (e.g., TA and LP). We perform feature remixing only when Bi has at
least 150 instances to create a distinguishable synthesized sample. Here, a valid
concern is the possibility that the following event E occurs: E = {no crucial
instance for diagnosis from Bi are mixed into Bi+j}. However, contrary to our
concerns, if we assume Bi contains a proportion of α ≥ 0.05 instances exhibit-
ing symptoms, then event E is rarely to occur (i.e., complementary set Ec) as
depicted in following Equ. 5 and its visualization Fig. 2:

P (Ec) =

{
1− (n−nα)Cnβ

nCnβ
, if α+ β < 1

1 , if α+ β ≥ 1.
(5)

Furthermore, we introduce label softening to utilize the benefits of label soft-
ening [6], where k-th dimension of the smoothed label vector yHi+j is defined
as:

yHi+j,k =

{
r̃k/(r̃i + r̃j), if k ∈ {i, j}

0 , otherwise.

, where

{
r̃i = r1/τ

r̃j = (1− r)τ
and r =

β × |Bi|
β × |Bi|+ (1− β)× |Bj |

(6)



6 Sungrae Hong et al.

Table 2: The performance comparisons of alternative hierarchy-aware methods.
The values in parentheses indicate standard deviation.

TransMIL [18]

Method H = 1 H = 2
Accuracy AUROC Recall Accuracy AUROC Recall

CE - - - 0.866(0.008) 0.987(0.001) 0.933(0.020)
Weighted CE (5:3:2) - - - 0.870(0.012) 0.987(0.001) 0.933(0.020)
Weighted CE (7:2:1) - - - 0.851(0.011) 0.986(0.002) 0.916(0.027)
HXE (α = 0.1) [1] 0.916(0.009) 0.985(0.002) 0.908(0.013) 0.876(0.017) 0.987(0.002) 0.948(0.008)
HXE (α = 0.3) [1] 0.912(0.010) 0.986(0.002) 0.937(0.027) 0.875(0.007) 0.988(0.001) 0.941(0.017)

Soft Labels (β = 5) [1] 0.908(0.009) 0.982(0.004) 0.914(0.012) 0.882(0.012) 0.985(0.002) 0.953(0.012)
Soft Labels (β = 10) [1] 0.918(0.014) 0.981(0.011) 0.929(0.022) 0.868(0.009) 0.982(0.002) 0.933(0.017)

Chang et al. [5] 0.920(0.009) 0.981(0.003) 0.924(0.009) 0.872(0.007) 0.985(0.003) 0.941(0.013)
HAF [9] 0.865(0.045) 0.960(0.003) 0.910(0.042) 0.869(0.015) 0.986(0.002) 0.940(0.022)

Ours 0.922(0.009) 0.989(0.001) 0.927(0.029) 0.898(0.006) 0.990(0.002) 0.972(0.008)
DTFD-MIL [21]

CE - - - 0.860(0.014) 0.986(0.002) 0.918(0.016)
Weighted CE (5:3:2) - - - 0.871(0.012) 0.987(0.001) 0.933(0.020)
Weighted CE (7:2:1) - - - 0.850(0.019) 0.984(0.002) 0.896(0.014)
HXE (α = 0.1) [1] 0.922(0.023) 0.985(0.002) 0.911(0.053) 0.875(0.003) 0.987(0.001) 0.934(0.012)
HXE (α = 0.3) [1] 0.926(0.009) 0.987(0.001) 0.924(0.020) 0.863(0.003) 0.987(0.001) 0.924(0.006)

Soft Labels (β = 5) [1] 0.923(0.011) 0.986(0.003) 0.925(0.015) 0.874(0.007) 0.980(0.002) 0.927(0.010)
Soft Labels (β = 10) [1] 0.915(0.010) 0.983(0.004) 0.916(0.022) 0.866(0.008) 0.984(0.002) 0.930(0.018)

Chang et al. [5] 0.941(0.008) 0.987(0.002) 0.944(0.027)) 0.879(0.016) 0.987(0.004) 0.947(0.016)
HAF [9] 0.894(0.023) 0.976(0.006) 0.865(0.042) 0.862(0.012) 0.986(0.003) 0.916(0.020)

Ours 0.948(0.007) 0.991(0.001) 0.955(0.013) 0.892(0.014) 0.991(0.001) 0.970(0.010)

, where τ is the smoothing factor. The condition for r̄i and r̄j is designed to
make the class of Bi dominant in yHi+j .

The proposed hierarchical MIL framework is trained by the term L = LCE +
LIHA + LUHD.

