
A Appendix

A.1 Predicting Progress

Model Train Test

VAE 88.6% 63.6%
TCC 86.2% 79.2%

Figure 9: Predicting episode
progress with 10-fold KNN.

We measure the performance of the learnt representations to encode
progress by running a KNN classification. First, we collect 500
demonstrations on the full insertion task using manually defined way
points and a PD controller. We vary the starting configuration of
each robot arm by 1◦ for all its 7 joints. Then, we perform a CV
split over the collected trajectories and obtain training and validation
sets. We train both encoders using the training data. Once training
is complete, we process all training trajectories with each encoder
which results in two separate encoded data sets. We use those to
train two separate 10-fold KNN classifiers - one for each type of encoding. Then, we process the
never seen before validation set using each of the encoders and evaluate the accuracy of predicting
the episode progress with the KNN classifiers. Table 9 shows the results. It can be seen that the VAE
achieved much higher accuracy when evaluated on the training data as opposed to test, indicating it
has overfitted to it. In contrast, the TCC was much better at predicting the episode progress.

A.2 Ablation of the online goal selection stage

Figure 10: Different types of on-
line goal selections.

Goal-conditioned (gc) policy learning takes in as input a desired
goal state to solve for. However, in cases where the goal is as
abstract as ’solve the task’ there may be a number of different goals
describing the same problem. Therefore, restricting the gc policy
to a single target goal state may negatively impact the learning
process. Additionally, using a small subset of goals, e.g. goals
corresponding to the final states of all demonstrations as done in
[31], may be insufficient too. In contrast, conditioning on a wider
range of goal states that solve the same task can better capture
the goal distribution describing the task at hand. As a result, we
randomly sample a plausible target goal state for each roll-out during
training (see Figure 2). We propose to continuously grow a target
goal distribution as training evolves and the agent starts solving the
training task. In this section, we compare the performance of our
agent when using a single target goal to represent solving the task, using as target goals only the goal
states from the provided near-optimal demonstrations, and continuously growing the goal database
as learning progresses. Our findings reported in Figure 10 show that continuously growing the goal
database allows for better and faster learning in the context of vaguely formulated goals such as the
3.5mm jack insertion considered in this work.

A.3 Mixing the goal distribution support

Mixing goal candidates taken from the agent’s rollout and the provided demonstrations can help
for retroactive goal selection. A potential scenario is the one discussed in Appendix A.4. Having
noisy, sub-optimal representations that do not preserve the notion of progress can be problematic. An

(a) (b) (c) (d)

Figure 11: Measuring per-step reward using the smallest number of demonstrations that resulted in learning.

14

alternative scenario could involve a relatively narrow set of demonstrations. This is particularly evident
in complex task settings where having a set of successful demonstrations can still be insufficient to
solve the task as there are a vast number of failure modes, like in the full insertion task, for example.
In this subsection, we focus on studying different candidate heuristics that can help relax these
constraints. We build upon the formulation for retroactive goal selection introduced in Section 4.2
which allows us to fuse together the HER-style relabelling strategies and demo-driven ones too.

Using demonstration states as candidate goals: The simplest version of this is a union over both
sets where the agent gets to sample a goal that comes from the rollout or the demonstration data. This
can be expressed as RG = {zg ∈ ζ

⋃
D : p(zg) > 0}. Such formulation can be useful, for example

when the provided demonstrations are only partially useful to solving the task. Implicitly letting the
agent to sample goals that are part of its own rollout can help model useful behaviours that over time
could help get us closer to the provided demonstrations.

An alternative version is when the goal distribution p(zg) is composed of the intersection over the two
types of goal distributions discussed in Section 4.2. In this case, the support of the goal distribution
becomes RG = {zg ∈ ζ

⋂
D : p(zg)> 0}. We find this intersection to be useful in cases where the

adopted representation does not have an encoded notion of progress. Therefore, choosing goals
that are ε−close to states produced by the agent’s dynamics can hypothetically act as regularisation
over the choice of goals we use but still ensure staying close to the target task. We can collect all
qualifying goals for a time step t by iterating over the data set of successful trajectories obtained from
demonstration and compare to zt . Since zt and all zg are temporally consistent, we can use Eq. 3 to
prune the data set and pick the closest zg for each zt . We used a task-conditioned sampler where we
sample directly from a distribution implied from demonstrations. However, we can also compose
distributions comprised of mixing goals from the agent’s rollout and the demonstrations. Here we
consider two different versions of this.

