
Appendix806

A Details from Section 3807

Proof of Theorem 3.1. Let A be a Pareto-optimal algorithm of robustness r, and consistency c(r).808

We will show that for any fixed ✏ > 0, there exists a sequence � and a prediction p̂ such that809

⌘ = |p̂� p
⇤
�|  ✏, and A satisfies Definition 3.1. Since A is Pareto-optimal, there exists a non-empty810

set of sequences ⌃c, such that for all �c 2 ⌃c, if A is given as prediction p
⇤
�c

, then811

p
⇤
�c

A(�c)
= c(r).

As shown in [19] we can assume, without loss of generality, that every �c is increasing, i.e., it is812

of the form �c = p1, . . . , pk, p
⇤
�c

with pi > pj , for all i < j, and p
⇤
�c

> pk. We define ⌃ to be the813

co-domain of the following function, f :814

f : ⌃c ! ⌃ such that f(�c) =

⇢
�c if |p⇤�c

� pk|  ✏,

p1, . . . , pk, p
⇤
�c
� ✏, p

⇤
�c

otherwise.
(A.1)

Given a � 2 ⌃, let n = |�|� 1, and let xn be the fraction exchanged by A. Since A is r-robust, it815

needs to account for the scenario in which the adversary chooses to drop all rates to 1 after exchanging816

at the rate pn. Thus, xn must satisfy817

pn

sn + pn · xn + 1� xn � wn
 r,

or equivalently,818

xn �
pn � r · (sn + 1� wn)

r · (pn � 1)
. (A.2)

Define ! to be the RHS of (A.2) Suppose first, that there exists a sequence � 2 ⌃ for which A819

exchanges xn = !. In this case, if A is given a prediction p̂ = p
⇤
�, then for the the sequence820

�r = �[1, n] we have that |p̂� p
⇤
�r
|  ✏, and:821

p
⇤
�r

A(�r)
=

pn

sn + pn · ! + 1� ! � wn
= r,

and the proof is complete in this case.822

It thus remains to consider the case that for all � 2 ⌃, xn > !. Let xn+1 be the amount exchanged by823

A at rate p
⇤
� . We define an online algorithm A

0, whose statement is given in Algorithm 3. Intuitively,824

while the rate is below p
⇤
�, A0 makes the same decisions as A. If the rate is between p

⇤
� � ✏ and p

⇤
�,825

A
0 exchanges !. If the rate is precisely p

⇤
� A

0 exchanges xn plus what A did not exchange on rates826

which were between p
⇤
� � ✏ and p

⇤
�. Finally, A0 makes the same decisions as A for all rates that827

exceed p
⇤
� . We will show that A0 has robustness at most r and consistency cA0 such that cA0 < c(r),828

which contradicts that A is Pareto-optimal.829

We first show that A0 is r-robust. Let �0 be an input sequence and p̂ a prediction given to A
0, we will830

show that p⇤�0  rA(�0). If p⇤�0 < p̂� ✏, then has A0 made the same decisions as A, hence remains831

r-robust. If p̂� ✏ < p
⇤
�0 < p̂, then by definition of !, A0 is guaranteed to be r-robust. Last, if p⇤�0 � p̂,832

then A
0 achieves a strictly better profit than A.833

It remains to show that A0 has consistency strictly smaller than c(r). To this end, it suffices to show834

that: (i) for all �c 2 ⌃c it holds that OPT(�c)
A0(�c)

< c(r), and that (ii) for all �0
/2 ⌃c it holds that835

OPT(�c)
A0(�c)

< c(r), assuming that both A and A
0 are given a prediction p̂ = p

⇤
�0 .836

To show (i), note that for �0 2 ⌃c it holds that OPT(f(�0))
A(f(�0)) < c(r), due to A exchanging xn > !837

and A
0 exchanging xn = !. If f(�0) = �

0 (first case in (A.1)) then OPT(�0)
A(�0) < c(r). Otherwise,838

(second case in (A.1)) A(�0) > A(f(�0)) hence the same result holds. To show (ii), observe that839

A
0(�0) > A(�0) due to A exchanging xn > ! and A

0 exchanging xn = !. Hence, by the definition840

of ⌃c, we have841
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Algorithm 3 Statement of the online algorithm A
0

Input: Algorithm A, p̂, ✏
1: p

⇤ = 1, e 0
2: for each rate pi in the input sequence do
3: if pi > p

⇤ then
4: p

⇤  pi

5: if pi < p̂� ✏ then
6: Exchange the same amount as A
7: else if p̂� ✏ < pi < p̂ then
8: Exchange !

