
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A RELATED WORK

A.1 PROMPTING FOR REASONING CONTROL

Prompt engineering is crucial for enhancing LLM reasoning, with strategies like Chain-of-Thought
(CoT) (Wei et al., 2022), Self-Consistency (Wang et al., 2023b), and Least-to-Most Prompting (Zhou
et al., 2023a) guiding intermediate reasoning steps. However, these often incur high token costs
and lack fine control, limiting use in constrained settings. To address this, automatic prompt opti-
mization methods leveraging LLM-as-a-Judge, such as PromptAgent (Wang et al., 2024), Prompt-
Breeder (Fernando et al., 2023), and TextGrad (Yüksekgönül et al., 2024), improve prompts but
usually depend on ground truth.

Self-supervised Prompt Optimization (SPO) (Xiang et al., 2025) has been proposed to minimize
the reliance on human supervision by automatically generating preference signals from model out-
puts. This approach integrates the LLM-as-a-Judge paradigm (Zheng et al., 2023) with pairwise
comparison frameworks (Liu et al., 2024) to enable automated evaluation and iterative refinement of
prompts, thereby facilitating efficient and scalable prompt optimization without extensive human an-
notation. Further efforts, such as those by ProTeGi (Pryzant et al., 2023) and Human-Level Prompt
Engineers (Zhou et al., 2023b), explore automatic prompt selection and fine-tuning. GLaPE (Zhang
et al., 2024c) advances this line of work by proposing a label-agnostic output scoring mechanism,
pushing prompt optimization toward greater efficiency and lower cost.

A.2 REASONING LENGTH CONTROL AND COMPRESSION

Chain-of-Thought (CoT) prompting enhances the reasoning abilities of language models on com-
plex tasks. However, studies have shown that excessively long reasoning paths may actually de-
grade performance—an effect that is particularly pronounced in smaller models (Yang et al., 2025a).
Moreover, long input sequences tend to impair reasoning accuracy, revealing a non-monotonic rela-
tionship between token count and output quality (Wu et al., 2025; Levy et al., 2024).

To mitigate performance degradation from excessively long reasoning paths, methods for control-
ling reasoning length and reducing token usage have been proposed. LCPO2 uses reinforcement
learning to optimize token usage within a fixed budget (Aggarwal & Welleck, 2025), while the
budget-forcing strategy adjusts reasoning time during testing for performance tuning (Muennighoff
et al., 2025). Compression strategies, such as the shortest effective reasoning for simple tasks (Zhang
et al., 2025) and token budget-based compression (Han et al., 2024), aim to reduce reasoning costs.
TokenSkip (Xia et al., 2025) prunes less important tokens for compressed reasoning, and (Chen
et al., 2025) suggests dynamically adjusting reasoning length based on task complexity.

A.3 BAYESIAN OPTIMIZATION FOR STRUCTURE SEARCH

Bayesian Optimization (BO) is a principled, sample-efficient method for expensive structure search
tasks—such as density functional theory simulations or molecular synthesis—by modeling the ob-
jective with a surrogate and guiding sampling via acquisition functions (Frazier, 2018; Snoek et al.,
2012; Shahriari et al., 2015). Unlike random or heuristic searches, BO balances exploration and ex-
ploitation by quantifying both predicted performance and uncertainty (Jones et al., 1998), enabling
effective optimization in hyperparameter tuning (Oliver & Wang, 2024), model fusion (Jang et al.,
2024), and inference configuration (Wang et al., 2023a) under diverse budgets and model scales.

The acquisition function in BO is essential for guiding the optimization process. It balances explo-
ration of unknown regions and exploitation of areas with known high performance. By evaluating
this trade-off, the acquisition function directs the search towards promising solutions while ensuring
that less explored areas are also considered. For our approach, we use EUBO (Expected Utility of
Bayesian Optimization) as the acquisition function. EUBO estimates the expected utility of each

2We do not report LCPO as a baseline, since its objective is to enforce short reasoning chains within a fixed
budget via reinforcement learning, whereas TBO aims to explore and identify the performance-optimal length.
The two methods target fundamentally different goals.
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candidate solution by factoring in both predicted performance and associated uncertainty. This al-
lows the optimization to efficiently explore the search space and move toward the optimal solution.

