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A Preliminary

A.1 Explanation of Figure 2(c): MAG

Table 1: Detailed explanation of edges in the MAG

Edge in the MAG Inducing path in the full time DAG

A(t1) → A(t3) A(t1) → A(t2) → A(t3)

A(t1) →M(t3)
A(t1) → A(t2) →M(t3)
A(t1) →M(t2) →M(t3)

A(t1) → B(t3) A(t1) →M(t2) → B(t3)

M(t1) →M(t3) M(t1) →M(t2) →M(t3)

M(t1) → B(t3)
M(t1) →M(t2) → B(t3)
M(t1) → B(t2) → B(t3)

B(t1) → B(t3) B(t1) → B(t2) → B(t3)

A(t3) ↔M(t3) A(t3) ← A(t2) →M(t3)

M(t3) ↔ B(t3) M(t3) ←M(t2) → B(t3)

A.2 Proof of Remark 2.5: Edge orientations in the MAG

Remark 2.5.In the MAG, the directed edge A → B means A is the ancestor of B. The bidirected
edge A↔ B means there is an unobserved confounder U between A and B.

Proof. Since the meaning of the directed edge is directly induced from the definition, we focus on
explaining the bidirected edge.

Specifically, A ↔ B means there is an inducing path p relative to L between A and B. Since
A /∈ An(B) and B /∈ An(A), the inducing path p must contains non-mediators, i.e., colliders or
confounders. Suppose that there are r confounders on p, since between every two confounders there is
a collider, the number of colliders on p is r−1. Denote the confounders on p as U1, ..., Ur, the colliders
as C1, ...,Cr−1, we have p = A ←⋯← U1 →⋯→ C1 ←⋯← ⋯ →⋯→ Ch−1 ←⋯← Uh →⋯→ B.
According to the definition of inducing path, each collider Ci on p is the ancestor of either A or B.
Based on this, the following algorithm is assured to find a latent confounder between A and B.

Algorithm 1: Find the latent confounder
1 for i = 1, ..., r − 1 do
2 if Ci ∈An(B) then
3 return Ui ; /* A←⋯← Ci−1 ←⋯← Ui →⋯→ Ci →⋯→ B */
4 end
5 end
6 return Ur ; /* A←⋯← Cr−1 ←⋯← Ur →⋯→ B */
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B Structural identifiability

B.1 Proof of Proposition 3.1: Identifiability of the MAG

Proposition 3.1. Assuming model (1) and Assumption 2.2, then the MAG over the observed variable
set O is identifiable, i.e., its skeleton and edge orientations can be uniquely derived from the joint
distribution P(O).
To prove Proposition 3.1, we first introduce the following lemma, which studies the property of the
path between a vertex at t and a vertex at t + τ (τ ≥ 0).

Lemma B.1. Suppose that there is a path between A(t),B(t + τ) (τ ≥ 0) denoted as p =
A(t), V1, ..., Vr,B(t + τ), if ∃Vi on p such that time(Vi) ≥ t + τ , then there is a collider on p
at time ≥ t + τ .

Proof. We discuss two possible cases and show that p always contains a collider at time ≥ t + τ .

1. ∀Vi, time(Vi) ≤ t + τ . In this case, there is a vertex Vj on p such that time(Vj) = t + τ .
Consider its adjacent vertices Vj−1, Vj+1 on the path. According to our assumption, we have
time(Vj−1) = time(Vj+1) = t + τ − 1. Hence, according to the causal precedence assumption,
the edges among Vj−1, Vj , Vj+1 are Vj−1(t + τ − 1) → Vj(t + τ) ← Vj+1(t + τ + 1), which means
Vj(t + τ) is a collider on p at time = t + τ .

2. ∃Vi, time(Vi) > t + τ . Let j ∶= argmaxi time(Vi) and t∗ ∶= time(Vj). We have t∗ > t + τ .
Consider the vertices Vj−1, Vj , Vj+1, the edges among them are Vj−1(t

∗
−1) → Vj(t

∗
) ← Vj+1(t

∗
−

1). Hence, Vj(t
∗
) is a collider on p at time > t + τ .

