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A DETAILED DERIVATION OF THE GRADIENTS OF DISCRIMINATOR’S
OBJECTIVE FUNCTION

We present the detailed derivation of gradients of the discriminator objective in Eq. (10). Note that
we exclude the regularisation terms introduced in Section. 6, whose gradients are straightforward to
calculate. Since the reward parameter ω is only involved in the first and second terms of Ldis(ω,ε),
its gradient w.r.t. ω is calculated by:
ϑ

ϑω
Ldis(ω,ε) =

ϑ

ϑω
Eω→εc

E
[logDϑ(ϖ)] +

ϑ

ϑω
Eω→qω,ε [log(1→ logDϑ(ϖ))]

=
ϑ

ϑω
Eω→DE

[
log

exp(fϑ(ϖ))

exp(fϑ(ϖ)) + ϱϖ(ϖ)

]
+

ϑ

ϑω
Eω→DS

[
log

ϱϖ(ϖ)

exp(fϑ(ϖ)) + ϱϖ(ϖ)

]

= Eω→DE

[
ϑ

ϑω
fϑ(ϖ)→

ϑ

ϑω
log(exp(fϑ(ϖ)) + ϱϖ(ϖ))

]
→

Eω→DS

[
ϑ

ϑω
log(exp(fϑ(ϖ)) + ϱϖ(ϖ))

]

= Eω→DE

[(
1→

exp(fϑ(ϖ))

exp(fϑ(ϖ)) + ϱϖ(ϖ)

)
ϑ

ϑω
fϑ(ϖ)

]
→

Eω→DS

[
exp(fϑ(ϖ))

exp(fϑ(ϖ)) + ϱϖ(ϖ)

ϑ

ϑω
fϑ(ϖ)

]
.

(14)

The feasibility function parameter ε is only involved in the second and third terms of Ldis(ω,ε), and
thus its gradient w.r.t. ε is calculated by:

ϑ

ϑε
Ldis(ω,ε) =

ϑ

ϑε
Eω→qω,ε [log(1→Dϑ(ϖ))]→

ϑ

ϑε
Eω→εω

[
ς̄ϱ(ϖ)→ φ

]

=
1

|DS |

|DS |∑

i=1

[
log(1→Dϑ(ϖi))

ϑ

ϑε
qϖ,ϱ(ϖi)

]
→ Eω→DP

[
ϑς̄ϱ(ϖ)

ϑε

]

=
1

|DS |

|DS |∑

i=1

[
ϱϖ(ϖi)

exp(fϑ(ϖi)) + ϱϖ(ϖi)

ϑ

ϑε
ϱϖ(ϖi)ς̄ϱ(ϖi)

]
→ Eω→DP

[
ϑς̄ϱ(ϖi)

ϑε

]

= Eω→DS

[
ϱϖ(ϖ)

1 + exp(fϑ(ϖ))/ϱϖ(ϖ)

ϑ

ϑε
ς̄ϱ(ϖ)

]
→ Eω→DP

[
ϑ

ϑε
ς̄ϱ(ϖ)

]
.

(15)

B MEERKAT DATA PROCESSING

To obtain the meerkat behaviour, two GoPro Max cameras are set on the back wall of the enclosure,
one focusing on the replica termite mound in the centre of the enclosure and the other overlooking
the foraging area and entrance to the enclosure, which are hubs of activity (Figure 5). For example,
the mound is a popular area for guarding behaviour, and the foraging area is popular when meerkats
are looking for food. The cameras are set to automatically record videos every 12 minutes, and the
contents recorded are filtered, which exclude the fragments that include visitors. Videos with many
individuals, social interactions, and other interesting behaviours were selected for the annotation
(Figure 6). During the annotation process, the computer vision annotation tool CVAT version 2.3
is utilised to sign the behaviour in the videos. Besides, masking techniques are used to protect the
privacy of visitors and maintain the vision information of human activities at the same time. The adult
and baby meerkat are annotated specifically in the dataset, with annotators using a small bounding
box to note the baby meerkat’s positions relative to the adults. Through multiple checks as well as
using scripts to automatically detect the error, the accuracy and the consistency of the annotations are
ensured (Rogers et al., 2023).

In our research, the dataset is organised according to the unique identifiers of individual meerkats, and
every meerkat’s behaviour is recorded over different timestamps. Specifically, the information of each
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Camera view of the entrance and forag-
ing area

Camera view of the mound and backside
of the enclosure

Figure 5: Example images of the camera views.

Allogrooming. Carrying a pup. Digging. Foraging.

Grooming. High sitting/standing. Interacting with an object. Interacting with a human.

Interacting with a pup. Low sitting/standing. Lying. Moving.

