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• Proofs of results stated in the main text are provided in Appendix A.

• Additional experimental results, including coverage plots, are provided in Appendix B.

• Additional details for all experiments, including specifics on the implementation of the
optimization, are provided in Appendix C.

• The finite-difference IDM algorithm for multivariate-valued evaluations are detailed in
Appendix D.

A Omitted Proofs

A.1 Proof of Theorem 1

Proof. Let ✓0 2 N ⇢ ⇥ be the interior neighborhood where the assumed differentiable hold. Since
✓̂n !p ✓0, we have that P

⇣
✓̂n 2 N

⌘
! 1.

Define Ln(✓) =
Pn

i=1 log f(Zi; ✓) on N . By assumptions of continuity and existence of envelope,
lemma 4.3 of Newey and McFadden [4] guarantees that � 1

nr
2
Ln(✓̂n)!p I(✓0). Since I(✓0) � 0,

we have by continuous mapping that P
⇣
r2

Ln(✓̂n) � 0
⌘
! 1.

Consider the event ✓̂n 2 N and r2
Ln(✓̂n) � 0, which has probability tending to 1. Define

L(�, ✓) = rLn(✓) + �r (✓) on R⇥N . Note that L(0, ✓̂n) = 0 and that the Jacobian of L with
respect to ✓ at (0, ✓̂n) is r2

Ln(✓̂n) � 0. Therefore, there exists ✓̃n(�) with L(�, ✓̃n(�)) = 0 and
@✓̃n
@� (�) = �(r2

Ln(✓̂n(�; )))�1r (✓̂n(�; )) for � 2 (�u, u) for some u > 0. Moreover, since
r2

Ln(✓̂n) � 0 and by continuous derivatives, there is a 0 < u
0  u such that ✓̃n(�) uniquely solves

L(�, ✓) = 0 for � 2 (�u
0
, u

0) and therefore ✓̃n(�) = ✓̂n(�; ) for such �. Finally, chain rule applied
to  (✓̂n(�; )) for � 2 (�u

0
, u

0) gives @ ̂n

@� (�) = r (✓̂n(�; ))> @✓̂n
@� (�).

Applying this at � = 0, we conclude that with probability tending to 1,

nV̂
IIDM
n = r (✓̂n)>

 
� 1

n

nX

i=1

r2 log f(Zi; ✓̂n)

!�1

r (✓̂n).

By continuity,r (✓̂n)!p r (✓0). We have also already shown that� 1
nr

2
Ln(✓̂n)!p I(✓0) � 0.

Therefore, the proof is completed by continuous mapping.

A.2 Proof of Theorem 2

Proof. The assumptions imply that  ̂00
n(0) exists and n

2
 ̂
00
n(0) converges to a constant in probability.

Applying Taylor’s theorem using the Lagrange form of the remainder, we have that, for some random
�̃n 2 [0,�n],

 ̂n(�n) =  ̂n(0) +  ̂
0
n(0)�n +  ̂

00
n(0)�̃2

n.

Rearranging yields
nV̂

FDIDM
n = nV̂

IIDM
n + n ̂

00
n(0)�̃2

n/�n.

By Theorem 1, nV̂
IIDM
n !p V0.

Considering the remainder term, we have
���n ̂00

n(0)�̃2
n/�n

��� 
�n

n

���n2
 ̂
00
n(0)

��� = o(1)Op(1) = op(1),

completing the proof.
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A.3 Proof of Theorem 3

Proof. From the proof of Eq. (7), we know that, with probability tending to 1,
@
@� ✓̂n(�; (j)) = �(r2

Ln(✓̂n(�; (j))))�1r (j)(✓̂n(�; (j))) (from the implicit function argu-
ment) and @

@� 
(i)(✓̂n(�; (j))) = r (i)(✓̂n(�; (j)))> @

@� ✓̂n(�; (j)) (from chain rule argument).
Combining and applying for each entry i, j yields the first statement. The second statement follows
exactly as in Theorem 2 by a Taylor expansion.

A.4 Proof of Theorem 4

Proof. Define ḣ(W ; ✓) as rh(W ; ✓) when it exists and 0 otherwise. Define  ⇤(✓) = E[h(W ; ✓)].
Further define
p(✏) = 1�P

�
On {✓ : k✓ � ✓0k  ✏}, h(W ; ✓) is twice differentiable in ✓ with

��r2
✓h(W ; ✓)

��  L
�
,

so that by assumption p(✏) = o(1). By continuity of probability, p(0) = 0 so that h(W ; ✓) is almost
surely twice boundlessly differentiable at ✓ = ✓0. Thus, r ⇤(✓0) = Eḣ(W ; ✓0) exists.