9: e e+ xi � !

10: else if pi = p̂ then
11: Exchange xn + e

12: else
13: Exchange the same amount as A

OPT(�c)

A0(�c)
<

OPT(�c)

A(�c)
< c(r),

which concludes the proof.842

B Details from Section 4843

In this section, we show how to compute the function � used in PROFILE (Algorithm 1), for deciding844

whether a profile F is feasible. Recall that we seek a function � and values 0 = w1  . . .  wl+1  1845

that satisfy the following sets of constraints.846

[�] 8� 2 [wi, wi+1) :
�(�)

si +
R �
wi

�(t) dt+ 1� �

 ti

[wi+1] �(wi+1) = qi+1

[u] wi  wi+1  1

for each rate interval [qi, qi+1).847

As explained in Section 4, our algorithm builds a function � and values wi in an iterative way. That848

is, it processes each set of constraints iteratively, and at each step j 2 [1, l] it builds a function �j and849

computes values w1, . . . , wj+1 which satisfy the sets of constraints for all intervals [qi, qi+1) with850

i  j. Each function �j and the new values w1, . . . , wj+1 are a function of �j�1 and the previous851

values w1, . . . , wj+1.852

We explain an iteration of this process. Suppose that the algorithm is at a step where it has computed853

�j�1 and values w1, . . . , wj as to satisfy the sets of constraints for the intervals [qi, qi+1) with i < j.854

Constraint [�] requires us to guarantee a ratio of at least tj for every sequence whose maximum rate855

is in [qj , qj+1). We derive a function which achieves a ratio equal to tj for such sequences. The856

equality is sought, instead of the inequality, in order to minimize utilization. Intuitively, enforcing a857

ratio smaller than tj would force the algorithm to exchange more money to achieve a bigger profit.858

Thus the following constraint859

8� 2 [wj , wj+1) :
�(�)

sj +
R �
wj

�(t) dt+ 1� �

= tj ,

from which we can obtain the differential equation:860

�̇ = tj · �� tj , (B.1)

which is a separable first order differential equation. We can hence find the unique solution861

�(�) = C · etj ·� + 1.
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We then apply constraint [�], for an arbitrary � 2 [wj , wj+1), so to find the value of the constant C,862

which yields863

�(�) = (tj · (sj + 1� wj)� 1) · etj ·(��wj) + 1 (B.2)

The obtained function is the unique solution to such an equation. We denote ⇢j = tj · (sj + 1� wj).864

We then use constraint [wj+1] to find an expression for wj+1:865

wj+1 =
1

tj
ln

✓
qj+1 � 1

⇢j � 1

◆
+ wj (B.3)

Note that �(wj) = ⇢j . There are two cases to be analyzed.866

First, if ⇢j > qj , then we can define �j as follows:867

�j(w) =

⇢
�j�1(w) if w 2 [1, wj)
(tj · (sj + 1� wj)� 1) · etj ·(��wj) + 1 if w 2 [wj , wj+1),

where wj+1 is defined in (B.3). We say that we extend the previous �j�1. This scenario materializes868

when the algorithm has achieved a profit sj , which allows it to not exchange while observing rates869

in [qj , ⇢j ] and still remain tj-competitive. This occurs when tj > tj�1, hence it occurs for the870

increasing part of the profile.871

On the other hand, ⇢j < qj , if tj < tj�1. If this case occurs, the algorithm has not obtained a872

sufficient profit to be tj-competitive when presented with the sequence which continuously increases873

from 1 to qj , which is the worst-case sequence as stated in Remark 2.1. As we will show in the874

proof of Theorem 4.1 wj is the least utilization that can be spent so to satisfy every set of constraints875

[qk, qk+1) with k < j. To enforce a ratio of tj and still minimize utilization, the algorithm must876

exchange a bigger amount when rate qj is revealed, since exchanging more at a lower rate would lead877

to a larger utilization. To guarantee a ratio of tj for the continuous increasing sequence, the algorithm878

should trade an amount equal to w
0
j � wj , where w

0
j is obtained from:879

qj

sj + qj · (w0
j � wj) + 1� w0

j

= tj

and leads to880

w
0
j =

qj � tj · (sj � wjqj + 1)

tj · (qj � 1)
.