Equipped with Lemma B.1, we now introduce the proof of Proposition 3.1below:

Proof of Proposition 3.1. According to [1], the skeleton of the MAG is identifiable under Assump-
tion 2.2.

The orientation of edges in the MAG is either directed (→) or bi-directed (↔). Since we assume
that the cause must precedes the effect, instantaneous edges in the MAG must be bi-directed. In
the following, we show that lagged edges in the MAG must be directed and cross k time steps, e.g.,
A(t) → B(t + k).

Suppose that A(t1) and B(t2) (t2 > t1) are adjacent in the MAG. We first prove that t2 = t1 + k.
Prove by contradiction. Since A(t1) and B(t2) are adjacent in the MAG, there is an inducing
path p = A(t1), V1, ..., Vr,B(t2) between them in the full time DAG. Suppose that t2 ≠ t1 + k, in
other words, t2 ≥ t1 + 2k. Since the order of the SVAR process is 1, there exist Vi on p such that
time(Vi) = t1 + k, time(Vi+1) = t1 + k + 1. Hence, Vi(t1 + k) is neither latent nor a collider1. As a
result, the path p is not an inducing path, which is a contradiction.

Next, we prove that the edge between A(t),B(t + k) is directed. We prove this by showing that
A(t) ↔ B(t+ k) can not be true. Prove by contradiction. Suppose that we have A(t) ↔ B(t+ k) in
the MAG, then there is an inducing path p = A(t), V1, ..., Vr,B(t + k) between A(t),B(t + k), and
A(t) /∈An(B(t + k))2 in the full time DAG. There are three kinds of possible inducing paths:

1. ∃Vi such that time(Vi) ≥ t + k;

2. ∀Vi, time(Vi) < t + k and time(Vi) > t;

3. ∀Vi, time(Vi) < t + k and ∃Vj such that time(Vj) ≤ t.

In the following, we will show neither of these paths exist, which is a contradiction and shows that
the edge between A(t),B(t + k) is directed.

1Vi(t1 + k) → Vi+1(t1 + k + 1) means Vi(t1 + k) can not be a collider.
2B(t + k) can not be the ancestor of A(t) according to the causal precedence assumption.
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1. ∃Vi such that time(Vi) ≥ t + k. In this case, according to Lemma B.1, there is a collider on p at
time ≥ t+ k. Since the assumed causal precedence, the collider can not be the ancestor of A(t) or
B(t + k + 1). Hence, the path p is not an inducing path.

2. ∀Vi, time(Vi) < t + k and time(Vi) > t. In other words, we have time(Vi) = t + 1, .., t + k − 1.
We show that in this case, we have A(t) ∈An(B(t + k)) in the full time DAG, which contradicts
with A(t) ↔ B(t + k) in the MAG.

Specifically, when k = 2, the path is p = A(t) → V1(t+ 1) → B(t+ 2). Hence, A(t) ∈An(B(t+
k)). When k ≥ 3, consider the first ←← edge along the path3, we have A(t) →⋯→ Vi−1(ti + 1) ←←
Vi(ti) and i ≥ 3. Therefore, Vi−1(ti + 1) is the descendent of A(t) and a collider on p. According
to the definition of the inducing path, Vi−1(ti + 1) is the ancestor of B(t + k), which means
A(t) ∈An(B(t + k)).

3. ∀Vi, time(Vi) < t + k and ∃Vj such that time(Vj) ≤ t. In this case, we further consider two
possibilities,

a. ∀Vi, t ≤ time(Vi) < t + k. In this case, there is a vertex Vj on p such that time(Vj) = t and
we have Vj−1(t+ 1) ← Vj(t) → Vj+1(t+ 1). Therefore, Vj(t) is neither a latent variable nor
a collider, which means p is not an inducing path.

b. ∀Vi, time(Vi) < t + k and ∃Vi such that time(Vi) < t. In this case, we have p =
A(t), ..., Vi(t − τ), ...,B(t + k) (τ > 0). As a result,there is a vertex Vj on p between
Vi(t − τ) and B(t + k) such that time(Vj) = t and time(Vj+1 = t + 1. Therefore, Vj(t) is
neither a latent variable nor a collider, which means p is not an inducing path.

