
Data Mining and Knowledge Discovery (2020) 34:1936–1962
https://doi.org/10.1007/s10618-020-00710-y

InceptionTime: Finding AlexNet for time series classification

Hassan Ismail Fawaz, et al. [full author details at the end of the article]

Received: 11 September 2019 / Accepted: 27 July 2020 / Published online: 7 September 2020
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
This paper brings deep learning at the forefront of research into time series classifi-
cation (TSC). TSC is the area of machine learning tasked with the categorization (or
labelling) of time series. The last fewdecades ofwork in this area have led to significant
progress in the accuracy of classifiers, with the state of the art now represented by the
HIVE-COTE algorithm.While extremely accurate, HIVE-COTE cannot be applied to
many real-world datasets because of its high training time complexity in O(N 2 · T 4)

for a dataset with N time series of length T . For example, it takes HIVE-COTE more
than 8 days to learn from a small dataset with N = 1500 time series of short length
T = 46.Meanwhile deep learning has received enormous attention because of its high
accuracy and scalability. Recent approaches to deep learning for TSC have been scal-
able, but less accurate than HIVE-COTE. We introduce InceptionTime—an ensemble
of deep Convolutional Neural Network models, inspired by the Inception-v4 architec-
ture. Our experiments show that InceptionTime is on par with HIVE-COTE in terms
of accuracy while being much more scalable: not only can it learn from 1500 time
series in one hour but it can also learn from 8M time series in 13 h, a quantity of data
that is fully out of reach of HIVE-COTE.

Keywords Time series classification · Deep learning · Scalable model · Inception

1 Introduction

Recent times have seen an explosion in the magnitude and prevalence of time series
data. Industries varying from health care (Forestier et al. 2018; Lee et al. 2018;
Ismail Fawaz et al. 2019d) and social security (Yi et al. 2018) to human activity
recognition (Yuan et al. 2018) and remote sensing (Pelletier et al. 2019), all now pro-
duce time series datasets of previously unseen scale—both in terms of time series

Responsible editor: Eamonn Keogh.

B Hassan Ismail Fawaz
hassan.ismail-fawaz@uha.fr

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-020-00710-y&domain=pdf


InceptionTime: Finding AlexNet for time series classification 1937

length and quantity. This growth also means an increased dependence on automatic
classification of time series data, and ideally, algorithms with the ability to do this at
scale.

These problems, known as Time Series Classification (TSC), differ significantly
to traditional supervised learning for structured data, in that the algorithms should be
able to handle and harness the temporal information present in the signal (Bagnall
et al. 2017). It is easy to draw parallels from this scenario to computer vision problems
such as image classification and object localization, where successful algorithms learn
from the spatial information contained in an image. Put simply, the time series problem
is essentially the same class of problem, just with one less dimension. Yet despite
this similarity, the current state-of-the-art algorithms from the two fields share little
resemblance (Ismail Fawaz et al. 2019b).

Deep learning has a long history (in machine learning terms) in computer
vision (LeCun et al. 1998) but its popularity exploded with AlexNet (Krizhevsky
et al. 2012), after which it has been unquestionably the most successful class of algo-
rithms (LeCun et al. 2015). Conversely, deep learning has only recently started to gain
popularity amongst time series data mining researchers (Ismail Fawaz et al. 2019b).
This is emphasized by the fact that the Residual Network (ResNet), which is currently
considered the state-of-the-art neural network architecture for TSC when evaluated
on the UCR archive (Dau et al. 2018), was originally proposed merely as a baseline
model for the underlying task (Wang et al. 2017). Given the similarities in the data, it
is easy to suggest that there is much potential improvement for deep learning in TSC.

In this paper, we take an important step towards finding the equivalent of ‘AlexNet’
for TSC by presenting InceptionTime—a novel deep learning ensemble for TSC.
InceptionTime achieves state-of-the-art accuracy when evaluated on the UCR archive
[currently the largest publicly available repository for TSC (Dau et al. 2018)]while also
possessing ability to scale to a magnitude far beyond that of its strongest competitor.

InceptionTime is an ensemble of five deep learning models for TSC, each one cre-
ated by cascading multiple Inception modules (Szegedy et al. 2015). Each individual
classifier (model) will have exactly the same architecture but with different randomly
initialized weight values. The core idea of an Inception module is to apply multiple
filters simultaneously to an input time series. The module includes filters of varying
lengths, which as we will show, allows the network to automatically extract relevant
features from both long and short time series.

After presenting InceptionTime and its results, we perform an analysis of the archi-
tectural hyperparameters of deep neural networks—depth, filter length, number of
filters—and the characteristics of the Inception module—the bottleneck and residual
connection, in order to provide insight into why this model is so successful. In fact, we
construct networks with filters larger than have ever been explored for computer vision
tasks, taking direct advantage of the fact that time series exhibit one less dimension
than images.

The remainder of this paper is structured as follows: first we start by presenting
the background and related work in Sect. 2. We then proceed in Sect. 3 to explain the
network architecture and its main building block—the Inception module. Section 4
contains the details of our experimental setup. In Sect. 5, we show that InceptionTime
produces state-of-the-art accuracy on theUCRarchive, the TSCbenchmark,while also

123



1938 H. I. Fawaz et al.

presenting a runtime comparison with its nearest competitor. In Sect. 6, we provide
a detailed hyperparameter study that provides insight into the choices made when
designing our proposed neural network. Finally we conclude the paper in Sect. 7 and
give directions for further research on deep learning for TSC.

2 Related work

In this section, we start with some preliminary definitions for ease of understanding,
before presenting the current state-of-the-art algorithms for TSC.We end by providing
a deeper background for designing neural network architectures for domain-agnostic
TSC problems.

2.1 Time series classification

Definition 1 A Multivariate Time Series (MTS) X = [X1, X2, . . . , XT ] with M
dimensions, consists of T ordered elements Xi ∈ R

M .

Definition 2 A Univariate time series X of length T is simply an MTS with M = 1.

Definition 3 D = {(X1,Y 1), (X2,Y 2), . . . , (XN ,Y N )} is a dataset containing a col-
lection of pairs (Xi ,Y i ) where Xi could either be a univariate or multivariate time
series with its corresponding label denoted by Y i .

The task of classifying time series data consists of learning a classifier on D in
order to map from the space of possible inputs X to a probability distribution over the
classes Y .

