APPENDIX

A METHODS

We provide the following definition of RL agent time-series performance measurements, similar to
how performance is measured in RL training research, that will be relevant in the next subsection:

1 Definition. Let X4 (t) the time series performance for + = 1... N, where A is an RL agent
in a simulated deterministic environment M. For each X4 (t), there is an associated sample of
performance measurements 2 (t) = (z41(¢),...,z4M(t)). Here, the i in z4*(¢) is a random seed
1 € 6, where G is a finite set of M random seeds. Hence, we define:

Pies (1)

XA(t) = Bl (1)) = =07

)]
which is the expected performanc at time ¢ over all the random seeds in &.

A.1 COMPARISON OF SIMPLE TIME SERIES FORECASTING TRENDS

To compare RL algorithms at test time, we compare the performance forecasts of each RL agent. This
recommendation is inspired by the use of time complexity or running time to measure the efficiency
of an algorithm (Cormen et al.,[2022). As illustrated in Figure 1, looking at performance trends of
RL agents is an informative way to observe overfitting during test time. Here, we use simple time
series forecasts over more complex time series models that might better predict the performance
trend. The reason is that one cannot make too many strong, general assumptions (e.g., seasonality,
how many past values to use for autoregression) on the time series trend of agent performance in all
environments. For test-time distribution shift, we only assume the trend will be pessimistic and not
increase. This is reasonable if we assume the ideal case is when performance never decreases (like
Agent 1 in Figure 1). We default to using Holt’s linear damped trend method (Gardner Jr & McKenzie,
19855 Holt, 2004; Hyndman & Athanasopoulos|, 2018)) to model the trend of agent performance when
in the presence of distribution shift. The damping parameter discourages constant increasing trends,
which will likely give more accurate forecasts than Holt’s method without damping. Researchers
evaluating their own experiments, however, may find that more complex models would be more
appropriate for their own studies if they see performance trends that warrant such assumptions.

Here, we define Holt’s linear damped trend method (Hyndman & Athanasopoulos, [2018)):

Let ¢4 p; be the short-hand estimate for y;, based on data y; . .. y;. The term /; is the estimate
of the level of the series at time ¢ with a smoothing parameter « such that 0 < a < 1. The term
b; is the estimate of the trend (slope) of the series at time ¢ with a smoothing parameter 5* such
that 0 < 5* < 1. Let ¢ be the damping parameter such that 0 < ¢ < 1. Then the trend method is
represented as the forecast equation and smoothing equations below:

Gepn)e = b + (0 + O* 4+ oM)by
b= oy, + (1 —a)(be—1 + dbi—1)
by = B"(ly — 1) + (1 = B7)pbi—1

A.2 PREDICTION INTERVALS OVER FUTURE PERFORMANCE

Along with time series forecasts, we recommend prediction intervals over future average returns
(Hyndman & Athanasopoulos| |2018). The combination of simple time series forecasts and prediction
intervals map out the range of average returns over time. As stated previously, point estimates with
confidence intervals are not enough to capture the range of returns over time. Prediction intervals act
as a compliment to the time series forecasting by visualizing the uncertainty of the possible future
average returns. When applying both of these methods, we can specify the most robust RL algorithm
as the trend with the most optimistic forecast on performance and the smallest prediction interval.
Here, we assume there exists distribution shifts but do not necessarily know when or where.

"We use expected performance just as a simple default. For example, in accordance with |Agarwal et al.
(2021)), one could replace expected performance with the interquartile mean.

A.3 DIFFERENCE-IN-DIFFERENCES ANALYSIS FOR RL PERFORMANCE

Difference-in-differences (DiD) measures the causal effect between a treatment and control group,
where the treatment group is exposed to an intervention at a certain point in time (Cunningham| [2021
Huntington-Klein| [2021)). Intuitively, it represents how much more the treatment group was affected
by the intervention at some time ¢ compared to the change of the unaffected control group at the same
time ¢. Since we are dealing with time series, we will adhere to the DiD formulation in Moraffah
et al.|(2021)):

2 Definition. If ¢t < T and t > T denote the pre- and post- treatment periods, respectively, then we
can calculate the DiD measure using the average treatment effect metric over a time series X (t) as
follows:

DiD ={E[X(t>T)|G=1-E[X(t<T)G=1}—-{E[X(t>T)|G=0-E[X(t < T)|G = 0]}
2)
where G indicates the treatment group (G = 1) and the control group (G = 0).