To conclude, we have shown that if there is an inducing path between A(t),B(t + k), then A(t) ∈
An(B(t + k)), which means all lagged edges in the MAG are directed ones.

B.2 Proof of Proposition 3.3: MAG to summary DAG

Proposition 3.3.If there are A(t) → B(t + k) and A(t + k) ↔ B(t + k) in the MAG, then, in the
summary DAG, there is either

1. A→ B,

2. a directed path from A to B with length l ≤ k − 2, or

3. a directed path from A to B with length l = k − 1 and a confounding structure between them
with lengths (r ≤ k − 2, q ≤ k − 2).

Proof. 1. We first show that If there is A→ B in the summary DAG, then, there are A(t) → B(t+k)
and A(t + k) ↔ B(t + k) in the MAG:

Suppose that there is A → B in the summary DAG. Then, there is a directed inducing path
p1 = A(t) → A(t + 1) →⋯→ A(t + k − 1) → B(t + k) from A(t) to B(t + k) in the full time
DAG. Thus, we have A(t) → B(t + k) in the MAG.

Besides, there is an inducing path p2 = A(t+ k) ← A(t+ k − 1) → B(t+ k) in the full time DAG,
which means we have A(t + k) ↔ B(t + k) in the MAG.

2. We then show that if there is A(t) → B(t + k) in the MAG, then, there is a directed path from A
to B with length 0 ≤ l ≤ k − 1 (a directed path with l = 0 means A→ B) in the summary DAG:

Suppose that there is A(t) → B(t + k) in the MAG. Then, there is a directed path A(t) →
V1(t+ 1) →⋯→ Vk−1(t+ k − 1) → B(t+ k) in the full time DAG. Denote the number of Vi such
that Vi = A as r, then, we have 0 ≤ r ≤ k − 1. Hence, in the summary DAG, there is a directed
path from A to B with length l = k − r − 1 and we have 0 ≤ l ≤ k − 1.

3. We finally show that if there is A(t + k) ↔ B(t + k) in the MAG, then, in the summary DAG, at
least one of the following structures exists:

3If all edges among the path are→, then A(t) ∈An(B(t + k)).
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a. A directed path4 p between A and B of length 0 ≤ l ≤ k − 2 (a directed path with l = 0 means
A→ B);

b. A confounding structure c between A and B of length (r ≤ k − 2, q ≤ k − 2).

Suppose that there is A(t + k) ↔ B(t + k) in the MAG, we will show that there is a latent
confounder U between A(t + k) and B(t + k) such that t + 1 ≤ time(U) ≤ t + k − 1.

In this regard, if U = A or U = B, there is a directed path between A and B with length
0 ≤ l ≤ k − 2; Otherwise when U ≠ A and U ≠ B, there is a confounding structure between A and
B with length (r ≤ k − 2, q ≤ k − 2).

In the following, we prove that there is a latent confounder U between A(t + k) and B(t + k)
such that t + 1 ≤ time(U) ≤ t + k − 1. Prove by contradiction. Suppose that time(U) ≤ t or
time(U) ≥ t + k. If time(U) ≤ t, then on the directed inducing path from U to A, there is a
vertex at time t, which means the path can not be an inducing path. If time(U) ≥ t + k, then there
is a collider on the inducing path between U and A according to Lemma B.1, which means the
path is not directed and U is not a latent confounder. Hence, the time of the latent confounder U
is between t + 1 and t + k − 1.

To conclude, combining the results in 2. and 3., we prove the proposition.

B.3 Proof of Theorem 3.5: Identifiability of the summary DAG

For two vertex A,B, let the vertex set M contain A and any Mi ≠ B such that A(t) →Mi(t + k)
in the MAG and Mi is not B’s descendant5. Let the vertex set S contains any Si ≠ A such that
Si(t) → B(t + k) or Si(t) →Mj(t + k) for some Mj ∈M in the MAG.