Consider any sequence ✓ ! ✓0. Then, first by triangle inequality and then by Taylor’s theorem,

E
⇥�� (✓)�  (✓0)�r ⇤(✓0)

>(✓ � ✓0)
��⇤  E

h���h(W ; ✓)� h(W ; ✓0)� ḣ(W ; ✓0)
>(✓ � ✓0)

���
i

 p(k✓ � ✓0k)Lk✓ � ✓0k+
1

2
Mk✓ � ✓0k2

= o(k✓ � ✓0k).

Since k✓ � ✓0k = Op(1/
p

n),

 (✓̂n) =  (✓0) +r ⇤(✓0)
>(✓̂n � ✓0) + op(1/

p
n).

Therefore, by Slutsky’s theorem,
p

n( (✓̂n)�  (✓0)) N (0, r ⇤(✓0)
>

I
�1r ⇤(✓0)).

Then if, hypothetically, we apply FDIDM with the unknown  
⇤(✓) to obtain Ṽ

FDIDM
n =

( ⇤(✓̂n(�; ⇤))�  ⇤(✓̂n))/�, then, by Theorem 2, we have that

 (✓̂n)�  (✓0)q
Ṽ FDIDM

n

 N (0, 1).

To complete the proof, we next argue that V̂
FDIDM
n � Ṽ

FDIDM
n !p 0, that is, the difference

vanishes between doing hypothetical FDIDM with the unknown  ⇤ and actual FDIDM with the
known  . Let ✓0 2 N ⇢ Interior(⇥) denote the interior neighborhood where all desirable dif-
ferentiabilities hold. Our assumptions yield P(✓̂n 2 N , ✓̂n(�; ) 2 N , ✓̂n(�; ⇤) 2 N ) ! 1 and
sup✓2N | (✓)�  ⇤(✓)|!p 0 per lemma 4.3 of Newey and McFadden [4]. Then, on the event that
✓̂n 2 N , ✓̂n(�; ) 2 N , ✓̂n(�; ⇤) 2 N , we have���V̂ FDIDM

n � Ṽ
FDIDM
n

��� = �
�1
��� (✓̂n(�; ))�  (✓̂n)�  ⇤(✓̂n(�; ⇤)) +  

⇤(✓̂n)
���

 2��1 sup
✓2N

| (✓)�  ⇤(✓)|,

yielding the statement.

B Further Experiments
Fig. 6 shows the fitted mean and covariance on a single draw of the quadratic dataset. With the
inputs more dispersed (than the sin example) we see that all methods are in closer agreement. Fig. 7
gives the 95% coverage of the methods as a function of input. The quadratic function has close to
95% coverage across the inputs for all methods. The sin example restricts the set of available inputs
(even on resample) and uses a neural network on a small dataset (N=160), both of which make it
particularly challenging for coverage. There is some agreement among the methods that use the
neural network (IDM and delta method). The GP-Matern52 comprises a different model of the mean
and covariance and is included for reference. All of the methods are at least 20 percentage points
away from the true coverage across the inputs.
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(a) IDM (this paper) (b) Delta Method

(c) GP-Matern52 (d) True sampling uncertainty by simulation

Figure 6: Fits along with uncertainty bounds and estimated prediction-covariance matrix for data
generated from y = 1

10x
2 � 1

2x + 5 + 1
10✏, where ✏ ⇠ N (0, 1)

(a) quadratic task (b) sin task

Figure 7: Coverage of 95% confidence intervals pointwise for prediction at each input.

C Details for Experiments

In this section we provide details for the experimental setup used in the paper.

Stochastic Gradient Finite-Difference IDM The algorithm we propose for combining stochastic
gradient ascent with finite-difference IDM is given in Alg. 2. This algorithm is used in all experiments.
It estimates �-confidence intervals given a stochastic objective L̃ that is an unbiased estimate of the
true objective E[L̃] = L and evaluated each iteration i on a new minibatch of the dataset. The other
inputs are the target evaluation  , scalar width �, learning rate schedule ⌘, sample size S, and desired
confidence �. In practice, we fixed � to be 1% of the training objective at the MLE, though it is also
possible to average the IDM output across variable �.

We use TensorFlow v2.1.0 tensorflow.compat.v1 to compute the gradients of the models in all
experiments [1]. In experiments with a Gaussian process (GP), we applied the GPFlow package and
optimized the marginal likelihood w.r.t. the kernel parameters (type II maximum likelihood) [3].