Any methodology that relies on DiD must satisfy the parallel trends assumption, which says that if
no treatment had occurred, the difference between the treated group and the untreated group would
have stayed the same in the post-treatment period as it was in the pre-treatment period (Huntington+
Kleinl 2021). RL agents in deterministic environments with fixed seeds trivially satisfy this because
the agent will take the same action at each state and receive the same reward regardless of how many
times the evaluation is repeated.

From the RL fixed seed assumption, DiD simplifies to the equation below when evaluating RL
performance:

DiD =E[XA(t > T)|G =1] - E[XA(t > T)|G = 0] 3)

where A is the RL agent being evaluated. This follows from the pre-treatment averages canceling
each other out. Hence, we only need to measure the post-treatment effect of RL performance. Using
the RL fixed seed assumption, DiD becomes the following:

DiD =E[XA(t > T)|G =1] —E[X{_o(t > T)|G = 1] (4)

Equations [3]and [say the following: Measuring the DiD effect is equivalent to measuring the average
time series post-treatment effect of agent A between the treatment and control group. If the agents
in both the treatment and control groups have the same fixed random seeds, we can interpret the
performance measurements of the control group as the counterfactual of the treatment group as if the
treatment group was never exposed to the distribution shift intervention. Hence, we have shown that
the RL fixed seed assumption justifies causal inference in our time series analysis.

B FURTHER NOTES ON THE RL FIXED SEED ASSUMPTION

Reproducibility can be difficult to achieve when running on a GPU. As described in PyTorch’s
webpage on reproducibility, even identical seeds might not provide reproducible results. Some
reasons include nondeterministic algorithms that improve performance and the use of different
hardware can affect the selection of such algorithms. To control these sources of randomness in our
experiments, we adhere to the reproducibility suggestions provided on the webpage.

C FURTHER NOTES ON ENVIRONMENTS USED IN EVALUATIONS

All plots use 10 random seeds. In multi-agent settings, each agent shares the same seed during an
evaluation run. For example, if our seed numbers are 1 and 42, then the first evaluation run sets

C.1 ATARI GAMES

The games of focus are a subset of Atari games AsteroidsNoFrameskip-v4, BeamRiderNoFrameskip-
v4, BreakoutNoFrameskip-v4, MsPacmanNoFrameskip-v4, PongNoFrameskip-v4,

https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html

QbertNoFrameskip-v4, RoadRunnerNoFrameskip-v4, SeaquestNoFrameskip-v4, and
SpacelnvadersNoFrameskip-v4. The agents we evaluate are pretrained agents from RL
Baselines3 Zoo (Raffin} 2020) that are available on|SB3’s Huggingface repository of models. The
adversarial attacks (FGSM) were implemented in torchattacks (Kim, [2020).

We evaluate each agent over 100 games per Atari game. In the causal impact plots, the attacker
intervenes at the 50th game. Here, since game scores accumulate across lives, we define episodes as
the life of the player. For example, Pong only gives one life, which gives us a total of 100 episodes.
In Qbert, the player is given 4 lives. Hence, the attacker intervenes at episode 200 because (50 games)
* (4 episodes/game) = 200 episodes (or lives). This reasoning is also why there are 400 episodes in
the Qbert experiments. This strategy deliberately avoids the noisy artifacts that can emerge from the
time series data when accumulated performance suddenly drops when each game ends.

C.2 POWERGRIDWORLD

PowerGridworld is a modular, customizable framework for building power systems environments
to train RL agents. Because of this, we use an environment provided in one of the example scripts.
The class name is called CoordinatedMultiBuildingControlEnv, which is a multi-agent
coordination environment. In addition to the original agent-level reward, grid-level reward/penalty and
system-level constraint(s) are considered. In particular, we consider the voltage constraints: agents
need to coordinate so the common bus voltage is within the ANSI C.84.1 limit, If the constraints are
not satisfied, the voltage violation penalty will be shared by all agents. The agents in this scenario are
minimal implementations (Barhate, [2021) of PPO.