Theorem 3.5. Assuming model (1), Assumption 2.2, and Assumptions 2.6,2.7,2.11, then the summary
DAG is identifiable. Specifically,

1. There is A→ B in the summary DAG iff there are A(t) → B(t + k),A(t + k) ↔ B(t + k) in
the MAG, and the set M(t + 1) ∪ S(t) is not sufficient to d-separate A(t),B(t + k) in the full
time DAG.

2. The condition “the set M(t+ 1) ∪S(t) is not sufficient to d-separate A(t),B(t+ k) in the full
time DAG” can be tested by the proxy variable M(t + k) of the unobserved set M(t + 1).

Proof. 1. ⇒. Suppose that there is A→ B in the summary DAG. According to Proposition 3.3, we
have A(t) → B(t + k) and A(t + k) ↔ B(t + k) in the MAG. In addition, in the full time DAG,
there is a directed path p = A(t) → B(t + 1) →⋯→ B(t + k) from A(t) to B(t + k), which is
not d-separated by M(t + 1) ∪ S(t) (because B /∈M).

⇐. Suppose that there are A(t) → B(t + k) and A(t + k) ↔ B(t + k) in the MAG. According to
Proposition 3.3, at least one of the following structures exists:

a. A→ B;
b. A directed path pAB from A to B of length 0 < l ≤ k − 2;
c. A directed path pAB from A to B of length l = k − 1 and a confounding structure cAB

between A and B of length (r ≤ k − 2, q ≤ k − 2).

In the following, we show that if the set M(t+1)∪S(t) is not sufficient to d-separate A(t),B(t+k)
in the full time DAG, A→ B must exist in the summary DAG. We prove this by its contrapositive
statement, i.e., if A→ B does not exist, the set M(t + 1) ∪ S(t) is sufficient to d-separate A(t)
and B(t + k).

Consider the path between A(t) and B(t + k) in the full time DAG p = A(t), V1, ..., Vl,B(t + k).
There are three possible cases:

a. ∃Vi, time(Vi) ≥ t + k;
b. ∀Vi, time(Vi) < t + k and ∃Vj such that time(Vj) ≤ t;

4The path can be from A to B or from B to A.
5This can be justified from the MAG. Specifically, if Mi is the descendant of B, then there is B(t) →

V1(t + k), V1(t) → V2(t + k), ..., Vl(t) →Mi(t + k) in the MAG.
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𝐴(𝑡) 𝐵(𝑡 + 𝑘)

𝐌(𝑡 + 1) 𝐌(𝑡 + 𝑘)

Figure 1: Causal graph over A(t),B(t + k),M(t + 1),M(t + k).

c. ∀Vi, t < time(Vi) < t + k.

Next, we will show that if A→ B does not exist, the set M(t + 1) ∪ S(t) can d-separate all these
three kinds of paths.

a. For the path that ∃Vi, time(Vi) ≥ t + k. According to Lemma B.1, there is a collider at
time ≥ t+ k. Because the collider and its descendants are not in M(t+ 1) ∪S(t), the path is
d-separated.

b. For the path that ∀Vi, time(Vi) < t + k and ∃Vj such that time(Vj) ≤ t. There is a vertex
Vj on the path such that Vj(t) → Vj+1(t + 1) → Vj+2(t + 2) →⋯

6 If the path from Vj(t) to
B(t + k) is a directed path, we have Vj ∈ S and the path is d-separated. Otherwise, there
is a collider on the path at time ≥ t + 2. Neither the collider nor its descendants are in
M(t + 1) ∪ S(t), the path is also d-separated.

c. For the path that ∀Vi, t < time(Vi) < t + k. We have A(t) → V1(t + 1) → V2(t + 2) →⋯. If
the path from V1(t+ 1) to B(t+ k) is a directed one, V1 ∈M

7. Otherwise, there is a collider
on the path at time ≥ t + 2. Neither the collider nor its descendants are in M(t + 1) ∪ S(t),
the path is also d-separated.