The state-of-the-art for TSC has been organized by Bagnall et al. (2017) into the
following main categories:

2.1.1 Whole series

This type of classifiers compares two series using a certain distance. For many years,
the leading classifier for TSC was the nearest neighbor algorithm coupled with the
Dynamic Time Warping similarity measure (NN-DTW) (Bagnall et al. 2017). Much
research has subsequently focused on finding alternative similarity measures (Marteau
2009; Stefan et al. 2013; Keogh and Pazzani 2001; Vlachos et al. 2006), however none
have been found to significantly outperform NN-DTW on the UCR Archive (Lines
and Bagnall 2015). Another research area focused on proposing global alignment
kernels such as SoftDTW introduced by Cuturi and Blondel (2017), that can be further
used in a nearest centroid classification scheme. This research informed one current
state-of-the-art method, named Elastic Ensemble (EE), which is an ensemble of 11
nearest neighbor classifiers each coupled with a different similarity measure (Lines
and Bagnall 2015). While this algorithm produces state-of-the-art accuracy, its use on
large datasets is limited by its training complexity, with some of its parameter searches
being in O(N 2 ·T 3). Following this line of research, all recent successful classification

123



InceptionTime: Finding AlexNet for time series classification 1939

algorithms for time series data are all ensemble based models. Furthermore, to tackle
EE’s huge training time, Lucas et al. (2019) proposed a tree-based ensemble called
Proximity Forest (PF) that uses EE’s distances as a splitting criteria while replacing
the parameter searches by a random sampling.

2.1.2 Dictionary based

This type of classifiers discriminate time series by the frequency of repetition of some
sub-series. The most famous one being the Bag-of-SFA-Symbols (BOSS), which is
based on an ensemble of NNs classifiers coupled with a bespoke Euclidean distance
computed on the frequency histograms obtained from the Symbolic Fourier Approxi-
mation (SFA) discretization (Schäfer 2015a). BOSS has a high training complexity of
O(N 2), which the authors identified as a shortcoming and attempted to address with
subsequent scalable variations of the algorithm in Schäfer (2015b), Schäfer and Leser
(2017), however neither of these reached state-of-the-art accuracy.

2.1.3 Shapelets

This family of algorithms focuses on finding relatively short repeated subsequences to
identify a certain class. These patterns are time independent and are called shapelets.
Another type of ensemble classifiers is shapelet based algorithms, such as in Hills
et al. (2014), where discriminative subsequences (shapelets) are extracted from the
training set and fed to off-the-shelf classifiers such as Support Vector Machines and
Random Forests. The shapelet transform has a training complexity of O(N 2 · T 4) and
thus, again, has little potential to scale to large datasets.

2.1.4 Transformation ensembles

More recently, Bagnall et al. (2016) noted that there is no single time series trans-
formation technique (such as shapelets or SFA) that significantly dominates the
others, showing that constructing an ensemble of different classifiers over different
time series representations, called COTE, will significantly improve the accuracy.
Lines et al. (2016) extended COTE with a hierarchical voting scheme, which further
improves the decision taken by the ensemble. Named the Hierarchical Vote Collective
of Transformation-Based Ensembles (HIVE-COTE), it represents the current state-
of-the-art accuracy when evaluated on the UCR archive, however its practicality is
hindered by its huge training complexity of order O(N 2 · T 4). This is highlighted
by the extensive experiments in Lucas et al. (2019) where PF showed competitive
performance with COTE, while having a runtime that is orders of magnitudes lower.
Deep learning models, which we will discuss in detail in the following subsection,
also significantly beat the runtime ofHIVE-COTE by trivially leveragingGPUparallel
computation abilities. A comprehensive detailed review of recent methods for TSC
can be found in Bagnall et al. (2017).

123



1940 H. I. Fawaz et al.

2.2 Deep learning for time series classification

Since the recent success of deep learning techniques in supervised learning such as
image recognition (Zhang et al. 2018) and natural language processing (Guan et al.
2019), researchers started investigating these complex machine learning models for
TSC (Wang et al. 2017; Cui et al. 2016; Ismail Fawaz et al. 2019a). Precisely, Con-
volutional Neural Networks (CNNs) have showed promising results for TSC. Given
an input MTS, a convolutional layer consists of sliding one-dimensional filters over
the time series, thus enabling the network to extract non-linear discriminant features
that are time-invariant and useful for classification. By cascading multiple layers, the
network is able to further extract hierarchical features that should in theory improve
the network’s prediction. Note that given an input univariate time series, by applying
several one-dimensional filters, the outcome can be considered an MTS whose length
is preserved and the number of dimensions M is equal the number of filters applied
at this layer. More details on how deep CNNs are being adapted for one-dimensional
time series data can be found in Ismail Fawaz et al. (2019b). The rest of this subsection
is dedicated to describing what is currently being explored in deep learning for TSC.

Multi-scale Convolutional Neural Networks (MCNN) (Cui et al. 2016) and Time
LeNet (Le Guennec et al. 2016) are considered among the first architectures to be
validated on a domain-agnostic TSC benchmark such as the UCR archive. These
models were inspired by image recognition modules, which hindered their accuracy,
mainly because of the use of progressive pooling layers, that were mainly added for
computational feasibility when dealing with image data (Sabour et al. 2017). Conse-
quently, Fully Convolutional Neural Networks (FCNs) were shown to achieve great
performance without the need to add pooling layers to reduce the input data’s dimen-
sionality (Wang et al. 2017).More recently, it has been shown that deeper CNNmodels
coupled with residual connections such as ResNet can further improve the classifica-
tion performance (Ismail Fawaz et al. 2019b). In essence, since time series data exhibit
only one structuring dimension (i.e. time, as opposed to two spatial dimensions for
images), it is possible to explore more complex models that are usually computation-
ally infeasible for image recognition problems: for example removing the pooling
layers that throw away valuable information in favour of reducing the model’s com-
plexity. In this paper, we propose an Inception based network that applies several
convolutions with various filters lengths. In contrast to networks designed for images,
we are able to explore filters 10 times longer than recent Inception variants for image
recognition tasks (Szegedy et al. 2017).

Inception was first proposed by Szegedy et al. (2015) for end-to-end image classi-
fication. Now the network has evolved to become Inceptionv4, where Inception was
coupled with residual connections to further improve the performance (Szegedy et al.
2017). As for TSC a relatively competitive Inception-based approach was proposed in
Karimi-Bidhendi et al. (2018), where time series where transformed to images using
Gramian Angular Difference Field (GADF), and finally fed to an Inception model
that had been pre-trained for (standard) image recognition. Unlike this feature engi-
neering approach, by adopting an end-to-end learning from raw time series data, a
one-dimensional Inception model was used for Supernovae classification using the

123



InceptionTime: Finding AlexNet for time series classification 1941

Fig. 1 Our Inception network for time series classification

light flux of a region in space as an input MTS for the network (Brunel et al. 2019).
However, the authors limited the conception of their Inception architecture to the one
proposed by Google for ImageNet (Szegedy et al. 2017). In our work, we explore
much larger filters than any previously proposed network for TSC in order to reach
state-of-the-art performance on the UCR benchmark.

3 InceptionTime: an accurate and scalable time series classifier

In this section, we start by describing the proposed architecture we call InceptionTime
for classifying time series data. Specifically, we detail the main component of our
network: the Inception module. We then present our proposed model InceptionTime
which consists of an ensemble of 5 different Inception networks initialized randomly.
Finally, we adapt the concept of Receptive Field for time series data.