Notably, BO extends beyond training to prompt and instruction optimization in black-box language
models. Approaches like BOInG (Sabbatella et al., 2024) and HbBoPs (Schneider et al., 2024)
leverage BO to navigate large combinatorial prompt spaces by embedding prompts into structured
or continuous representations.

Preferential Bayesian Optimization (PBO) further advances this by using pairwise or ranking-based
feedback instead of explicit objective values, making it especially suitable when direct evaluations
are noisy, costly, or subjective (González et al., 2017; Chu & Ghahramani, 2005).

B DETAILED ALGORITHM FOR GENERATENEWTOKENS

Algorithm 2 GenerateNewTokens
Require: T : Current token ranking, H: Token history, n: Target candidate count
Ensure: Tnew: Novel token candidates

1: Tnew ← ∅
2: while |T |+ |Tnew| < n do
3: t← SuggestNext(T ) ▷ Bayesian proposal
4: if t /∈ H then
5: Tnew ← Tnew ∪ {t}
6: end if
7: end while
8: return Tnew

C COMPUTATIONAL OVERHEAD OF LLM-AS-A-JUDGE

Iteration rounds and judge calls. Our iterative optimization typically converges within about 10
rounds. The initial candidate sequence length is usually set to 9. At each round, we remove the
bottom third of candidates (by the current listwise ranking) and add 3 new ones to maintain the
sequence length. If a newly proposed candidate has appeared before or is filtered as invalid, it is
skipped, which may temporarily shorten the sequence. Each round requires only one call to the
LLM-as-a-Judge for listwise ranking, so the maximum number of judge calls is approximately 82
(i.e., 10 + (9 + 39)× 2) under our settings.

Observed token consumption during optimization (o3-mini). The table below reports the total
tokens consumed by the LLM-as-a-Judge during the optimization phase, when TBO is applied on
top of CoT or SPO. These costs are separate from the final inference cost.

Table 4: Token consumption of the LLM-as-a-Judge during TBO optimization (o3-mini).

Task CoT+TBO SPO+TBO
AGIEval-MATH 211522 196225
GPQA 181057 165956
WSC 267891 277206
BBH-Navigate 142003 96442
StrategyQA 380608 270713

D THEORETICAL JUSTIFICATION OF BAYESIAN OPTIMIZATION
CONVERGENCE

Bayesian Optimization (BO) is widely used for optimizing expensive black-box functions. This
section provides a theoretical justification that BO can converge to the global optimum under certain
assumptions, using well-established results from the literature.
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PROBLEM SETUP

We aim to optimize an unknown function f : X → R over a compact domain X ⊂ Rd. The global
optimum is denoted as:

x∗ = argmax
x∈X

f(x)

Bayesian Optimization constructs a probabilistic surrogate model f† (typically a Gaussian Process)
and selects query points according to an acquisition function.

GAUSSIAN PROCESS PRIOR

We assume f is modeled as a Gaussian Process (GP):

f(x) ∼ GP (m(x), k(x, x′))

where m(x) is the prior mean (often set to 0), and k(x, x′) is the covariance kernel (e.g., RBF or
Matérn kernel). After t observations Dt = {(xi, f(xi))}ti=1, the posterior distribution is:

f(x) | Dt ∼ N (µt(x), σ
2
t (x))

ACQUISITION FUNCTION

The acquisition function αt(x) balances exploration and exploitation. Common choices include: -
Upper Confidence Bound (UCB):

αt(x) = µt(x) +
√
βtσt(x)

- Expected Improvement (EI):

αt(x) = E[max(0, f(x)− f(x+))] = (µt(x)− f(x+))Φ(z) + σt(x)ϕ(z),

where z = µt(x)−f(x+)
σt(x)

, and Φ, ϕ denote the CDF and PDF of the standard normal distribution.

THEORETICAL GUARANTEE

The GP-UCB convergence theorem (Srinivas et al., 2009) states that, under mild conditions, the
sequence of points

xt+1 = argmax
x∈X

µt(x) +
√

βtσt(x)

satisfies, with high probability:

f(x∗)− f(xt) ≤ O

(√
βtγt

t

)
where βt = 2 log

(
|X |π2t2

6δ

)
and γt = maxA⊂X ,|A|=t I(yA; f). Therefore,

lim
t→∞

f(xt)→ f(x∗)

CUMULATIVE REGRET BOUND

The cumulative regret is defined as:

RT =

T∑
t=1

[
f(x∗)− f(xt)

]
It follows that:

RT = O
(√

TβT γT

)
, hence

RT

T
→ 0 as T →∞
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INFORMATION GAIN

For different kernels, the information gain γT can be bounded as: - RBF kernel:

γT = O
(
(log T )d+1

)
- Matérn kernel:

γT = O
(
T

d(d+1)
2ν+d(d+1) log T

)
These bounds ensure efficient exploration even in multimodal settings.