We now wish to extend function �j�1, obtained in the previous iteration, so as to satisfy all constraints881

for interval [qj , qj+1). Let s0j = sj + qj · (w0
j � wj), which is the profit obtained by the OTA in the882

worst case where the maximum rate is qj . We may express this problem by a new set of constraints,883

which are:884

[�] 8� 2 [w0
j , wj+1) :

�(�)

s0j +
R �
w0

j
�(t) dt+ 1� �

 tj ,

[wj+1] �(wj+1) = qj+1,

[u] w
0
j  wj+1  1.

Note that this set of constraints is the same as the ones we started with, but sj was replaced by s
0
j and885

wj by w
0
j . Hence, the � and wj+1 which satisfy the constraints and minimize wj+1 are:886

�(�) = (tj · (s0j + 1� w
0
j)� 1) · etj ·(��w0

j) + 1, (B.4)
887

wj+1 =
1

tj
ln

✓
qj+1 � 1

ti · (s0 + 1� w0
i)� 1

◆
+ w

0
j . (B.5)

We can now proceed with the proof for Theorem 4.1.888
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Proof of Theorem 4.1. As stated in Remark 2.1, every online strategy will exchange on rates which889

are best-seen so far. We can hence state every strategy as an OTA. It suffices then to prove the890

following: There exists an OTA which respects F if and only if PROFILE terminates with a value891

wl+1  1.892

Let F be a performance profile. The if direction follows directly from the design of PROFILE. It893

suffices to observe that the obtained function �l can be used as the threshold function for an OTA894

which respects the profile F .895

To prove the only if direction, we will prove that every wi obtained by PROFILE is the least utilization896

needed to satisfy all sets of constraints for intervals [qk, qk+1) for k < i. In other words, we897

will prove that if A is an OTA, which respects F , defined by �, and where w
0
1, . . . , w

0
l+1 are the898

respective utilization levels reached by A when observing rates q1, . . . , ql+1, i.e: �(w0
i) = qi for each899

i 2 [1, . . . , l + 1], then wi  w
0
i. This statement follows, once again, from the design of PROFILE.900

By replacing the inequality constraint in [�] by an equality, we manage to achieve a ratio which is901

exactly the one demanded by the profile, hence reserving budget for futures rates. PROFILE obtains a902

function �l which enforces, for each i 2 [1, l] and for each q 2 [qi, qi+1) the equation:903

q

R ��1
l (q)

1 �l(u)du+ 1� ��1
l (q)

= ti.

We conclude that PROFILE minimizes utilization while satisfying every set of constraints, thus proving904

the theorem.905

Figure 3 illustrates PROFILE. Here we observe that for the increasing part of the profile, �i with906

i 2 [4, 7] extends �i�1 with an exponential function starting at wi, where �i(wi) > �i�1(wi). Here907

the vertical “jumps” reflect the less stringent requirement in the increasing part (we can afford to908

reserve our budget for later). For the decreasing part of the profile, �i with i 2 [1, 3] extends �i�1909

with an exponential function starting at w0
i > wi (line 9 in the statement) where �i(w0

i) = �i�1(wi),910

which is reflected in the presence of straight lines in Figure 3.911

Figure 3: An illustration of PROFILE. Here the profile F is as follows: F ([1, 20) = 7,F ([20, 35]) = 5,
F ([35, 50]) = 3, F ([50, 70]) = 3.5, and F ([70, 100]) = 4

.
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C Details from Section 5912

In this section, we detail the calculations that lead to the value wi+1, which is the maximum an online913

algorithm can spend on rate pi while ensuring r-robustness.914

The aforementioned wi+1 is the solution to the following optimization problem:915

max w (Oi)
subj. to

[�] 8� 2 [w, 1) :
�(�)

si + pi · (w � wi) +
R �
w �(t) dt+ 1� �

= r,

[M ] �(1) �M,

[u] wi  w  1.