2. In the following, we show that the condition “the set M(t+1)∪S(t) is not sufficient to d-separate
A(t),B(t+k) in the full time DAG” can be justified by testing A(t) ⊥⊥ B(t+k)∣M(t+1)∪S(t)
with proxy variables.

a. We first explain that A(t),B(t + k),M(t + 1),M(t + k) have the causal graph shown in
Fig. 1.

• A(t) →M(t + 1). By definition, A is the ancestor of vertices in M.
• M(t + 1) →M(t + k). By Assumption 2.10the self causation edge always exists.
• M(t + 1) → B(t + k). By definition, B is not the ancestor of any vertex in M.
• M(t + 1) ↔ B(t + 1). According to Proposition 3.1, the instantaneous edge must be

bi-directed.
Indeed, the directed edge M(t+1) → B(t+k) and the bi-directed edge M(t+k) ↔ B(t+k)
may not exist. However, according to the theory of single proxy causal discovery, as long as
we have A(t) ⊥⊥M(t + k)∣M(t + 1),S(t) (which will be proved in the following), we can
test whether A(t) → B(t + k) with the proxy variable M(t + k).

b. We next show that A(t) ⊥⊥ M(t + k)∣M(t + 1),S(t), i.e., M(t + k) can act as a legal
proxy variable of M(t + 1). We prove this by showing that all path between A(t) to any
Zi(t + k) ∈M(t + k) can be d-separated by M(t + 1) ∪ S(t + 1). Specifically, we consider
two different cases:

• When A /→ B in the summary DAG. To prove this conclusion, again, consider three kinds
of paths A(t), V1, ..., Vl, Zi(t + k) between A(t) and Zi(t + k),
i. For the path that ∃Vi, time(Vi) ≥ t + k. It must contain a collider at time ≥ t + k.

Hence, neither the collider nor its descendant is in M(t + 1) ∪ S(t) and the path is
d-separated.

ii. For the path that ∀Vi, time(Vi) < t + k and ∃Vj such that time(Vj) ≤ t. Then, there
is a vertex Vj on the path such that Vj(t) → Vj+1(t + 1) → Vj+2(t + 2) →⋯. If the
path between Vj(t) and Zi(t+ k) is a directed one, then we have Vj(t) ∈ S(t) and the
path is d-separated. Otherwise, there is a collider on the path between Vj+2(t + 2) and

6Strictly, when k = 2, Vj+2 is B(t + 2).
7A(t) → V1(t+ 1) means we have A(t) → V1(t+ k) in the MAG. V1 is the ancestor of B, so V1 /∈De(B).

Hence, Vi ∈M.
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Zi(t + k). Thus, neither the collider nor its descendant is in M(t + 1) ∪ S(t) and the
path is also d-separated.

iii. For the path that ∀Vi, t < time(Vi) < t + k. In this case, the path must be A(t) →
V1(t + 1) → V2(t + 2) →⋯. If the path between V1(t1) and Zi(t + k) is a directed
one, we have V1(t + 1) ∈M(t + 1), because of the following facts: V1 ≠ B, A→ V1,
V1 /∈De(B)8. As a result, the path is d-separated. Otherwise, when the path between
V1(t1) and Zi(t+k) is not a directed one, there is a collider on the path at time ≥ t+2.
Therefore, neither the collider nor its descendant is in M(t + 1) ∪ S(t) and the path is
d-separated.

• When A → B in the summary DAG. In this case, except for the above analysis, we
need to extra show that every path p = A(t) → B(t + 1), V1, ..., Vl, Zi(t + k) can be
d-separated by M(t + 1) ∪ S(t). Specifically, since we define Zi /∈De(B), p can not be
a directed path. Therefore, starting from B(t+1) along the path, at least one of the edges
is←. As a result, there is a collider on p which is either B(t + 1) itself or at time ≥ t + 2.
For both cases, neither the collider nor its descendant is in M(t + 1) ∪ S(t) and the path
is d-separated.