3.1 Inception Network: a novel architecture for TSC

The composition of an Inception network classifier contains two different residual
blocks, as opposed to ResNet, which is comprised of three. For the Inception net-
work, each block is comprised of three Inception modules rather than traditional fully
convolutional layers. Each residual block’s input is transferred via a shortcut linear
connection to be added to the next block’s input, thusmitigating the vanishing gradient
problem by allowing a direct flow of the gradient (He et al. 2016). Following these
residual blocks, we employed a Global Average Pooling (GAP) layer that averages
the output multivariate time series over the whole time dimension. At last, we used a
final traditional fully-connected softmax layer with a number of neurons equal to the
number of classes in the dataset. Figure 1 depicts an Inception network’s architecture
showing 6 different Inception modules stacked one after the other.

As for the Inceptionmodule, Fig. 2 illustrates the inside details of this operation. Let
us consider the input to be an MTS with M dimensions. The first major component of
the Inception module is called the “bottleneck” layer. This layer performs an operation

123



1942 H. I. Fawaz et al.

Fig. 2 Inside our Inception module for time series classification. For simplicity we illustrate a bottleneck
layer of size m = 1

of slidingm filters of length 1with a stride equal to 1. Thiswill transform the time series
from an MTS with M dimensions to an MTS withm � M dimensions, thus reducing
significantly the dimensionality of the time series as well as the model’s complexity
and mitigating overfitting problems for small datasets. Note that for visualization pur-
poses, Fig. 2 illustrates a bottleneck layer with m = 1. Finally, we should mention
that this bottleneck technique allows the Inception network to have much longer fil-
ters than ResNet (almost ten times) with roughly the same number of parameters to be
learned, since without the bottleneck layer, the filters will have M dimensions com-
pared tom � M when using the bottleneck layer. The second major component of the
Inception module is sliding multiple filters of different lengths simultaneously on the
same input time series. For example in Fig. 2, three different convolutions with length
l ∈ {10, 20, 40} are applied to the input MTS, which is technically the output of the
bottleneck layer. Additionally, in order to make our model invariant to small perturba-
tions, we introduce another parallel MaxPooling operation, followed by a bottleneck
layer to reduce the dimensionality. The output of sliding a MaxPooling window is
computed by taking the maximum value in this given window of time series. Finally,
the output of each independent parallel convolution/MaxPooling is concatenated to
form the output MTS. The latter operations are repeated for each individual Inception
module of the proposed network.

By stackingmultiple Inceptionmodules and training theweights (filters’ values) via
backpropagation, the network is able to extract latent hierarchical features of multiple
resolutions thanks to the use of filters with various lengths. For completeness, we
specify the exact number of filters for our proposed Inception module: 3 sets of filters
each with 32 filters of length l ∈ {10, 20, 40} with MaxPooling added to the mix,
thus making the total number of filters per layer equal to 32 × 4 = 128 = M -
the dimensionality of the output MTS. The default bottleneck size value was set to
m = 32.

123



InceptionTime: Finding AlexNet for time series classification 1943

Fig. 3 Receptive field illustration for a two layers CNN

3.2 InceptionTime: a neural network ensemble for TSC

Our proposed state-of-the-art InceptionTime model is an ensemble of 5 Inception net-
works, with each prediction given an even weight. In fact, during our experimentation,
we have noticed that a single Inception network exhibits high standard deviation in
accuracy, which is very similar to ResNet’s behavior (Ismail Fawaz et al. 2019c). We
believe that this variability comes from both the randomly initialized weights and
the stochastic optimization process itself. This was an important finding for us, pre-
viously observed in Scardapane and Wang (2017), as rather than training only one,
potentially very good or very poor, instance of the Inception network, we decided to
leverage this instability through ensembling, creating InceptionTime. The following
equation explains the ensembling of predictions made by a network with different
initializations:

ŷi,c = 1

n

n∑

j=1

σc(xi , θ j ) | ∀c ∈ [1,C] (1)

with ŷi,c denoting the ensemble’s output probability of having the input time series
xi belonging to class c, which is equal to the logistic output σc averaged over the n
randomly initialized models. More details on ensembling neural networks for TSC
can be found in Ismail Fawaz et al. (2019c). As for the proposed model in this paper,
we chose the number of individual classifiers to be equal to 5, which is justified in
Sect. 5. We should note that we have opted to a neural network ensemble given the
small training size of the UCR archive datasets which are not well suited to deep
learning approaches, thus allowing us to control and leverage the variance of the error,
which is likely to reduce when increasing the training set’s size.

3.3 Receptive field

The concept of Receptive Field (RF) is an essential tool to the understanding of deep
CNNs (Luo et al. 2016). Unlike fully-connected networks orMulti-Layer Perceptrons,
a neuron in a CNN depends only on a region of the input signal. This region in the
input space is called the receptive field of that particular neuron. For computer vision
problems this concept was extensively studied, such as in Liu et al. (2018) where the

123



1944 H. I. Fawaz et al.

Fig. 4 Example of a synthetic
binary time series classification
problem

authors compared the effective and theoretical receptive fields of a CNN for image
segmentation.

For temporal data, the receptive field can be considered as a theoretical value that
measures the maximum field of view of a neural network in a one-dimensional space:
the larger it is, the better the network becomes (in theory) in detecting longer patterns.
We now provide the definition of the RF for time series data, which is later used in our
experiments. Suppose that we are sliding convolutions with a stride equal to 1. The
formula to compute the RF for a network of depth d with each layer having a filter
length equal to ki with i ∈ [1, d] is:

1 +
d∑

i=1

(ki − 1) (2)

By analyzing Eq. 2 we can clearly see that adding two layers to the initial set of d
layers, will increase only slightly the value of RF . In fact in this case, if the old RF
value is equal to RF

′
, the new value RF will be equal to RF

′ +2×(k−1). Conversely,
by increasing the filter length ki , ∀i ∈ [1, d] by 2, the new value RF will be equal to
RF

′ +2×d. This is rather expected since by increasing the filter length for all layers,
we are actually increasing the RF for each layer in the network. Figure 3 illustrates
the RF for a two layers CNN.

In this paper, we chose to focus on the RF concept since it has been known for
computer vision problems, that larger RFs are required to capture more context for
object recognition (Luo et al. 2016). Following the same line of thinking, we hypoth-
esize that detecting larger patterns from very long one-dimensional time series data,
requires larger receptive fields.

4 Experimental setup

First, we detail the method to generate our synthetic dataset, which is later used
in our architecture and hyperparameter study. For testing our different deep learning

123



InceptionTime: Finding AlexNet for time series classification 1945

methods, we created our own synthetic TSC dataset. The goal was to be able to control
the length of the time series data as well as the number of classes and their distribution
in time. To this end, we start by generating a univariate time series using uniformly
distributed noise sampled between 0.0 and 0.1. Then in order to assign this synthetic
random time series to a certain class, we inject a pattern with an amplitude equal to
1.0 in a pre-defined region of the time series. This region will be specific to a certain
class, therefore by changing the placement of this pattern we can generate an unlimited
amount of classes, whereas the random noise will allow us to generate an unlimited
amount of time series instances per class. One final note is that we have fixed the
length of the pattern to be equal to 10% the length of the synthetic time series. An
example of a synthetic binary TSC problem is depicted in Fig. 4.