We report our overall results in Figure 11. Our results indicate that using the intersection over the
rollout trajectory and the demonstrated goal results in broadly similar resutls as the task conditioned
approach. However, the intersection based solution had much higher variance indicating that the
agent is is less stable where some seeds achieved near perfect performance and others were closer to
failure. We noticed that this type of goal conditioning can be useful when training with a VAE. That
is, this sampling strategy can be useful in cases where the quality of the representations and also of
the implied task distribution is poor, e.g. when they do not contain notion of progress or in low data
regimes. We report these details in Appendix A.4.

(a) (b)

Figure 12: Comparing different demo-driven support
distributions.

Using relevant agent states as candidate
goals: Utilising the demonstration states to
collect candidate goal distributions can be a pow-
erful tool as we demonstrate in this work. How-
ever, in complex tasks, such as the full insertion
task (Figure 1), relabeling the goals with just
demonstration states can sometimes fail to make
the sparse-reward problem easier (as intended
by HER) since the resulting goal distributions
are still relatively narrow. This is particularly
true in the beginning of the training process
when there is a relatively large mismatch be-
tween the agent’s Q function and the true un-
derlying dynamics the provided demonstrations
follow. Therefore, we consider an alternative method that can help speed up the training process. To
this end, we can form a collection of candidate goals that is jointly conditioned on both the agent
and the demonstrator’s behaviours but is comprised of all zt that fall under the ε threshold defined in
Appendix A.8. In this setting, we focus on modelling the agent’s behaviour directly by focusing only
on relevant to the task states as opposed to strictly targeting actual demonstration states. Figure 12
summarises our findings. While using this type of joint conditioning can speed up training (plot on
the right), it does not necessarily result in improved performance (plot on the left). We suspect that
mixing the goal distribution support can be potentially very useful to using less demonstrations or
partially useful demonstrations. We leave this study for future work.

15

A.4 Noise sensitivity of the encoder: challenging the notion of progress

Figure 13: Injecting noise to the engineered
encoder. Reach, Grasp, Lift, Orient Task.

We compare the performance of both the joint- and task-
conditioned samplers on the Bring Near + Orient task and
report the overall accuracy. We trained for a total of 150K
environmental steps and report our findings in Figure 13.
Relying on task-conditioned samples results in higher ac-
curacy for the less noisy observations. This indicates that
having a stronger representation is directly related to the
agent’s confidence in ’understanding’ the actual task it
has to solve. This study further confirms our conjecture
that notion of progress is paramount to solving complex
sequential tasks. Note that the relationship between the
level of noise and performance depicted in Figure 13 does
not affect the jointly conditioned relabelling strategies as
much as it does for task-conditioned relabelling. In fact,
a little bit of noise leads to improved performance for the

former while it slows down training for the latter. This indicates that relying on alternative mecha-
nisms for indicating progress, such as conditioning on the agent’s own trajectory can be useful when
progress is not successfully encoded in the representations used. This aligns with our motivation from
Section 4 that task-conditioning works when we are confident in the quality of the task distribution.
However, the proposed ablation in this section points towards an alternative mode that can potentially
compensate for this. Namely, implicitly informing the agent for the notion of progress e.g. through
building heuristics for hindsight goal selection that utilise both demonstrations and agent motion
can be useful. We hypothesise that retroactive relabelling using only goals that are both similar to
the demonstrations and aligned with the current agent’s trajectory can be useful with respect to the
agent’s current understanding of the dynamics, represented through its current Q function. Next, we
consider three different strategies for extracting candidate goals and discuss some of their benefits
and limitations.

A.5 Quality of encoder: extended study

Figure 14: Learnt representations.

The previous section suggests that a joint-conditioned sampler can be more useful when the used
representations do not encode notion of progress. In this section we compare using task-conditioned
and joint-conditioned encoders using learnt representations instead. We compare using TCC and
VAE and benchmark the results against a hand-engineered encoder. Even though TCC with a task-
conditioned sampler achieved the closest results to the best hand-engineered solution across all tasks,
we can see that a joint-conditioned encoder can work better for states that do not encode notion of
progress.

Figure 14 illustrates the achieved results. We can see that using a β -VAE encoder worked best with
goal sampling from a joint-conditioned goal distribution, RG = {zg ∈ ζ

⋂
D : p(zg)> 0}. Note that

the intersection between both distributions still results in a data set comprised of goal candidates that
still belong to the implied from demonstrations task distribution. However, we only used the goals
that were similar to the agent rollout. This result is connected to our observations from Appendix A.4
that a joint-conditioned sampler implicitly introduces a notion of progress via utilising the agent’s
own motion at the retroactive goal selection stage.