C.3 TIME SERIES TOOLS

Trends and prediction intervals were implemented in the Python package sktime (Loning et al.| [2022).
Other Python visualization tools include Matplotlib (Hunter, 2007)) and Seaborn (Waskom) 2021}).

D MORE PLOTS

D.1 ATARI GAME CAUSAL IMPACT PLOTS

10 Agent: a2c Env: AsteroidsNoFrameskip-v4 Agent: ppo Env: AsteroidsNoFrameskip-v4
_ _ 30
2 2
o 2%
5 (R S —
%) wn
€ £ 5
2 g 25 2 2
& 3 & EFo
% _‘g 0.0 v _‘g s
© %25 g =
2 100 2 0
é 0 é ————
3 -100 3 500
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400

Episode Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5 —— Counterfactual ~—— Epsilon 0.05 —— Epsilon 0.5
Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0 Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0

https://huggingface.co/sb3
https://github.com/NREL/PowerGridworld/blob/main/examples/marl/openai/train.py
https://voltage-disturbance.com/voltage-quality/voltage-tolerance-standard-ansi-c84-1/

Average Returns

Average Returns

Average Returns

Average Returns

Agent: a2c Env: BeamRiderNoFrameskip-v4

0
2 o Se— A
E eS|
[=4
5
-20
g 0 —
®
2 -1000
E
3 —2000
0 50 100 150 200 250 300
Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: a2c Env: BreakoutNoFrameskip-v4
100
©
£
2 50
o M
0
o
g 0 o, N
2
c
5
-20
R —
S
©
S _
g 2000
=1
o
0 100 200 300 400
Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: a2c Env: MsPacmanNoFrameskip-v4
100
o
5 50
@
g 0 R
<
& -20
2 o
=1
&
S —1000
£
O —2000
0 50 100 150 200 250
Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: a2c Env: PongNoFrameskip-v4
20
T
c
= 0
=
[¢]
-20
o O
°
2
2-20
5
a
—-40
9] 0
2
=1
©
]
£ -1000
E
o
0 20 40 60 80
Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0

Average Returns

Average Returns

Average Returns

Average Returns

Agent: ppo Env: BeamRiderNoFrameskip-v4

0
2 0 «
2 ~
2
£
&£-20
ER —
]
©
E
5 —2000
il
0 50 100 150 200 250 300
Episode
—— Counterfactual —— Epsilon 0.05 ~—— Epsilon 0.5
~— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
100 Agent: ppo Env: BreakoutNoFrameskip-v4
©
f=
o 50
)
N
0
o
2 0 A s A s
: %
H
£
€ —20
] 0 =]
=
®
2 -2000
£
3 —4000
0 100 200 300 400
Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: ppo Env: MsPacmanNoFrameskip-v4
— 100
©
£
o
g 50 "
o 0
o
2 Y
H
£
£-20 W
E
]
£ -1000
g
3 —2000
0 50 100 150 200 250
Episode
—— Counterfactual —— Epsilon 0.05 ~—— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: ppo Env: PongNoFrameskip-v4
20
©
c
S o0
=
<)
-20
0
o
0
£-20
©
a
-40
o 0
=
=]
©
=
£ —1000
E
o

20 40 60 80
Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0

Average Returns

Average Returns

Average Returns

Average Returns

Agent: a2c Env: QbertNoFrameskip-v4

.E 50
o
525 |
0
2
2 0
2
£_ 10
&
2 o
=
©
E]
£
3 -2000
0 50 100 150 200 250 300 350
Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: a2c Env: RoadRunnerNoFrameskip-v4
s
55
=
<)
0
0?2
°
E
0 -
o
a
g
2 100
©
E]
E o
i)
0 50 100 150 200 250
Episode
—— Counterfactual —— Epsilon 0.05 ~—— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: a2c Env: SeaquestNoFrameskip-v4
520
[=4
o
510
80
2
£-10
&
A
=
©
E
5 —2000
[¢]
0 50 100 150 200 250 300 350
Episode
—— Counterfactual ~—— Epsilon 0.05 ~—— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: a2c Env: SpacelnvadersNoFrameskip-v4
w® 40
£
'920 \‘/v_._v‘_,_‘
=
]
2
2 0 ——
2 el
c
5
-20
g o R
=1 ———y|
©
=]
£
3 —1000
0 25 50 75 100 125 150 175 200
Episode
—— Counterfactual ~—— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0