All deep neural networks were trained by leveraging the parallel computation of a
remote cluster of more than 60 GPUs comprised of GTX 1080 Ti, Tesla K20, K40 and
K80. Local testing and developmentwas performedon anNVIDIAQuadroP6000. The
latter graphics card was also used for computing the training time of a model. When
evaluating global accuracy and computational complexity, we have used the UCR
archive (Dau et al. 2018), which is the largest publicly available archive for TSC. The
models were trained/tested using the original training/testing splits provided in the
archive. To study the effect of different hyperparameters and architectural designs,
we used in addition to the traditional UCR benchmark for TSC, the synthetic dataset
whose generation is described in details in the previous paragraph. All time series
data were z-normalized (including the synthetic series) to have a mean equal to zero
and a standard deviation equal to one. This is considered a common best-practice
before classifying time series data (Bagnall et al. 2017). Finally, we should note that
all models are trained using the Adam optimization algorithm (Kingma and Ba 2015)
and all weights are initialized randomly using Glorot’s uniform technique (Glorot and
Bengio 2010).

Similarly to Ismail Fawaz et al. (2019b), when comparing with the state-of-the-art
results published inBagnall et al. (2017)we used the deep learningmodel’smedian test
accuracy over the different runs. Following the recommendations inDemšar (2006)we
adopted the Friedman test (Friedman 1940) in order to reject the null hypothesis. We
then performed the pairwise post-hoc analysis recommended by Benavoli et al. (2016)
where we replaced the average rank comparison by a Wilcoxon signed-rank test with
Holm’s alpha (5%) correction (Garcia and Herrera 2008). To visualize this type of
comparison we used a critical difference diagram proposed by Demšar (2006), where
a thick horizontal line shows a cluster of classifiers (a clique) that are not-significantly
different in terms of accuracy.

In order to allow for the time series community to build upon and verify our findings,
the source code for all these experiments was made publicly available on our com-
panion repository.1 In addition, we will provide the pre-trained deep learning models,
thus allowing data mining practitioners to leverage these models in a transfer learning
setting (Ismail Fawaz et al. 2018).

1 https://github.com/hfawaz/InceptionTime.

123

https://github.com/hfawaz/InceptionTime.


1946 H. I. Fawaz et al.

Fig. 5 Critical difference diagram showing the performance of InceptionTime compared to the current
state-of-the-art classifiers of time series data

Fig. 6 Accuracy plot showing how our proposed InceptionTime model is not significantly different than
HIVE-COTE

5 Experiments: InceptionTime

In this section, we present the results of our proposed novel classifier called Incep-
tionTime, evaluated on the 85 datasets of theUCR archive.We note that throughout the
paper (unless specified otherwise) InceptionTime refers to an ensemble of 5 Inception
networks, while the “InceptionTime(n)” notation is used to denote an ensemble of n
Inception networks.

Figure 5 illustrates the critical difference diagram with InceptionTime added to the
mix of the current state-of-the-art classifiers for time series data, whose results were
taken from Bagnall et al. (2017). We can see here that our InceptionTime ensem-
ble reaches competitive accuracy with the class-leading algorithm HIVE-COTE, an
ensemble of 37 TSC algorithms with a hierarchical voting scheme (Lines et al. 2016).
While the two algorithms share the same clique on the critical difference diagram, the
trivial GPU parallelization of deep learning models makes learning our InceptionTime
model a substantially easier task than training the 37 different classifiers of HIVE-
COTE, whose implementation does not trivially leverage the GPUs’ computational
power.

123



InceptionTime: Finding AlexNet for time series classification 1947

Fig. 7 Training time as a function of the series length for the InlineSkate dataset

To further visualize the difference between the InceptionTime and HIVE-COTE,
Fig. 6 depicts the accuracy plot of InceptionTime against HIVE-COTE for each of the
85 UCR datasets. The results show a Win/Tie/Loss of 40/6/39 in favor of Inception-
Time, however the difference is not statistically significant as previously discussed.
From Fig. 6, we can also easily spot the two datasets for which InceptionTime notice-
ably under-performs (in terms of accuracy) with respect to HIVE-COTE: Wine and
Beef. These two datasets contain spectrography data from different types of beef/wine,
with the goal being to determine the correct type of meat/wine using the recorded time
series data. Recently, transfer learning has been shown to significantly increase the
accuracy for these two datasets, especially when fine-tuning a dataset with similar
time series data (Ismail Fawaz et al. 2018). Our results suggest that further potential
improvements may be available for InceptionTime when applying a transfer learning
approach, as recent discoveries in Kashiparekh et al. (2019) show that the various filter
lengths of the Inception modules have been shown to benefit more from fine-tuning
than networks with a static filter length.

Now that we have demonstrated that our proposed technique is able to reach the
current state-of-the-art accuracy for TSC problems, we will further investigate the
time complexity of our model. Note that during the following experiments, we ran
our ensemble on a single Nvidia Quadro P6000 in a sequential manner, meaning that
for InceptionTime, 5 different Inception networks were trained one after the other.
Therefore we did not make use of our remote cluster of GPUs. First we start by
investigating how our algorithm scales with respect to the length of the input time
series. Figure 7 shows the training time versus the length of the input time series.
For this experiment, we used the InlineSkate dataset with an exponential re-sampling.
We can clearly see that InceptionTime’s complexity increases almost linearly with an
increase in the time series’ length, unlike HIVE-COTE, whose execution is almost

123



1948 H. I. Fawaz et al.

Fig. 8 Training time as a function of the training set size for the SITS dataset

two order of magnitudes slower. Having showed that InceptionTime is significantly
faster when dealing with long time series, we now proceed to evaluating the training
time with respect to the number of time series in a dataset. To this end, we used a
Satellite Image Time Series dataset (Tan et al. 2017). The data contain approximately
one million time series, each of length 46 and labelled as one of 24 possible land-use
classes (e.g. ‘wheat’, ‘corn’, ‘plantation’, ‘urban’). From Fig. 8 we can easily see how
our InceptionTime is an order of magnitude faster than HIVE-COTE, and the trend
suggests that this difference will only continue to grow, rendering InceptionTime a
clear favorite classifier in theBigData era. Note that HIVE-COTEuses heuristics in its
implementation, which explains why the complexity appears lower in the experiments
than the expected O(T 4). To summarize, we believe that InceptionTime should be
considered as oneof the top state-of-the-artmethods forTSC, given that it demonstrates
equal accuracy to that of HIVE-COTE (see Fig. 6) while beingmuch faster (see Figs. 7
and 8).

In order to further demonstrate the capability of InceptionTime to handle efficiently
a large amount of training samples unlike its counterpart HIVE-COTE, we show in
Fig. 9 how the accuracy continues to increase with InceptionTime for larger training
set sizes, where HIVE-COTE would take 100 times longer to run.