Playfighting. Raised guarding. Sunbathing.

Figure 6: Examples of the meerkat behaviours.

timestamp includes four different parts: the identifier, the scene the meerkat is located in, the action
and the three-dimensional coordinate point. In order to uniform the length of time series for analysis,
we process the dataset, retaining only complete sequences of every 30 timestamps as independent
trajectories, and delet those with fewer than 30 timestamps. This method can not only simplify
the structure of data but also facilitate further analysis. Through this data processing approach, we
construct a meerkat dataset that includes both state and action information in each timestamp.

We divide each area based on meerkat’s activity range and labelled each area with a unique colour to
distinguish its scope, as shown in Figure 8. After obtaining the Meerkat’s behavioural dataset, we
analyse the transition frequency of each area and observe that in certain areas, the activity frequency is
particularly high (Figure 7). We are inspired by this to explore whether meerkat’s various behaviours
are driven by certain causal constraints.

C CAUSAL STRUCTURE DISCOVERY IN MEERKAT BEHAVIOUR

PCMCI Algorithm is designed to detect and quantify causal relationships in large-scale nonlinear time
series datasets (Runge et al., 2019). Combined with the linear or non-linear conditional independence
tests and causal discovery algorithm, PCMCIA can effectively improve the ability to recognise ground
truth causal relationships. For example, in the meerkat behaviour dataset characterised by time series
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Frequency heatmap of the entrance and
foraging area

Frequency heatmap of the mound and
backside of the enclosure

Figure 7: The frequency of meerkat activity in various regions corresponds to the heatmap from the
camera perspective. The areas where meerkat is frequently active are highlighted.

Regional division of the entrance and
foraging area

Regional division of the mound and
backside of the enclosure

Figure 8: Referring to Figure 2 in the main text, we have labelled blocks of different colours for each
area to visually illustrate the division of meerkat activity zones.

data, PCMCI can be used to analyse the causal effects between state transitions, in case to reflect the
interaction between states. In this context, behaviour transitions with higher causality might have
lower constraints, while those with lower causality could show stronger constraints. This indicates
that even if some state transitions offer high rewards, there may be a large cost to take the action.

In the application of PCMCI to analyse the meerkat behaviour dataset, the output is a directed graph
of all states, where the colour of each edge represents the causal strength between the starting state
and ending state. Considering that there are a total of 25 states, using the directed graph may cause
visual confusion and make it difficult to clearly display the relationships between states. Therefore,
we select heatmap to present the result of the PCMCI algorithm, and colour variations are used to
display the causal strength between different states, therefore allowing a clearer display of causal
differences (Figure 9).

D EXPERIMENT SETTINGS

We utilise the open-source library from Gleave et al. (2022), which provides high-quality, reliable,
and modular implementations of various reinforcement learning and imitation learning algorithms.
Built on Stable Baseline 3 (Raffin et al., 2021), the imitation library offers accurate experimental
baselines, allowing us to easily train and compare a range of algorithms. We extend the library
by incorporating our algorithm and modifying specific methods related to generative adversarial
algorithms to support the implementation of a trajectory-based discriminator as our design.

In addition, we refer to the constrained environments and benchmarking methods designed by Liu
et al. (2022) to evaluate our algorithm and baselines based on metrics of discriminator accuracy and
constraint violation rate. Each constraint is customly designed to ensure that the agent performs safe
and controlled actions within the defined parameters.

Furthermore, we set unique hyperparameters for each environment, optimising the algorithm’s
efficiency while avoiding overfitting. All important hyperparameters are listed in Table 2.
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Figure 9: Causal strength for each state transition, as the ground truth constraints. Please note that in
our experiments, we recorded the differences between the causal constraints of trajectories generated
by each algorithm and the truth constraints.

Table 2: The hyperparameters of each environment, note that hidden units in each layer are reported
for network architecture.

GRIDWORLD SWIMMER WALKER INVERSEPENDULUM MEERKAT

EXPERT TRAJECTORY 70 50 50 50 2182
SAMPLED TRAJECTORY 70 50 50 50 2182
HORIZON 10 500 500 100 30
REWARD NETWORK 32, 32 32, 32 32, 32 32, 32 32, 32
FEASIBILITY NETWORK 32, 32 32, 32 32, 32 32, 32 32, 32
BATCH SIZE 700 2500 2500 1000 500
LEARNING RATE 0.0005 0.0005 0.0005 0.0005 0.0005
PPO CLIP RANGE 0.1 0.1 0.1 0.1 0.1
COEFFICIENT (ω, ε) 0.001, 0.001 0.001, 0.001 0.001, 0.001 0.001, 0.001 0.001, 0.001
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