E PROOF OF MULTI-PEAK RELATIONSHIP BETWEEN REASONING LENGTH
AND PERFORMANCE

E.1 PROBLEM SETTING.

Let L > 0 denote the reasoning length (e.g., number of tokens). We consider three types of infor-
mation in the reasoning process:

• Effective information Ieff(L): Directly improves performance, saturates as L increases;

• Ineffective (noisy) information Iineff(L): Accumulates with L and impairs performance;

• Potentially effective information Ipot+(L): Initially ineffective, but can be activated un-
der certain conditions to enhance performance.

Let the final performance metric (e.g., accuracy or utility) be P (L), a function of these three com-
ponents.

E.2 STEP 1: MATHEMATICAL MODELING OF VARIABLES

The three types of information are modeled as:

Ieff(L) = Imax

(
1− e−κL

)
, Imax > 0, κ > 0

Iineff(L) = ηLα, η > 0, α ≥ 1

Ipot(L) = ξf(L)

Here, f(L) may be a periodic or oscillatory function (e.g., f(L) = sin(ωL + ϕ)), reflecting that
certain hidden information is only activated at specific reasoning lengths.

E.3 STEP 2: PERFORMANCE FUNCTION AND BOUNDEDNESS

We define the performance function as

P (L) = σ
(
β1Ieff(L) + β2h

(
Ipot(L)

)
− γIineff(L) + b

)
where

• σ(x) is a bounded activation function such as the sigmoid, ensuring P (L) is always
bounded.

• h(·) is an activation or gating function for the potential information, for example, h(x) =
max{0, x− θ}

• β1, β2, γ, b are real coefficients (weights and bias).

Therefore, for all L > 0, P (L) is bounded.
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E.4 STEP 3: EXISTENCE OF EXTREMA AND MULTI-PEAK PROPERTY

Consider the derivative with respect to L:

dP

dL
= P (L)

(
1− P (L)

)
·G(L)

where
G(L) = β1Imaxκe

−κL + β2h
′(Ipot(L))I ′pot(L)− γηαLα−1

The first term is positive and decreases monotonically. The third term is negative and grows in
magnitude with L. The second term, involving Ipot(L), can oscillate if f(L) is periodic or has
non-monotonic activations. As a result, G(L) may change sign multiple times, causing dP

dL to have
multiple roots and thus multiple local maxima and minima of P (L).

E.5 STEP 4: EXISTENCE OF OPTIMAL VALUES

Since P (L) is continuous and bounded, it must attain its supremum for some L∗
k > 0:

max
L>0

P (L) = P (L∗
k)

where L∗
k may not be unique (multiple local maxima may exist).

The relationship between reasoning length and final performance is bounded, nonlinear, and exhibits
multiple peaks. Performance is jointly determined by effective information, noise accumulation, and
the activation of potentially effective information at certain reasoning lengths. Due to continuity and
boundedness, one or more optimal values always exist.

F DIVERGENCE BETWEEN SUGGESTED AND CONSUMED LENGTHS

The suggested reasoning length often deviates from the model’s actual reasoning length, and the
relationship between the two is far from linear. Prior work such as (Han et al., 2024) has identified
a phenomenon known as Token Elasticity. Specifically, as we gradually increase the suggested
reasoning length, the model’s actual token consumption does not grow linearly. Instead, once the
suggestion exceeds a certain reasonable range, actual usage begins to decline. This phenomenon
highlights that while we suggest an optimal token length for reasoning, the model’s actual output
token count may vary, but typically stabilizes around an effective range that maximizes performance.
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Figure 4: Token consumption in reasoning tasks
shows three distinct phases: linear growth, elastic
plateau, and chaotic fluctuation.

To investigate this effect, we conducted a sys-
tematic experiment using the o3-mini model
on the GPQA and StrategyQA datasets. We
swept the suggested reasoning length from 0 to
12,000 tokens in increments of 100, recording
the model’s actual token consumption at each
step to map the global relationship between the
suggested and consumed tokens. While the
model may not strictly adhere to the suggested
length, our results show that the actual token
consumption tends to stabilize near an optimal
length after a few iterations, which significantly
improves reasoning performance without the
need for strict token length enforcement.