The pairwise accuracy plot in Fig. 10 compares InceptionTime to a model we
call ResNet(5), which is an ensemble of 5 different ResNet networks (Ismail Fawaz
et al. 2019c). We found that InceptionTime showed a significant improvement over
its neural network competitor, the previous best deep learning ensemble for TSC.
Specifically, our results show a Win/Tie/Loss of 54/8/23 in favor of InceptionTime
against ResNet(5) with a p-value < 0.01, suggesting the significant gain in perfor-
mance is mainly due to improvements in our proposed Inception network architecture.
Additionally, in order to have a fair comparison between ResNet(5) and Inception-

123



InceptionTime: Finding AlexNet for time series classification 1949

Fig. 9 Accuracy as a function of the training set size for the SITS dataset

Fig. 10 Plot showing how InceptionTime significantly outperforms ResNet(5)

Time, we fixed the batch size of ResNet to 64—equal to the default value used for
InceptionTime. This would further highlight that the improvement is mainly due to the
architectural design of our proposed network, and not due to some other optimization
hyperparameter such as the batch size. Finally, we would like to note that when using
the original batch size value proposed by Wang et al. (2017) for ResNet, we observed
similar results: InceptionTimewas significantly better than the original ResNet(5)with
a Win/Tie/Loss of 53/7/25.

123



1950 H. I. Fawaz et al.

Fig. 11 Critical difference diagram showing the effect of the number of individual classifiers in the Incep-
tionTime ensemble

Fig. 12 Critical difference diagram showing the effect of the batch size hyperparameter value over Incep-
tionTime’s average rank

In order to better understand the effect of the randomness on the accuracy of our
neural networks, we present in Fig. 11 the critical difference diagram of different
InceptionTime(x) ensembles with x ∈ {1, 2, 5, 10, 20, 30} denoting the number of
individual networks in the ensemble. Note that InceptionTime(1) is equivalent to a
single Inception network and InceptionTime is equivalent to InceptionTime(5). By
observing Fig. 11 we notice how there is no significant improvement when x ≥ 5,
which is why we chose to use an ensemble of size 5, to minimize the classifiers’
training time.

6 Architectural Hyperparameter study

In this section, we will further investigate the hyperparameters of our deep learning
architecture and the characteristics of the Inception module in order to provide insight
for practitioners looking at optimizing neural networks for TSC. First, we start by
investigating the batch size hyperparameter, since this will greatly influence training
time of all of our models. Then we investigate the effectiveness of residual and bot-
tleneck connections, both of which are present in InceptionTime. After this we will
experiment on model depth, filter length, and number of filters. In all experiments the
default values for InceptionTime are: batch size 64; bottleneck size 32; depth 6; filter
length {10,20,40}; and, number of filters 32. Finally, since the train/test split (provided
in the archive) does not help in estimating the generalization ability of our approach,
we have conducted a sensitivity analysis that evaluates the second best value for each
of the network’s hyperparameters (see Sect. 6.6).

6.1 Batch size

We started by investigating the batch size hyperparameter on the UCR archive, since
this will greatly influence the training time of our models. The critical difference dia-
gram in Fig. 12 shows how the batch size affects the performance of InceptionTime.
The horizontal thick line between the different models shows a non significant dif-

123



InceptionTime: Finding AlexNet for time series classification 1951

Fig. 13 Accuracy plot for InceptionTime with/without the bottleneck layer

ference between them when evaluated on the 85 datasets, with a small superiority to
InceptionTime (batch size equal to 64). Finally, we should note that as we did not
observe any significant impact on accuracy we did not study the effect of this hyper-
parameter on the simulated dataset and we chose to fix the batch size to 64 (similarly
to InceptionTime) when experimenting on the simulated dataset below.

6.2 Bottleneck and residual connections

In Ismail Fawaz et al. (2019b), compared to other deep learning classifiers, ResNet
achieved the best classification accuracy when evaluated on the 85 datasets and as a
result we chose to look at the specific characteristic of this architecture—its residual
connections. Additionally, we tested one of the defining characteristics of Inception—
the bottleneck feature. For the simulated dataset, we did not observe any significant
impact of these two connections, we therefore proceed with experimenting on the 85
datasets from the UCR archive.

Figure 13 shows the pairwise accuracy plot comparing InceptionTime with/without
the bottleneck. Similar to the experiments on the simulated dataset, we did not find
any significant variation in accuracy when adding or removing the bottleneck layer.

In fact, using a Wilcoxon Signed-Rank test we found that InceptionTime with
the bottleneck layer is only slightly better than removing the bottleneck layer (p-
value > 0.1). In terms of accuracy, these results all suggest not to use a bottleneck
layer, however we should note that the major benefit of this layer is to significantly
decrease the number of parameters in the network. In this case, InceptionTime with
the bottleneck contains almost half the number of parameters to be learned, and given
that it does not significantly decrease accuracy, we chose to retain its usage. In a

123



1952 H. I. Fawaz et al.

Fig. 14 Critical difference diagram showing how the network’s bottleneck size affects InceptionTime’
average rank

Fig. 15 Accuracy plot for InceptionTime with/without the residual connections

more general sense, these experiments suggest that choosing whether or not to use a
bottleneck layer is actually a matter of finding a balance between a model’s accuracy
and its complexity. The latter observation is evident in Fig. 14 where choosing smaller
bottleneck size in order to reduce InceptionTime’s runtime will result in small yet
insignificant decrease in accuracy.

To test the residual connections, we simply removed the residual connection from
InceptionTime. Thus, without any shortcut connection, InceptionTime will simply
become a deep convolutional neural network with stacked Inception modules. Fig-
ure 15 shows how the residual connections have a minimal effect on accuracy when
evaluated over the whole 85 datasets in the UCR archive with a p-value > 0.2.

This result was unsurprising given that for computer vision tasks residual connec-
tions are known to improve the convergence rate of the network but not alter its test
accuracy (Szegedy et al. 2017). However, for some datasets in the archive, the residual
connections did not show any improvement nor deterioration of the network’s conver-
gence either. This could be linked to other factors that are specific to these data, such
as the complexity of the dataset.

One example of interest that we noticed was a significant decrease in Inception-
Time’s accuracy when removing the residual component for the ShapeletSim dataset.

123



InceptionTime: Finding AlexNet for time series classification 1953

Fig. 16 Inception network’s accuracy over the simulated dataset, with respect to the network’s depth as
well as the length of the input time series

This is a synthetic dataset, designed specifically for shapelets discovery algorithms,
with shapelets (discriminative subsequences) of different lengths (Hills et al. 2014).
Further investigations on this dataset indicated that InceptionTimewithout the residual
connections suffered from a severe overfitting.

While not the case here, some research has observed benefits of skip, dense or
residual connections (Huang et al. 2017). Given this, and the small amount of labeled
data available in TSC compared to computer vision problems, we believe that each
case should be independently studied whether to include residual connections. The
latter observation suggests that a large scale general purpose labeled dataset similar to
ImageNet (Russakovsky et al. 2015) is needed for TSC. Finally, we should note that
the residual connection has a minimal impact on the network’s complexity (Szegedy
et al. 2017).