Average Returns

Average Returns

Average Returns

Average Returns

Cumulative

Cumulative

Cumulative

Cumulative

Agent: ppo Env: QbertNoFrameskip-v4

_ 200
2
2100 |
0
g o e
2
2
=4
S-50
0 =
—5000
—-10000
0 50 100 150 200 250 300 350
Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: ppo Env: RoadRunnerNoFrameskip-v4
©
c
55
=
[¢)
0
o 0
o
H
c -2
5
o NV WV WYWIVWW Wy
0
—-200
—-400
0 50 100 150 200 250
Episode
—— Counterfactual —— Epsilon 0.05 ~—— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: ppo Env: SeaquestNoFrameskip-v4
520
c
o
510
o O
°o
H
£-10
o
a
0
—2000
0 50 100 150 200 250 300 350
Episode
—— Counterfactual —— Epsilon 0.05 —— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0
Agent: ppo Env: SpacelnvadersNoFrameskip-v4
T
c
550
=
[¢)
0
Q
2 0
E
2
c
5 -20
a
0 — |
—1000
—2000
0 50 100 150 200
Episode
—— Counterfactual ~—— Epsilon 0.05 ~—— Epsilon 0.5
—— Epsilon 0.01 —— Epsilon 0.1 —— Epsilon 1.0

D.2 OBSERVATIONAL PLOTS

All observational plots show forecasts with prediction intervals 100 episodes after the last measure-

ment.

D.2.1 POWERGRIDWORLD

PGW Prediction Trends by Switching with Pretrained Agents

130 | — Group performance with 1 agent switched
—— Group performance with 2 agents switched ~
—— Group Performance with 3 agents switched o
200 === Start of prediction trend lines -

a0

Average Returns

—am0

ED
Episode

Average Returns

2000

2000

—a000

6000

—a000

~10000

PGW Prediction Trends by Switching with Untrained Agents

—— Group performance with 1 agent switched
—— Group performance with 2 agents switched
—— Group Performance with 3 agents switched 4
== Start of prediction trend lines p
4
4
4
y
4
¢ B 150 30 B %0

ED
Episode

Figure 1: PowerGridworld observational plots. Left: Comparing random switching with pretrained
agents at each episode. Right: Comparing random switching with untrained agented at each episode.

D.2.2 ATARI GAMES

Prediction Trends in AsteroidsNoFrameskip-v4 with FGSM(e=0.01)

1

w
[=Rt!
£
5
2
o
o
D
e
g
<« WWWM
4 — A
— pro
2| - start of prediction trend lines
g T BT 00 P ED
Episode
Prediction Trends in AsteroidsNoFrameskip-v4 with FGSM(e=0.10)
s
@
E 125
El
2
o
Y
o .
8
H WW
EEn
251 — A2C
— PO

=== Start of prediction trend lines

T o

T ED
Episode

16Prediction Trends in AsteroidsNoFrameskip-v4 with FGSM(e=1.00)

0
£
5
2
]
L
o
o
© s
g
k-
2] — ax
— PpO
o == Start of prediction trend lines
7 oy o 5o

ED FY
Episode

Average Returns

Average Returns

o

Prediction Trends in AsteroidsNoFrameskip-v4 with FGSM(e=0.05)
1

== Start of prediction trend lines

0

rediction Trends in AsteroidsNoFrameskip-v4 with FGSM(e=0.50)

10

T 00
Episode

mi

— A
— PO
=== Start of prediction trend lines

T

o

T ED
Episode

Prediction Trends in BeamRiderNoFrameskip-v4 with FGSM(e=0.01)

w
£ s
]
Do
[}
8.
©
Lo
<
— ac
o] — b0

=== Start of prediction trend lines

[E) 00

=0
Episode

Prediction Trends in BeamRiderNoFrameskip-v4 with FGSM(e=0.10)

E

Average Returns

=== Start of prediction trend lines

5 E) 10

20
Episode

Prediction Trends in BeamRiderNoFrameskip-v4 with FGSM(e=1.00)