From constraint [�], we do the same analysis as in B to find �(�) = C · er� + 1. Once again, to find916

the constant C we use constraint [�] for an arbitrary value � 2 [wi+1, 1], which leads to:917

�(�) =
�
r · (si + 1� piwi + wi+1 · (pi � 1))� 1

�
· er·(��wi+1) + 1.

We then use constraint [M] to obtain an upper bound on wi+1:918

�
r · (si + 1� piwi + wi+1 · (pi � 1))� 1

�
· er·(1�wi+1) + 1 �M,

which leads to:919

wi+1  1� 1

r
ln

✓
M � 1

r(si + 1� piwi + wi+1(pi � 1)� 1)

◆
.

Thus the largest value of wi+1 is the root of the equation920

wi+1 = 1� 1

r
ln

✓
M � 1

r(si + 1� piwi + wi+1(pi � 1)� 1)

◆
,

which can be solved using numerical methods. Let ⇢ be the reservation rate for utilization wi+1, then921

⇢ = �(wi+1) = r · (si + 1� piwi + wi+1 · (pi � 1)).

If ⇢ > M , then the algorithm has achieved a sufficient profit to guarantee r-robustness independently922

of future rates. Hence, to maximize wi+1, we can safely set it to 1. However, if ⇢ < M , then923

constraint [M ] was saturated, and the algorithm will achieve a performance ratio of r for every924

sequence which grows continuously from ⇢ until a rate p
⇤ 2 [⇢,M ]. Moreover, for every sequence925

whose maximum rate p
⇤ 2 [pi, ⇢) the algorithm will have a performance ratio smaller than r.926

As explained in Appendix B using constraint [�] with an equality allows us to guarantee a performance927

ratio of r minimizing utilization. Observe that to maximize wi+1 we need to minimize the left-over928

budget to remain r-robust in the future. We can hence conclude that wi+1 � wi is indeed the largest929

amount of money we can exchange at rate pi and remain r-robust.930

We will next provide the proof for Theorem 5.1.931

Proof of Theorem 5.1. We are to prove that ADA-PO is Pareto-Optimal and dominates every other932

Pareto-Optimal algorithm on any sequence �.933

First, we will prove that ADA-PO is Pareto-Optimal. Let r be a a robustness requirement, and c(r)934

the respective consistency. To start with, we prove that ADA-PO is r-robust. Consider first the (easy)935

case where p
⇤
< p̂ then ADA-PO assures a performance ratio of r using the threat-based approach.936

Consider then the (harder) case in which p
⇤
> p̂. Let pi be the first rate above p̂ and wi+1,�i be937

the respective solution to problem Oi. We must prove that no matter how the sequence continues938

ADA-PO achieves a performance ratio of at least r. If �(wi+1) � M then a performance ratio of939

r is guaranteed, due to M
si+1+1�wi+1

 r, from constraint [�]. Suppose then �i(wi+1) < M , then940

by constraints [M] and [u] we know that wi+1 < 1. When the next rate pi+1 > pi is revealed the941

same analysis can be applied. We thus obtain a non-decreasing sequence of reservation rates �j(pj)942
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for j > i. For each rate, problem Oi is solved. Note that the feasibility of problem Oi with rate pi943

implies the feasibility of the problem Oi with the next rate as shown by the next analysis. Namely,944

if pi  �(pi�1) then w = wi, �i = �i�1 is a solution, and if pi > �(pi�1), then w = ��1
i�1(pi),945

�i = �i�1 is as well. Furthermore, both cases lead to a performance ratio of at least r in case the946

next rate equals 1 and is the last rate. We hence conclude, that either one of the reservation rates is947

greater or equal than M or ADA-PO successfully achieves a performance ratio of r for each rate948

(wi < 1 was a solution for each problem). We conclude then that ADA-PO is r-robust.949

We will now prove that ADA-PO is c(r)-consistent. We must prove that for every error-free sequence950

the performance ratio is at most c(r). Let A0 be any Pareto-Optimal algorithm. When observing rates951

below p̂, ADA-PO follows the threat-based policy, hence for every error-free sequence, its budget is952

at least the same as A0 when a rate equal to p̂ is exhibited. Then by solving the optimization problem,953

ADA-PO exchanges the most it can in order to remain r-robust, a larger amount would make the954

problem infeasible. In other words, there would not exist a function � satisfying the constraints,955

and the continuously increasing function from p̂ to M will lead to a performance ratio bigger than r.956