6.3 Depth

Most of deep learning’s success in image recognition tasks has been attributed to how
‘deep’ the architectures are (LeCun et al. 2015). Consequently, we decided to further
investigate how the number of layers affects a network’s accuracy. Unlike the previous
hyperparameters, we present here the results on the simulated dataset. Apart from the
depth parameter, we used the default values of InceptionTime. For this dataset we
fixed the number of training instances to 256 and the number of classes to 2 (see Fig. 4
for an example). The only dataset parameter we varied was the length of the input time
series.

123



1954 H. I. Fawaz et al.

Fig. 17 Critical difference diagram showing how the network’s depth affects InceptionTime’ average rank

Figure 16 illustrates how the model’s accuracy varies with respect to the network’s
depthwhen classifying datasets of time serieswith different lengths.Our initial hypoth-
esis was that as longer time series can potentially contain longer patterns and thus
should require longer receptive fields in order for the network to separate the classes
in the dataset. In terms of depth, this means that longer input time series will garner
better results with deeper networks. And indeed, when observing Fig. 16, one can
easily spot this trend: deeper networks deliver better results for longer time series.

In order to further see howmuch effect the depth of amodel has on real TSCdatasets,
we decided to implement deeper and shallower InceptionTime models, by varying the
depth between 1 layer and 12 layers. In fact, compared with the original architecture
proposed by Wang et al. (2017), the deeper (shallower) version of InceptionTime will
contain one additional (fewer) residual blocks each one comprised of three inception
modules. By adding these layers, the deeper (shallower) InceptionTime model will
contain roughly double (half) the number of parameters to be learned. Figure 17 depicts
the critical difference diagram comparing the deeper and shallower InceptionTime
models to the original InceptionTime.

Unlike the experiments on the simulated dataset, we did not manage to improve
the network’s performance by simply increasing its depth. This may be due to many
reasons, however it is likely due to the fact that deeper networks need more data to
achieve high generalization capabilities (LeCun et al. 2015), and since theUCRarchive
does not contain datasets with a huge number of training instances, the deeper version
of InceptionTime was overfitting the majority of the datasets and exhibited a small
insignificant decrease in performance. On the other hand, the shallower version of
InceptionTime suffered from a significant decrease in accuracy (see InceptionTime_3
and InceptionTime_1 in Fig. 17). This suggests that a shallower architecture will
contain a significantly smaller RF, thus achieving lower accuracy on the overall UCR
archive.

From these experiments we can conclude that increasing the RF by adding more
layers will not necessarily result in an improvement of the network’s performance,
particularly for datasets with a small training set. However, one benefit that we have
observed from increasing the network’s depth, is to choose an RF that is long enough
to achieve good results without suffering from overfitting.

We therefore proceed by experimenting with varying the RF by varying the filter
length.

123



InceptionTime: Finding AlexNet for time series classification 1955

Fig. 18 Inception network’s accuracy over the simulated dataset, with respect to the filter length as well as
the input time series length

6.4 Filter length

In order to test the effect of the filter length, we start by analyzing how the length of a
time series influences the accuracy of the model when tuning this hyperparameter. In
these experiments we fixed the number of training time series to 256 and the number
of classes to 2. Figure 18 illustrates the results of this experiment.

We can easily see that as the length of the time series increases, a longer filter is
required to produce accurate results. This is explained by the fact that longer kernels
are able to capture longer patterns, with higher probability, than shorter ones can.
Thus, we can safely say that longer kernels almost always improve accuracy.

In addition to having visualized the accuracy as a function of both depth (Fig. 16)
and filter length (Fig. 18), we proceed by plotting the accuracy as function of the RF
for the simulated time series dataset with various lengths. By observing Fig. 19 we
can confirm the previous observations that longer patterns require longer RFs, with
length clearly having a higher impact on accuracy compared to the network’s depth.
Moreover, by using a large enough RF to cover the whole input time series, the usage
of a GAP layer won’t affect InceptionTime’s ability to discriminate between the two
patterns, because performing a GAP does not affect the model’s RF.

There is a downside to longer filters however, in the potential for overfitting small
datasets, as longer filters significantly increase the number of parameters in the net-
work. To answer this question, we again extend our experiments to the real data from
the UCR archive, allowing us to verify whether long kernels tend to overfit the datasets
when a limited amount of training data is available. Therefore, we decided to train and
evaluate InceptionTime versions containing both long and short filters on the UCR
archive. Where the original InceptionTime contained filters of length {10,20,40}, the

123



1956 H. I. Fawaz et al.

Fig. 19 Inception network’s accuracy over the simulated dataset, with respect to the receptive field as well
as the input time series length

Fig. 20 Critical difference diagram showing the effect of the filter length hyperparameter value over Incep-
tionTime’ average rank

Table 1 Filter length variants of InceptionTime with their corresponding average ranks grouped by the
datasets’ length

Length InceptionTime.8 InceptionTime.64 InceptionTime

<81 1.71 2.21 1.79

81-250 1.89 2.11 1.42

251-450 2.45 1.32 1.86

451-700 2.08 1.85 1.62

701-1000 1.50 2.60 1.80

> 1000 2.14 2.00 1.71

Bold indicates the best model

five models we are testing here contain filters of length {2,4,8}; {4,8,16}; {8,16,32};
{16,32,64}; {32,64,128}. Figure 20 illustrates a critical difference diagram showing
how InceptionTime with longer filters will slightly decrease the network’s perfor-
mance in terms of accurately classifying the time series datasets. We also investigate
the relationship between the length of the time series and the length of the network’s

123



InceptionTime: Finding AlexNet for time series classification 1957

Fig. 21 Inception network’s accuracy over the simulated dataset, with respect to the number of filters as
well as the number of classes

filter. Table 1 depicts the average rank of each variant of InceptionTime over the UCR
archive grouped by the datasets’ lengths (with about 15 datasets in each group). Sim-
ilarly to Fig. 20, we observe that almost for all time series length, InceptionTime with
its default filter length (32) achieves the best or the second best overall accuracy. We
can therefore summarize that the results from the simulated dataset do generalize (to
some extent) to real datasets: longer filters will improve the model’s performance as
long as there is enough training data to mitigate the overfitting phenomena.

In summary, we can confidently state that increasing the receptive field of a model
by adopting longer filters will help the network in learning longer patterns present in
longer time series. However there is an accompanying disclaimer that itmay negatively
impact the accuracy for some datasets due to overfitting.

6.5 Number of filters

To provide some directions on how the number of filters affects the performance of
the network, we experimented with varying this hyperparameter with respect to the
number of classes in the dataset. To generate new classes in the simulated data, we
varied the position and length of the patterns; for example, to create data with three
classes, we inject patterns of the same length at three different positions. For this series
of experiments, we fixed the length of the time series to 256 and the number of training
examples to 256.

Figure 21 depicts the network’s accuracy with respect to the number of filters for
datasets with a differing number of classes. Our prior intuition was that the more
classes, or variability, present in the training set, the more features are required to
be extracted in order to discriminate the different classes, and this will necessitate a

123



1958 H. I. Fawaz et al.

Fig. 22 Critical difference diagram showing how the network’s width affects InceptionTime’ average rank

greater number of filters. This is confirmed by the trend displayed in Fig. 21, where
the datasets with more classes require more filters to be learned in order to be able to
accurately classify the input time series.