20

Average Returns

— a2

== Start of prediction trend lines

v E) 1o

o

20
Episode

Prediction Trends in BreakoutNoFrameskip-v4 with FGSM(e=0.01)

@
gw
El
2
[
o
® ®
o
I
g
<
— n2c
1 — pro.
Start of prediction trend lines
7 I P pn ED ED Fa
Episode
Prediction Trends in BreakoutNoFrameskip-v4 with FGSM(€=0.10)
w0
"y
£
S
2
@
-4
1)
Dy
°
g
L4
— n2c
— PPO.
o] === Start of prediction trend lines
Episode
Prediction Trends in BreakoutNoFrameskip-v4 with FGSM(e=1.00)
w©
0
£
ER
I
o
1]
g
$
k4
— n2c
— PO

---- Start of prediction trend lines

Episode

Average Returns

Prediction Trends in BeamRiderNoFrameskip-v4 with FGSM(e=0.05)

101 — A

=== Start of prediction trend lines

[E) 00

=0
Episode

Prediction Trends in BeamRiderNoFrameskip-v4 with FGSM(e=0.50)

Average Returns

Average Returns

Average Returns

20

B
1
0
— n2c
— ppo
5| - Start of prediction trend lines
g) T 200 00 E) P
Episode
Prediction Trends in BreakoutNoFrameskip-v4 with FGSM(e=0.05)
o
w©
ot
— A2
— PO
- Start of prediction trend lines
g T P ED £y ED Fa
Episode
Prediction Trends in BreakoutNoFrameskip-v4 with FGSM(e=0.50)
w0
0
B
0
— a2
°1 — rro
---- Start of prediction trend lines

Epi;ﬂ;de

Prediction Trends in MsPacmanNoFrameskip-v4 with FGSM(e=0.01)

0)

0)

0
)
2
Qo
o
o
o w0
o
£
<
o
0
T % ED =0 00 E] P
Episode
Prediction Trends in MsPacmanNoFrameskip-v4 with FGSM(e=0.1!
— wc i
— PPO]
w == Start of prediction trend lines |
0 :
Cw |
£ |
E |
2 |
9w ;
o |
=]
I |
e !
£ :
Z = i
o
T £} T 20 00 E) P
Episode
Prediction Trends in MsPacmanNoFrameskip-v4 with FGSM(e=1.0!
— e !
— PPO]
~--- Start of prediction trend lines |
@ i
E 80 i
E |
2 |
gx s
g i
2w |
o !
$:
Z = i
B !
e e e
Prediction Trends in PongNoFrameskip-v4 with FGSM(e=0.01)
"
£
S
2
&£ — aac
o — PPO
o ---- Start of prediction trend lines
®
§.
<
Y W
7 = £} 3 0o E3 o B3 P
Episode
Prediction Trends in PongNoFrameskip-v4 with FGSM(e=0.10)
»
"y
c
Eu
2
@
4
n
1)
=
® .
o
g
< 16
— A
1 s
---- Start of prediction trend lines
Episode
Prediction Trends in PongNoFrameskip-v4 with FGSM(e=1.00)
Mo]
B
0
g
]
Qs
o
1]
S
o
o
k4

=~ Start of prediction trend lines

Episode

Average Returns

Pr

Average Returns

Prediction Trends in MsPacmanNoFrameskip-v4 with FGSM(e=0.05)

A2
PPO
== Start of prediction trend lines

0)

: % e =0 00 e P
Episode
ediction Trends in MsPacmanNoFrameskip-v4 with FGSM(e=0.5
— A2C !
— PPO

=== Start of prediction trend lines

Prediction Trends in PongNoFrameskip-v4 with FGSM(e=0.05)

Average Returns

— A2c

PPO
---- Start of prediction trend lines

T 3 B 7 B o s B

0o
Episode

Prediction Trends in PongNoFrameskip-v4 with FGSM(e=0.50)

Average Returns

— |

— n2c
— PPO
---- Start of prediction trend lines

Epi‘s:)de

Prediction Trends in QbertNoFrameskip-v4 with FGSM(e=0.01) Prediction Trends in QbertNoFrameskip-v4 with FGSM(e=0.05)