Hence, no other algorithm could achieve a better profit. We conclude that ADA-PO is c(r)-consistent.957

We finally prove that ADA-PO dominates A0. By the previous analysis, when observing the first rate958

above the prediction, ADA-PO has a budget at least the budget than A
0. As ADA-PO exchanges959

the most it can to remain r-robust, it will obtain a next utilization which is equal or smaller than960

A
0, hence achieving a better profit, because A

0 exchanged the same or less at lower rates. If A0 has961

behaved the same as ADA-PO, then this process repeats for every following rate. We conclude then962

that ADA-PO dominates or performs equally to A
0.963

Remark C.1. To conclude we offer an intuitive explanation of dominance. If the maximum rate964

of the sequence is below the prediction, then ADA-PO’s profit will be smaller or equal than any965

other Pareto-Optimal algorithm. Its profit will be equal if the sequence is a continuously increasing966

one. Moreover, for the first rate equal or greater than the prediction, its profit will be greater or967

equal than any other Pareto-Optimal algorithm. By definition of dominance, while observing rates968

above the prediction, either the two profits will be equal, or ADA-PO’s profit is larger, unless the969

Pareto-Optimal algorithm attained a smaller profit at an earlier rate.970

D Profile-based contract scheduling971

In this section, we discuss another application of our profile-based framework of Section 3. Specifi-972

cally, we focus on another well-known optimization problem that has been studied under learning-973

augmented settings, namely contract scheduling. In its standard variant, the problem consists of974

finding an increasing sequence X = (xi)1i=0 which minimizes the acceleration ratio, formally975

defined as976

acc(X) = sup
T

T

`(X,T )
. (D.1)

where `(X,T ) denotes the largest contract completed by T in X , namely977

`(X,T ) = max
j

{xj :
jX

i=0

xi  T}.

Contract scheduling is a classic problem that has been studied under several settings. In its simplest978

variant stated above, the optimal acceleration ratio is equal to 4 [37], but many more complex settings979

have been studied in the literature; see [7] and references therein. In this section we are interested in980

the learning augmented setting introduced in [7] in which there is a prediction ⌧ on the interruption981

time T . The prediction error is defined as ⌘ = |T � ⌧ |. In this context, the consistency c(X) of982

schedule X is defined as983

c(X) =
⌧

`(X, ⌧)
,

whereas its robustness is defined as984

r(X) = sup
T�1

T

`(X,T )
,
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i.e., the worst-case performance of X , assuming adversarial interruptions. Since the latter occur985

arbitrarily close to the completion time of any contract, we obtain an equivalent interpretation of the986

robustness as987

r(X) = sup
i�1

Pi
j=0 xj

xi�1
.

In [7] it was shown that the optimal consistency of a 4-robust schedule is equal to 2. However, as988

proven in [5], any such schedule suffers from brittleness. Namely, for any ✏ > 0, there exists a989

prediction ⌧ and an actual interruption time T such that |T�⌧ | = ✏, and any 4-robust and 2-consistent990

schedule satisfies `(X,T )  T+✏
4 .991

In the remainder of this section we will show how to use our framework of profile-based performance992

so as to remedy this drawback. For definiteness, and to illustrate the application of the techniques, we993

consider the requirement that the performance of the schedule degrades linearly as a function of the994

prediction error. Namely, suppose that we require that f(X,T ) := T/`(X,T ) be respect a profile995

F�, where the latter is defined as a symmetric, bilinear function that is decreasing for T  ⌧ , and996

increasing for T � ⌧ , with slope �, as illustrated in Figure 4. This profile is chosen by the schedule997

designer, and the angle � captures the “smoothness” at which the schedule is required to degrade as a998

function of the prediction error.999

� �

Figure 4: An illustration of the profile F�.

More specifically, for a given prediction ⌧ , and a profile F� as above, we are interested in finding the1000

best extension of F� such that there exists a 4-robust schedule that respects the extension. We can1001

thus define the analytical concept of consistency according to F� as1002

cF� := sup
⌧

inf
T

T

`(X,T )
: X respects F�.