After observing on the synthetic dataset that the number of filters significantly
affects the performance of the network, we asked ourselves if the current implementa-
tion of InceptionTime could benefit/lose from a naive increase/decrease in the number
of filters per layer. Our proposed InceptionTime model contains 32 filters per Incep-
tion module’s component, while for these experiments we tested six ensembles, by
varying the hyperparameter with a power of two. Figure 22 illustrates a critical dif-
ference diagram showing how increasing the number of filters per layer significantly
deteriorated the accuracy of the network, whereas decreasing the number of filters did
not significantly affect the accuracy. It appears that our InceptionTime model contains
enough filters to separate the classes of the 85 UCR datasets, of which some have up
to 60 classes (ShapesAll dataset).

Increasing the number of filters also has another side effect: it causes an explosion in
the number of parameters in the network. Thewider InceptionTime contains four times
the number of parameters than the original implementation. We therefore conclude
that naively increasing the number of filters is actually detrimental, as it will drastically
increase the network’s complexity and eventually cause overfitting.

6.6 Sensitivity analysis

Working with open benchmarks such as the UCR archive has pushed the community
towards publishing high quality TSCalgorithms. TheUCRarchive provides a train/test
split for the data, which has allowed researchers to directly benchmark their workswith
the ones of others, as well as providing splits that were potentially more challenging
and realistic than assuming that both train and test data were sampled from the same
population. Having the train/test split available has however also led to the potential
issue that the techniques designed on this benchmark archive might overfit it. This
is especially true of deep learning classifiers that contain dozens of optimization and
architectural hyperparameters (Ismail Fawaz et al. 2019b).

In an effort to give an idea of the sensitivity of InceptionTime to changes in its
parameters, we have evaluated the performance of having chosen the second-best
value of each of its parameters, that is the second-best value for the depth of the
network (i.e. a value of 9 instead of the best value of 6), for its width (i.e. 16 instead
of 32), for the length of the convolutions (final value of 32 instead of 40), for the
batch size (i.e. 32 instead of 64), and for the bottleneck size (i.e. 64 instead of the
default one 32). This gave us a new architecture—InceptionTime(second best)—which

123



InceptionTime: Finding AlexNet for time series classification 1959

Fig. 23 Critical difference diagram showing how choosing the second best hyperparameters affects Incep-
tionTime’s average rank

we then compared with InceptionTime and also other algorithms. Fig. 23 depicts the
average rank of current state-of-the-art TSC algorithms with both InceptionTime’s
default and second best hyperparameters added to the mix. We can clearly see that
the effect is minimal: the ranking is a tiny bit lower but they are all well within the
critical difference with HIVE-COTE (a post-hoc statistical test fails to reject the null
hypothesis (p-value ≈ 0.71) making the difference between the default and second
best hyperparameters non significant).

7 Conclusion

Deep learning for time series classification still lags behind neural networks for image
recognition in terms of experimental studies and architectural designs. In this paper, we
fill this gap by introducing InceptionTime, inspired by the recent success of Inception-
based networks for various computer vision tasks. We ensemble these networks to
produce new state-of-the-art results for TSC on the 85 datasets of the UCR archive.
Our approach is highly scalable, two orders of magnitude faster than current state-
of-the-art models such as HIVE-COTE. The magnitude of this speed up is consistent
across both Big Data TSC repositories as well as longer time series with high sampling
rate. We further investigate the effects on overall accuracy of various hyperparameters
of the CNN architecture. For these, we go far beyond the standard practices for image
data, and design networks with long filters. We look at these by using a simulated
dataset and frame our investigation in terms of the definition of the receptive field for
a CNN for TSC. Finally, although InceptionTime can be extended straightforwardly to
multivariate data (Ismail Fawaz et al. 2019b), wewould like to further explore applying
to multivariate TSC the many architectural advancements in deep neural networks that
are being published each year for computer vision tasks.

Acknowledgements The authors would like to thank the creators and providers of the datasets. The authors
would also like to thank NVIDIA Corporation for the GPU Grant and the Mésocentre of Strasbourg for
providing access to the cluster. This workwas supported by theANRTIMES project (Grant ANR-17-CE23-
0015) of the French Agence Nationale de la Recherche. François Petitjean is the recipient of an Australian
Research Council Discovery Early Career Award (Project Number DE170100037) funded by the Australian
Government. This material is based upon work supported by the Air Force Office of Scientific Research,
Asian Office of Aerospace Research andDevelopment (AOARD) under award Number FA2386-18-1-4030.

References

Bagnall A, Lines J, Hills J, Bostrom A (2016) Time-series classification with COTE: the collective of
transformation-based ensembles. In: International conference on data engineering, pp 1548–1549

123



1960 H. I. Fawaz et al.

BagnallA, Lines J, BostromA,Large J,KeoghE (2017)The great time series classification bake off: a review
and experimental evaluation of recent algorithmic advances. Data Min Knowl Disc 31(3):606–660

Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? Mach
Learn Res 17(1):152–161

Brunel A, Pasquet J, Pasquet J, Rodriguez N, Comby F, Fouchez D, Chaumont M (2019) A CNN adapted
to time series for the classification of Supernovae. In: Electronic imaging

Cui Z, Chen W, Chen Y (2016) Multi-scale convolutional neural networks for time series classification.
ArXiv:1603.06995

Cuturi M, Blondel M (2017) Soft-dtw: a differentiable loss function for time-series. In: International con-
ference on machine learning, pp 894–903

Dau HA, Bagnall A, Kamgar K, Yeh CCM, Zhu Y, Gharghabi S, Ratanamahatana CA, Keogh E (2018) The
ucr time series archive. ArXiv

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. Mach Learn Res 7:1–30
Forestier G, Petitjean F, Senin P, Despinoy F, Huaulmé A, Ismail Fawaz H, Weber J, Idoumghar L, Muller

PA, Jannin P (2018) Surgical motion analysis using discriminative interpretable patterns. Artif Intell
Med 91:3–11

Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann
Math Stat 11(1):86–92

Garcia S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple data sets”
for all pairwise comparisons. Mach Learn Res 9:2677–2694

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feed forward neural networks. In:
International conference on artificial intelligence and statistics vol 9, pp 249–256

Guan C, Wang X, Zhang Q, Chen R, He D, Xie X (2019) Towards a deep and unified understanding of deep
neural models in NLP. In: International conference on machine learning, pp 2454–2463

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on
computer vision and pattern recognition, pp 770–778

Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2014) Classification of time series by shapelet trans-
formation. Data Min Knowl Disc 28(4):851–881

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks.
In: IEEE conference on computer vision and pattern recognition, pp 4700–4708

Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2018) Transfer learning for time series
classification. In: IEEE international conference on big data, pp 1367–1376

Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2019a) Adversarial attacks on deep neural
networks for time series classification. In: IEEE international joint conference on neural networks

Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2019b) Deep learning for time series
classification: a review. Data Min Knowl Discov

Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2019c) Deep neural network ensembles
for time series classification. In: IEEE international joint conference on neural networks