0] — aac — A
— pPO 10 — PPO
200 = Start of prediction trend lines -~ Start of prediction trend lines
0
0w 1% 0
c € o
2w 2
2 g w
[T o
2 -
g g
w0
< <
»
10
o
T e BT ED o 0 : e BT ED o 0
Episode Episode
Prediction Trends in QbertNoFrameskip-v4 with FGSM(e=0.10) Prediction Trends in QbertNoFrameskip-v4 with FGSM(e=0.50)
300{ — A2C
— pPO o

=== Start of prediction trend lines

2 2w
£ £
E El
g w 2.
-4 o«
o D g0
o o
® o o
e e
g g~
: S
-100, ”
— n2c
o
— ppo
o o] = startof prediction trend lines
T T 0 e P ED g T 0 00 P ED
Episode Episode
Prediction Trends in QbertNoFrameskip-v4 with FGSM(e=1.00)
@
e
€
E
2
[
4
 ®
o
I
o
g
z
— a2
o
-~ Start of prediction trend lines
7 T ED e o ED
Episode
Prediction Trends in RoadRunnerNoFrameskip-v4 with FGSM(€=0.01) Prediction Trends in RoadRunnerNoFrameskip-v4 with FGSM(e=0.05)
— n2c
B — pPO]
-~ Startof prediction trend lines |
. ! .
" ! 0
£, | e
El : S
2 | 2.
1] : 3]
s ; 4
o | o
[H =)
i | Qe
g I g
z i K3 p
N i 2 M iy WHWWM g "
— n2c
— PO
2 Start of prediction trend lines
0 E) 100 200 300 350 400 © o E) 100 200 300 350 400
Episode Episode
Prediction Trends in RoadRunnerNoFrameskip-v4 with FGSM(e=0.10) Prediction Trends in RoadRunnerNoFrameskip-v4 with FGSM(e=0.50)
— n2c — n2c
— pPO — pPO.
~-=- Start of prediction trend lines —-=- Start of prediction trend lines
8 8
@ @
£ £
] E}
= 2
5] Qs
o 4
. o
o o
O o
g g
< <
I {l Moyl (L i
a7 " 2 r{'w e iy i
Episode Episode
Prediction Trends in RoadRunnerNoFrameskip-v4 with FGSM(e=1.00)
— A2
— PPO

=== Start of prediction trend lines

Average Returns

Ifrediction Trends in SeaquestNoFrameskip-v4 with FGSM(e=0.01) Prediction Trends in SeaquestNoFrameskip-v4 with FGSM(e=0.05)

— n2c — A
— PPO *1 — rro
o] = start of preciction trend lines -~ Start of prediction trend lines
=
0 0
c Lo
S5» E}
k] e
o o
o o
© ©
g g
L k4
B
B 1
: o BT ED o 0 : e BT ED o 0
Episode Episode
Prediction Trends in SeaguestNoFrameskip-v4 with FGSM(e=0.10) Prediction Trends in SeaguestNoFrameskip-v4 with FGSM(e=0.50)
— A2 | — A
— pPO 1 — pro
7301 - Start of prediction trend lines ---- Start of prediction trend lines
B
s w
£ £
5 Sa
2 2
Q 20 [
4 4
= N
[1]
. g [ey i
= S
< :
Lo E4
B
s
1
g T BT e P ED g T BT 00 P ED
Episode Episode
Prediction Trends in SeaguestNoFrameskip-v4 with FGSM(e=1.00)
— n2c
20f — ppo
-~ Start of prediction trend lines
s
@
e
€0
El
2
[
o 225 —
o
o
@ 20
o
g
L s
210
03
7 T EIN e o ED
Episode
Prediction Trends in SpacelnvadersNoFrameskip-v4 with FGSM(e=0.01) Prediction Trends in SpacelnvadersNoFrameskip-v4 with FGSM(e=0.05)
© — A2C s0{ — A2C
= ---- Start of prediction trend lines ---- Start of prediction trend lines
w0 o
@ w
e I
g S
2 g
o 2 o
& &
8w R
g g
< ° <
0
10
2
g % o ED ED g % E3 o ED P
Episode Episode
Prediction Trends in SpacelnvadersNoFrameskip-v4 with FGSM(e=0.10) Prediction Trends in SpacelnvadersNoFrameskip-v4 with FGSM(e=0.50)
1 — a2c
— pro =
50] === Start of prediction trend lines
0
2 2
g B
& wi g
o 2 ons
o o
g S
< <
¢ — A2C
o] — ppO
- ---- Start of prediction trend lines
Episode Episode
Prediction Trends in SpacelnvadersNoFrameskip-v4 with FGSM(e=1.00)
0] — Axc
— pro
4] == Start of prediction trend lines
2w
E
Z o
o
o
o
T w0
>
<<
o
10