8If V1 ∈De(B), since V1 is the ancestor of Zi, we have Zi ∈De(B), which contradicts with the definition
of the vertex set M.
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C Experiment

C.1 Extra results of Section 5.1: Synthetic study

Graph scale

Graph density

Figure 2: Performance of our method under different graph scales (d denotes the variable number)
and densities (prob. denotes the edge probability in the Erdos-Renyi model).

C.2 Extra results of Section 5.2: Discovering causal pathways in Alzheimer’s disease

frontal

parietal

temporal

cingulum

occipital hippocampus

amygdalainsula

Figure 3: Summary DAG over eight meta-regions in AD recovered by the NG-EM [2] baseline.
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Figure 4: Summary DAG in AD recovered by the NG-EM [2] baseline.
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Figure 5: Summary DAG in AD recovered by the Dynotears [3] baseline.

9



Table 2: Indices for brain regions partition in Fig. 7.

AAL Index Abbreviation Full name AAL Index Abbreviation Full name

1 PL Precentral L 2 PR Precentral R
3 FSL Frontal Sup L 4 FSR Frontal Sup R
5 FSOL Frontal Sup Orb L 6 FSOR Frontal Sup Orb R
7 FML Frontal Mid L 8 FMR Frontal Mid R
9 FMOL Frontal Mid Orb L1 10 FMOR Frontal Mid Orb R1
11 FIOL Frontal Inf Oper L 12 FIOR Frontal Inf Oper R
13 FITL Frontal Inf Tri L 14 FITR Frontal Inf Tri R
15 FIpL Frontal Inf Orb L 16 FIpR Frontal Inf Orb R
17 ROL Rolandic Oper L 18 ROR Rolandic Oper R
19 SMAL Supp Motor Area L 20 SMAR Supp Motor Area R
21 OL Olfactory L 22 OR Olfactory R

23 FSML Frontal Sup Medial L 24 FSMR Frontal Sup Medial R
25 FMrL Frontal Mid Orb L2 26 FMrR Frontal Mid Orb R2
27 RL Rectus L 28 RR Rectus R
29 IL Insula L 30 IR Insula R
31 CAL Cingulum Ant L 32 CAR Cingulum Ant R
33 CML Cingulum Mid L 34 CMR Cingulum Mid R
35 CPL Cingulum Post L 36 CPR Cingulum Post R
37 HL Hippocampus L 38 HR Hippocampus R
39 ParL ParaHippocampal L 40 ParR ParaHippocampal R
41 AL Amygdala L 42 AR Amygdala R
43 CaL Calcarine L 44 CaR Calcarine R
45 CuL Cuneus L 46 CuR Cuneus R

47 LL Lingual L 48 LR Lingual R
49 OSL Occipital Sup L 50 OSR Occipital Sup R
51 OML Occipital Mid L 52 OMR Occipital Mid R
53 OIL Occipital Inf L 54 OIR Occipital Inf R
55 FL Fusiform L 56 FR Fusiform R
57 PosL Postcentral L 58 PosR Postcentral R
59 PSL Parietal Sup L 60 PSR Parietal Sup R
61 PIL Parietal Inf L 62 PIR Parietal Inf R
63 SL SupraMarginal L 64 SR SupraMarginal R
65 AnL Angular L 66 AnR Angular R
67 PreL Precuneus L 68 PreR Precuneus R
69 PLL Paracentral Lobule L 70 PLR Paracentral Lobule R

71 CL Caudate L 72 CR Caudate R
73 PutL Putamen L 74 PutR Putamen R
75 PalL Pallidum L 76 PalR Pallidum R
77 TL Thalamus L 78 TR Thalamus R
79 HesL Heschl L 80 HesR Heschl R
81 TSL Temporal Sup L 82 TSR Temporal Sup R
83 TPSL Temporal Pole Sup L 84 TPSR Temporal Pole Sup R
85 TML Temporal Mid L 86 TMR Temporal Mid R
87 TPML Temporal Pole Mid L 88 TPMR Temporal Pole Mid R
89 TIL Temporal Inf L 90 TIR Temporal Inf R
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