Ismail Fawaz H, Forestier G, Weber J, Petitjean F, Idoumghar L, Muller PA (2019d) Automatic alignment
of surgical videos using kinematic data. In: Artificial intelligence in medicine, pp 104–113

Karimi-Bidhendi S, Munshi F, Munshi A (2018) Scalable classification of univariate and multivariate time
series. In: IEEE international conference on big data, pp 1598–1605

Kashiparekh K, Narwariya J, Malhotra P, Vig L, Shroff G (2019) Convtimenet: A pre-trained deep convo-
lutional neural network for time series classification. In: IEEE international joint conference on neural
networks

Keogh EJ, Pazzani MJ (2001) Derivative dynamic time warping. In: Proceedings of the 2001 SIAM inter-
national conference on data mining, SIAM, pp 1–11

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: International conference on
learning representations

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural
networks. In: Advances in neural information processing systems, pp 1097–1105

Le Guennec A, Malinowski S, Tavenard R (2016) Data augmentation for time series classification using
convolution neural networks. In: ECML/PKDD workshop on advanced analytics and learning on
temporal data

LeCun Y, Bottou L, Orr GB, Müller KR (1998) Efficient backprop. In: Neural networks: tricks of the trade,
this book is an outgrowth of a 1996 NIPS workshop, pp 9–50

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

123

http://arxiv.org/abs/1603.06995


InceptionTime: Finding AlexNet for time series classification 1961

Lee W, Park S, Joo W, Moon IC (2018) Diagnosis prediction via medical context attention networks using
deep generative modeling. In: IEEE international conference on data mining, pp 1104–1109

Lines J, Bagnall A (2015) Time series classification with ensembles of elastic distance measures. Data Min
Knowl Disc 29(3):565–592

Lines J, Taylor S, Bagnall A (2016) HIVE-COTE: The hierarchical vote collective of transformation-based
ensembles for time series classification. In: IEEE international conference on data mining, pp 1041–
1046

Liu Y, Yu J, Han Y (2018) Understanding the effective receptive field in semantic image segmentation.
Multimed Tools Appl 77(17):22159–22171

Lucas B, ShifazA, Pelletier C, O’Neill L, Zaidi N,Goethals B, Petitjean F,WebbGI (2019) Proximity forest:
an effective and scalable distance-based classifier for time series. DataMinKnowlDisc 33(3):607–635

Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effective receptive field in deep convolutional
neural networks. In: Advances in neural information processing systems, pp 4898–4906

Marteau P (2009) Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans
Pattern Anal Mach Intell 31(2):306–318

Pelletier C, Webb GI, Petitjean F (2019) Temporal convolutional neural network for the classification of
satellite image time series. Remote Sens 11(5):523

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M,
Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vision
115(3):211–252

Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Advances in neural infor-
mation processing systems, pp 3856–3866

Scardapane S, Wang D (2017) Randomness in neural networks: an overview. Wiley Interdiscip Rev Data
Min Knowl Discov 7(2):e1200

Schäfer P (2015a) The boss is concerned with time series classification in the presence of noise. Data Min
Knowl Disc 29(6):1505–1530

Schäfer P (2015b) Scalable time series classification. Data Min Knowl Discov, pp 1–26
Schäfer P, Leser U (2017) Fast and accurate time series classification with WEASEL. In: Proceedings of

the 2017 ACM on conference on information and knowledge management, ACM, pp 637–646
Stefan A, Athitsos V, Das G (2013) The move-split-merge metric for time series. IEEE Trans Knowl Data

Eng 25(6):1425–1438
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015)

Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 1–9

Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of
residual connections on learning. In: AAAI conference on artificial intelligence

Tan CW,Webb GI, Petitjean F (2017) Indexing and classifying gigabytes of time series under time warping.
In: Proceedings of the 2017 SIAM international conference on data mining, SIAM, pp 282–290

Vlachos M, Hadjieleftheriou M, Gunopulos D, Keogh E (2006) Indexing multidimensional time-series.
VLDB J Int J Very Large Data Bases 15(1):1–20

Wang Z, YanW, Oates T (2017) Time series classification from scratch with deep neural networks: A strong
baseline. In: International joint conference on neural networks, pp 1578–1585

Yi F, Yu Z, Zhuang F, Zhang X, Xiong H (2018) An integrated model for crime prediction using temporal
and spatial factors. In: IEEE international conference on data mining, pp 1386–1391

Yuan Y, Xun G, Ma F, Wang Y, Du N, Jia K, Su L, Zhang A (2018) Muvan: A multi-view attention network
for multivariate temporal data. In: IEEE international conference on data mining, pp 717–726

Zhang C, Tavanapong W, Kijkul G, Wong J, de Groen PC, Oh J (2018) Similarity-based active learning
for image classification under class imbalance. In: IEEE international conference on data mining, pp
1422–1427

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123



1962 H. I. Fawaz et al.

Affiliations

Hassan Ismail Fawaz1 · Benjamin Lucas2 · Germain Forestier1,2 ·
Charlotte Pelletier2,3 · Daniel F. Schmidt2 · Jonathan Weber1 ·
Geoffrey I. Webb2 · Lhassane Idoumghar1 · Pierre-Alain Muller1 ·
François Petitjean2

Benjamin Lucas
benjamin.lucas@monash.edu

Germain Forestier
germain.forestier@uha.fr

Charlotte Pelletier
charlotte.pelletier@univ-ubs.fr

Daniel F. Schmidt
daniel.schmidt@monash.edu

Jonathan Weber
jonathan.weber@uha.fr

Geoffrey I. Webb
geoff.webb@monash.edu

Lhassane Idoumghar
lhassane.idoumghar@uha.fr

Pierre-Alain Muller
pierre-alain.muller@uha.fr

François Petitjean
francois.petitjean@monash.edu

1 Université de Haute-Alsace, IRIMAS UR 7499, 68100 Mulhouse, France

2 Faculty of IT, Monash University, Melbourne, Australia

3 IRISA, UMR CNRS 6074, Université Bretagne Sud, Vannes, France

123

http://orcid.org/0000-0003-1384-5996
http://orcid.org/0000-0002-2021-3076
http://orcid.org/0000-0002-4960-7554
http://orcid.org/0000-0002-3694-4703
http://orcid.org/0000-0001-9963-5169

	InceptionTime: Finding AlexNet for time series classification
	Abstract
	1 Introduction
	2 Related work
	2.1 Time series classification
	2.1.1 Whole series
	2.1.2 Dictionary based
	2.1.3 Shapelets
	2.1.4 Transformation ensembles

	2.2 Deep learning for time series classification

	3 InceptionTime: an accurate and scalable time series classifier
	3.1 Inception Network: a novel architecture for TSC
	3.2 InceptionTime: a neural network ensemble for TSC
	3.3 Receptive field

	4 Experimental setup
	5 Experiments: InceptionTime
	6 Architectural Hyperparameter study
	6.1 Batch size
	6.2 Bottleneck and residual connections
	6.3 Depth
	6.4 Filter length
	6.5 Number of filters
	6.6 Sensitivity analysis

	7 Conclusion
	Acknowledgements
	References