Episode

10

E HYPERPARAMETERS FOR POWERGRIDWORLD PPO TRAINING

Number of Training Episodes: 2,000,000

Maximum Number of Steps per Episode: 1000

Starting Standard Deviation for Action Distribution: 1.0
Standard Deviation for Action Distribution Decay Rate: 0.05
Minimum Standard Deviation for Action Distribution: 0.1
Standard Deviation Decay Frequency in time steps: 250,000

Policy: 2-layer Multilayer Perceptron
Hidden Units: 128 per layer
Policy is updated every 2000 time steps. During that time step, the policy updated 5 epochs.

Clip parameter: 0.2
Discount factor ~y: 0.99

Actor Learning Rate: 0.0003
Critic Learning Rate: 0.001

Main group random seed: 0
Outside group random seed: 1

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304-29320, 2021.

Nikhil Barhate. Minimal pytorch implementation of proximal policy optimization. https://
github.com/nikhilbarhate99/PPO-PyTorch, 2021.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

Scott Cunningham. Causal inference: The mixtape. Yale university press, 2021.

Everette S Gardner Jr and ED McKenzie. Forecasting trends in time series. Management science, 31
(10):1237-1246, 1985.

Charles C Holt. Forecasting seasonals and trends by exponentially weighted moving averages.
International journal of forecasting, 20(1):5-10, 2004.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90-95, 2007. doi: 10.1109/MCSE.2007.55.

Nick Huntington-Klein. The effect: An introduction to research design and causality. CRC Press,
2021.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.

Hoki Kim. Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint
arXiv:2010.01950, 2020.

Markus Loning, Franz Kirdly, Tony Bagnall, Matthew Middlehurst, Sajaysurya Ganesh, George
Oastler, Jason Lines, Martin Walter, ViktorKaz, Lukasz Mentel, chrisholder, Leonidas Tsaprounis,
RNKuhns, Mirae Parker, Taiwo Owoseni, Patrick Rockenschaub, danbartl, jesellier, eenticott
shell, Ciaran Gilbert, Guzal Bulatova, Lovkush, Patrick Schifer, Stanislav Khrapov, Katie Buch-
horn, Kejsi Take, Shivansh Subramanian, Svea Marie Meyer, AidenRushbrooke, and Beth rice.
sktime/sktime: v0.13.4, September 2022. URL https://doi.org/10.5281/zenodol
7117735

Raha Moraffah, Paras Sheth, Mansooreh Karami, Anchit Bhattacharya, Qianru Wang, Anique Tahir,
Adrienne Raglin, and Huan Liu. Causal inference for time series analysis: Problems, methods and
evaluation. Knowledge and Information Systems, 63:3041-3085, 2021.

11

https://github.com/nikhilbarhate99/PPO-PyTorch
https://github.com/nikhilbarhate99/PPO-PyTorch
https://doi.org/10.5281/zenodo.7117735
https://doi.org/10.5281/zenodo.7117735

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3—-zo00,
2020.

Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6(60):
3021, 2021. doi: 10.21105/j0ss.03021. URL https://doi.org/10.21105/joss.03021.

12

https://github.com/DLR-RM/rl-baselines3-zoo
https://doi.org/10.21105/joss.03021

	Methods
	Comparison of Simple Time Series Forecasting Trends
	Prediction Intervals over Future Performance
	Difference-in-differences Analysis for RL Performance

	Further Notes on the RL Fixed Seed Assumption
	Further Notes on Environments Used in Evaluations
	Atari Games
	PowerGridworld
	Time Series Tools

	More Plots
	Atari Game Causal Impact Plots
	Observational Plots
	PowerGridworld
	Atari Games

	Hyperparameters for PowerGridworld PPO Training