The following theorem states our main result.1003

Theorem D.1. Given a profile F� and a prediction ⌧ on an interruption time, we can compute a1004

4-robust schedule that respects F� and has optimal consistency according to F�.1005

Proof. We will assume that X if of the form (�2i)i2Z. This is not a limiting assumption, as discussed1006

in [5], and its purpose is to simplify the calculations. Since any 4-robust schedule is of the above1007

form [5], it will suffice to compute a � that satisfies the constraints of our problem, and the result will1008

follow.1009

Recall that f(X,T ) denotes the function T/`(X,T ). By definition, for every i 2 N, f(X,T ) is1010

a linear, increasing function of T function in the interval Ik = [Tk, Tk+1] = [�2k,�2k+1], with1011

smallest value equal to 2, and largest value equal to 4.1012

With the above observation in mind, for a given, fixed �, let k be such that ⌧ 2 Ik+1, i.e., we have1013

that `(X, ⌧) = �2k. Define ↵ 2 [1, 2] to be such that ⌧ = ↵Tk, and note that by construction, ↵ is a1014

function of �. Moreover1015

f(X, ⌧) =
⌧

�2k
=

↵Tk

�2k
=

↵�2k+1

�2k
= 2↵, (D.2)

which implies that it suffices to compute ↵, then � must be chosen so that � = 2{log(2↵)}, where {x}1016

denotes the fractional part of x.1017
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In order to minimize f , subject to X respecting the profile, � must be chosen such that one of the1018

two cases occur, which we analyze separately.1019

Case 1. The profile F� has a unique intersection point with f at T = ⌧ , and moreover F (Tk+ ✏) = 4,1020

for infinitesimally small ✏ > 0. This situation is illustrated in Figure 5. For this case to arise, and for1021

the schedule to be consistent with F , it must be that1022

tan(
⇡

2
� �) � 4� 2

Tk+1 � Tk
=

2

Tk
=

2↵

⌧
. (D.3)

It must then be that f(X, ⌧) + ⌧�Tk
tan� = 4, hence1023

4� ⇢(1� 1

↵
) = 2↵, where ⇢ =

⌧

tan�
.

Solving the above equality for ↵ minimizes f , by means of (D.2). We obtain that1024

↵ =
1

4
(
p
⇢2 + 16� ⇢+ 4) and f(X, ⌧) = 2↵,

subject to the condition (D.3).1025

Time

T/`(X, T )

2

4

Tk Tk+1
⌧

� �

Figure 5: An illustration of Case 1.

Case 2. This case occurs if the condition in Case 1 does not apply. The profile F� is such that1026

F (Tk + ✏) = F (Tk+1 � ✏)4r, for infinitesimally small ✏ > 0. This situation is illustrated in Figure 6.1027

For this case to arise, and for the schedule to respect F� it must be that ⌧ = Tk+1+Tk

2 = 3
2
⌧
↵ , hence1028

↵ = 3/2. In this case, we obtain that1029

f(X, ⌧) = 4� Tk+1 � ⌧

tan�
= 4� ⇢, where ⇢ =

⌧

tan�
.

1030

We observe that in both cases in the analysis of Theorem D.1 we obtain that f 2 (2, 4], as a function1031

of ⌧ and �. This result makes intuitively sense, since X is 4-robust, and the smallest consistency is1032

equal to 2 (when �! 0).1033

E Further experimental analysis1034

To further quantify the performance difference between the two algorithms, PROFILE and PO, we1035

performed additional experiments. Specifically, we used a list of the last 20,000 minute-exchange1036

rates of BTC to USD, so as to create 20 different sequences, each with its own prediction, using the1037

same method as in Fig 2c. For each sequence, we computed the average improvement over PO for1038

rates in the interval of interest [0.9p̂, 1.1p̂]. Figure 7 depicts this average for each of the 20 sequences.1039

We observe that for the sequences in which PROFILE outperforms PO (12 out of 20), the improvement1040

ranges from roughly 15% to 30%, whereas PO outperforms PROFILE in 8 out of 20 sequences, by a1041

factor that is at most 10%, roughly.1042
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Figure 6: An illustration of Case 2.

Figure 7: Average ratio improvement of PROFILE over PO

F Computational setup1043

The experiments are reproducible on any computer with the experimental setup described in the1044

README file. They do not require any memory or computational powe beyond the standard1045

requirements. They run typically on few milliseconds.1046
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