1D Synthetic Experiments The setup for the synthetic experiments is as follows,

• quadratic: draw 25 data points x ⇠ N (0, 1) and let y = 1
10x

2 � 1
2x + 5 + 1

10✏, where
✏ ⇠ N (0, 1). Use constant learning rate ⌘(·) = 1

100 .
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Algorithm 2: Stochastic gradient finite-difference implicit delta method

Input: Stochastic objective L̃, evaluation  , scalar �, schedule ⌘, sample size S, confidence �
1 Function SG-FDIDM(L̃,  , �, ⌘, S, �):

// randomly initialize parameters
2 ✓̂n ⇠ Uniform(�0.1, 0.1)

// maximize L with stochastic gradient ascent
3 i 0

4 while ✓̂n not converged do
5 ✓̂n  ✓̂n + ⌘(i)r✓L̃i

6 i i + 1
7 end

// collect S samples for estimating  (✓̂n)
8 forall s 2 [0, S) do
9  0,s   (✓̂n)

10 ✓̂n  ✓̂n + ⌘(i)r✓L̃i

11 i i + 1
12 end

// maximize L+ � with stochastic gradient ascent
13 while ✓̂n not converged do
14 ✓̂n  ✓̂n + ⌘(i)r✓(L̃i + � )
15 i i + 1
16 end

// collect S samples for estimating  (✓̂n(�))
17 forall s 2 [0, S) do
18  �,s   (✓̂n)

19 ✓̂n  ✓̂n + ⌘(i)r✓(L̃i + � )
20 i i + 1
21 end

// take average of samples
22  ̄0  1

S

P
s2[0,S)  0,s

23  ̄�  1
S

P
s2[0,S)  �,s

24 return  ̄0 ± ��1((1 + �)/2)
q

1
� ( ̄� �  ̄0) // confidence interval for  (✓̂n)

• sin: fix 160 data points evenly spaced in ranges [�1.5,�0.7) and [0.35, 1.15) and let
y = � sin(3x� 3

10 ) + 1
10✏, where ✏ ⇠ N (0, 1). Use constant learning rate ⌘(·) = 1

200 for
MLE objective and 1

2000 for  -regularized objective.

In each case, the objective is evaluated over the entire dataset, such that L̃ = L and S = 1. In
accordance with a univariate Gaussian density over the prediction, the network is trained to minimize
half the sum of squared errors and the resulting interval is divided by the root mean squared error after
convergence. The visualized covariance matrices were projecting to ensure positive semi-definiteness.
This was done by averaging the matrix with its transpose, finding the eigendecomposition of the
resulting matrix, then reconstructing the matrix with only the eigenvectors corresponding to positive
eigenvalues.

Benchmark Classification Experiments For all classification datasets, the stochastic objective
L̃ is defined over minibatches of size B = 128. L̃i is selected by stepping repeatedly through the
randomly shuffled dataset in blocks of size B. RMSProp with an initial learning rate of 0.01 is used
for optimization.7  is evaluated over a held-out validation dataset, a randomly selected 20% subset
of the data for the benchmarks except mnist which is evaluated on the standard 10k test split of the
60k-10k partition.

7http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

4

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


Algorithm 3: Multivariate finite-difference implicit delta method
Input: Learning objective L, multivariate evaluation  , scalar �

1 Function MV-FDIDM(L,  , �):
2 ✓̂n  arg max✓ L(✓) // optimize learning objective
3 K  dim( (✓))
4 forall k = 1, . . . , K do
5 ✓̂

(k)
n (�) arg max✓ L(✓) + � k(✓) // optimize  k-regularized objective

6 end
7 return

h
1
� ( j(✓̂

(k)
n (�))�  j(✓̂n))

i

j=1:K,k=1:K
// K ⇥K covariance matrix of  ̂n

KL Down-Weighting Experiment We use the standard 60k mnist train dataset.  is defined as
the total negative reconstruction loss on a random 1k subset of the training data. The Adam [2]
optimizer is applied to the (possibly) regularized VAE objective with initial learning rate 0.001. The
experiment adapted the VAE implementation in TensorFlow available at https://github.com/
wiseodd/generative-models.

D Finite-Difference IDM for Multivariate  
In this section we present the multivariate algorithm for finite-difference IDM (FDIDM). In Alg. 3, a
multivariate evaluation function  is taken as input, along with a learning objective L and scalar width
� (as in the univariate case). The algorithm optimizes the original MLE objective, then optimizes K

regularized MLE objectives, each with a different dimension of  . To obtain the estimated K ⇥K

covariance matrix ⌃̂ of  , finite differences are calculated by crossing the output dimension of  
corresponding to the row of ⌃̂ with the optimized  -regularized objective corresponding to the
column of ⌃̂.
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