3 Experiment

3.1 Implementation Details

MIL Architectures We utilize two state-of-the-art MIL architectures: Trans-
MIL [18] and DTFD-MIL [21]. TransMIL optimizes computation while captur-
ing more advanced inter-instance relationships. DTFD-MIL conducts double-tier
distillation by resampling the input into pseudo-bags. For DTDF-MIL, we adopt
Aggregated Feature Selection, which typically yields superior performance.
Training Settings We set the τ as 15. We selected ×256 size patches from
the 1MPP of WSIs using the Otsu algorithm [16], then transformed them into
individual instances with a pre-trained feature extractor [12]. We trained the
model using Adam optimizer [13] with betas of (0.9, 0.999) and a learning rate
of 1e−4. All experiments were carried out with fixed seeds on a single NVIDIA®

A6000 with 48GB of memory.
Comparison Methods We set cross-entropy (CE) and weighted CE, which
explicitly trains for the importance of classes, as the baseline. Hierarchical CE
(HXE) and soft labels [1], Chang et al. [5], and hierarchy-aware feature (HAF) [9]
were selected as comparison methods that can handle coarse-to-fine hierarchy.
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Fig. 3: Ablation results on the core components of the proposed method using
DTFD-MIL. Dashed lines indicate the fully equipped model’s performance.

For fair comparisons, we repeated all experiments with the optimized hyper-
parameters for each method, reporting the mean and standard deviation.
Evaluation Metrics We evaluate the performance at each H with Accuracy,
AUROC, and Recall scores. In particular, the recall measure used here is based
on a binary metric, where the positive class is defined as Adenoma or any of its
subclasses.

3.2 Quantitative Results

Table. 2 presents the results of running various hierarchy-aware methods against
the test data. Applying weighted CE with 5:3:2 weights improves the baseline
in both MIL structures. However, it also shows that excessively high weights for
certain classes can reverse this gain, making performance worse than the baseline,
highlighting that methods requiring explicit parameterization necessitate domain
expertise and considerable empirical search.

Moreover, HXE [1] had difficulty leveraging its advantages in the minimal
depth hierarchy because its conditional term operates with limited informa-
tion, which hinders the differentiation of importance of the class. Consistent
performance gains are observed across all comparison groups with the weak
soft-labels [1] (i.e., β = 5). The HAF [9] results reveal that hierarchical fea-
ture alignment is not critical for MIL. This phenomenon can be attributed to
the representational disparity: linear networks exhibit limited interaction while
attention-based MIL captures nuanced feature correlations, which are not adapt-
able across the hierarchies. Upon the results of Chang et al. [5], it shows remark-
able performance at H = 1 compared to other methods, due to training that
emphasized coarser information through initial epochs. Finally, our proposed
approach yielded superior performance compared to other methods, without ex-
ception. Not only did it ensure high accuracy, but also showed the lowest type II
error rates, which is critical in medical domain. The findings indicate that our
approach provides a suitable solution for real-world clinical WSIs, considering
their vertical inter-class hierarchy and diagnostic priority at the same level.

3.3 Further Analysis

Ablation Study We have conducted an ablation study to understand each
component’s effect on performance. Results of removing LIHA, LUHD, subsite
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GT : HP GT : TA
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Fig. 4: Quantitative investigation into cases with mixed symptoms. We plot the
p̂H=2 of models trained with feature remixed samples against those of models
trained without, shown with the corresponding WSIs.

s, feature remix, and all components are shown in Fig. 3. Each removal caused
performance degradation, with excluding all components showing the worst re-
sults. Removing subsite at H = 2 also affected precision at H = 1, indicating
probability alignment impacts H = 1 performance. Feature remix ablation re-
sulted in the most substantial degradation, highlighting its importance for WSIs
with multiple symptoms. Moreover, regarding the feature remix component, the
concurrent increase in both recall and accuracy suggests that the improved recall
is derived from precise diagnoses, not simply over-predicting positive cases.
Analysis on Intra-Hierarchy To understand how the model performs against
challenging cases, we have examined whether the model prioritizes the most
urgent class when two or more cases are mixed within a WSI. The left tissue
in Fig. 4 presents an HP with substantial IP mixture. Without intra-hierarchy
training, the MIL model predicts IP with greater confidence than HP, simply due
to the symptom area. In contrast, a model that implicitly learns the diagnostic
precedence of HP over IP predicts the case with the more serious diagnosis. The
tissue on the right is a sample that pathologists diagnose as TA, but previous
MIL approaches classified it as HP. Although a small area of TA is observed
in the magnified view, it is expected to have a higher probability because it is
more urgent than HP. Implicit feature remix prioritizes the class with higher
precedence when multiple classes are present in an instance bag.

4 Conclusion

Our research aims to solve the constraints that currently impede the successful
implementation of multiclass WSI MIL in real-world clinical settings. With the
formulation of the class hierarchy in two alternative ways, our proposed method
offers key components effective for each. Inter-hierarchy alignment of predic-
tions across the vertical hierarchy contributes to improved performance. The
predictions of the fine-grained hierarchy are influenced by the coarse-grained hi-
erarchy, thus having fine probabilities adjusted to ensure consistency with the
coarse. Implicit feature remix allows the model to understand diagnostic ur-
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gency in mixed-symptom inference environments, relying solely on a weak label.
The results of the experiment have shown that the feature remix improved the
quantitative performance and allowed it to focus on more prioritized diagnoses.
Furthermore, we have explored the applicability of the class hierarchy, a novel
concept in MIL, by comparing it with various methods. Our proposed method
mitigates the challenges of multiclass MIL diagnosis of previous approaches,
broadening its applicability to practical use in clinical settings.
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