16

Another interesting observation is the final full insertion’s task performance. Although TCC-based
representation came closest to the engineered representation, it was still much lower. The full insertion
task relies the most on the contact-rich manipulation to be completed when compared to the rest. The
engineered representation contains information relevant to the manipulation which is why we suspect
the gap between both learnt and engineered representation is much larger than the rest of the tasks. A
potentially exciting future direction is attempting to extract representations that preserve the notion
of contact as well as progress.

A.6 Per-step reward

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 15: Measuring per-step reward.

A.7 Progress-based weighting

T
ot

al
 R

ew
ar

d

(a) (b)

Figure 16: Measuring per-step reward using
the smallest number of demonstrations that
resulted in learning.

Weighting down the BC and actor-critic losses associated
with intermediate states can have slight benefits to im-
proving the speed of learning of goal-conditioned DPGfD.
Although in practice there could be many different ways
of reweighing loss values, we found two particular ones
useful in our setting. One way of scaling such losses is
by choosing a fixed weight ω that scales down all non-
terminal states’ losses during training by the same fixed
weight. An alternative weighting can be defined by using
a quadratically scaled weight using the episode progress.
That is, for batch b, we get LBC(b) = λ p ∗LBC(b) and
LT D = λ p ∗LT D, where ∗ indicates element-wise multi-
plication and

λ
p =

{
1.0, if zt = T
ω, otherwise

, or λ
p = i2, f or i ∈ { 1

T
, . . . ,

T
T
}. (4)

We used ω = 0.1 in our experiments. Figure 16 illustrates an example of re-weighting on the Bring
Near + Orient task. Down-weighting intermediate states can lead to slightly faster learning and a

17

higher variance performance. There is a difference between weighting states using a fixed value and
assigning quadratic weighting proportional to the episode progress.

A.8 Computing the threshold

Figure 17: Ablating the rolling
window.

There are multiple ways to obtain an ε threshold for our goal con-
ditioned reward. We used the provided demonstrations to compute
the average distance ε = µ + kσ , where µ and σ were extracted
using a rolling distance between consecutive states from the encoded
demonstrations, e.g. ||zd

t − zd
t+m||, for a demonstration d with an m

step gap in between the two states and k standard deviations. In
our tasks, m = 10 for all tasks but the bring near and orient and
the full insertion where we used m = 5. We use a rolling distance
over a window of time steps because we did not want to let time
step clusters often situated around the different “narrow phases” of
a trajectory influence the average threshold. Broadly, we notice a
relationship between the size of the rolling window and the precision
and recall of the obtained goal-conditioned sparse reward function.
We ablate the importance of a rolling window size on the bring near
and orient task in Figure 17. There, it can be seen that too small of a rolling window size (such as 1)
might have a noticeable negative impact on learning due to the clusters situated around the different
phases. Effectively, too small of a window can affect the recall of our obtained reward which can be
detrimental to learning. In contrast, too large of a rolling window can affect the speed of learning due
to allowing for a more flexible threshold function. Using too large of a rolling window can reduce the
precision of the obtained threshold by rewarding too many false positive states. In terms of learning,
this can be detrimental to the speed of learning a successful policy and might result in converging to
poorer performance too.

A.9 Computing the engineered encoders

The engineered goal encoders vary between tasks, but in all cases the encoding captures some notion
of progress of the agent through the set task.

Parameterized Reach: The engineered encoder for this task concatenates the robot arm pose and a
mask of which waypoints have been visited so far.

Bring Near: The state encoder is the concatenation of the distance of the left and right grippers from
their corresponding cables, the distance between the cable tips, and of whether the grippers have
grasped their respective cables.

Bring Near and Orient: The encoder for this task is similar to Bring Near, but also adds the dot
product between the z-axes of the left and right cable tips.

Bimanual Insertion: The encoder for this task is similar to Bring Near and Orient, but adds the
distance of the cable tip from the socket bottom, along the z-axis of the socket.

A.10 Choosing number of hindsight goal samples

We followed the intuition that the complexity of the task guides the number of samples required to
capture the overall task distribution. That is, we used 2 samples for the simplest task of Parameterised
Reach, 4 for the Bring Near, 6 for Bring Near and Orient and 12 for the Bi-manual Insertion.

18

	Appendix
	Predicting Progress
	Ablation of the online goal selection stage
	Mixing the goal distribution support
	Noise sensitivity of the encoder: challenging the notion of progress
	Quality of encoder: extended study
	Per-step reward
	Progress-based weighting
	Computing the threshold
	Computing the engineered encoders
	Choosing number of hindsight goal samples