Our experimental results show a consistent
three-phase pattern across both datasets. In the
first phase, when the suggested length is below
the minimal requirement to generate an answer, actual consumption grows approximately linearly
with the suggestion—indicating that the suggested length serves as a useful control signal. In the
second phase, once the suggestion enters a reasonable range, the Token Elasticity effect emerges:
further increases in suggestion can lead to reduced actual consumption. Beyond a certain threshold,
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the relationship between suggested and actual reasoning length enters a third phase characterized by
increasing nonlinearity and chaotic behavior, indicating a more complex underlying interaction.

Interestingly, this phenomenon reveals an important insight: within the early-stage ideal interval, it
is possible to reach a local performance peak by traversing the suggested length space. However,
once beyond this ideal region, the relationship between the suggested and actual reasoning lengths
becomes increasingly complex and unpredictable, making it difficult to capture with any regular
or rule-based method. This highlights a key advantage of TBO: rather than relying on a linear
assumption, it leverages Bayesian optimization to model global uncertainty and identify the most
promising extrema across the entire space.

G DETAILED RESULTS ON EVALUATOR CONSISTENCY

Table 5: Consistency of LLM and Human Evaluation Methods. The values in curly braces represent
the reasoning lengths (in tokens) selected by each evaluator over three rounds.

Evaluation Method GPT-3.5-turbo / Person 1 GPT-4o / Person 2 GPT-3 / Person 3
LLM {5470, 3612, 5470} {5470, 5470, 5470} {5470, 5470, 5470}
Human Evaluation {3612, 3612, 3053} {3612, 5470, 5470} {9919, 9919, 5470}

The table presents the evaluation consistency between LLMs and human evaluators across three
models (GPT-3.5-turbo, GPT-4o, and GPT-3). For example, in the GPT-3.5-turbo case, LLM eval-
uations consistently selected 5470 tokens, while human evaluators showed more variation, with
selections ranging from 3053 to 3612 tokens. This highlights the higher stability of LLM evalua-
tions compared to human evaluations, demonstrating that LLMs are less prone to inconsistencies
and bias within our designed framework.

H ROBUSTNESS TO DATASET DIFFICULTY VARIANCE
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Figure 5: Token Consumption Distribution for StrategyQA, GPQA, and WSC.

The token count frequency histograms for StrategyQA, GPQA, and WSC (Figures 5a,5b,5c) reveal a
pronounced clustering in the reasoning lengths required by individual questions within each dataset.
Specifically, for WSC, the histogram shows a highly concentrated distribution, indicating that the
majority of questions require a similar number of tokens for optimal reasoning. GPQA and Strate-
gyQA also display clear peaks, though GPQA exhibits a broader spread, consistent with its higher
standard deviation reported in Table 3.
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Figure 6: Quantile–Quantile Plots for StrategyQA, GPQA, and WSC.

The accompanying Quantile–Quantile Plots (QQ-plots) (Figures 6a,6b,6c) further confirm these ob-
servations. For WSC, the QQ-plot closely aligns with the reference line, suggesting that token usage
across questions is not only concentrated but also follows a relatively normal distribution. In con-
trast, GPQA’s QQ-plot deviates more significantly from the diagonal, indicating heavier tails and
greater heterogeneity in token requirements across questions.

These empirical findings support our core hypothesis: TBO delivers the most substantial and stable
performance improvements in scenarios where the token consumption per question is tightly clus-
tered. In such cases, a globally optimized reasoning length suffices for the majority of instances,
maximizing both efficiency and accuracy. However, when the token usage distribution is more dis-
persed—as in GPQA—the benefits of a single optimized length are diminished, reinforcing the need
for more granular, instance-level control over reasoning length. This result underscores the critical
role of within-task difficulty distribution in shaping the effectiveness boundaries of length optimiza-
tion strategies such as TBO.

I USE OF LARGE LANGUAGE MODELS

We confirm that no large language models were used in the process of research ideation, experi-
mentation, analysis, or writing of this paper. All contributions, including conceptual development,
implementation, and manuscript preparation, were carried out entirely by the authors without the
assistance of LLM-based tools.
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