
VPP: Efficient Conditional 3D Generation via
Voxel-Point Progressive Representation

Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

A Implementation Details1

A.1 Experimental Details2

Training Details We use ShapeNetCore from ShapeNet [1] as the training dataset. ShapeNet is a3

clean set of 3D CAD object models with rich annotations, including 51K unique 3D models from4

55 common object categories. For the acquisition of multi-modal data, we follow ReCon [8] for5

multi-view rendering and utilize BLIP [4] based on the rendered images to obtain textual data. In6

Table 1, we show the training hyperparameters and model architecture information of each part of7

our VPP.

Config 3D VQGAN Voxel Generator Grid Smoother Point Upsampler

Training Parameters
Optimizer Adam AdamW AdamW AdamW
Learning rate 1e-4 1e-3 1e-3 1e-3
Weight decay 1e-4 5e-2 5e-2 5e-2
Training epochs 300 100 100 300
Learning rate scheduler cosine cosine cosine cosine
Batch size 128 128 128 128
Drop path rate - 0.1 0.1 0.1
Input point size 8192 8192 8192 1024

Model Architecture
Backbone CNN Transformer Transformer Transformer
Layers 6 12 4 6
Hidden size 384 384 64 384
Heads - 6 4 6
Voxel resolution 24 24 24 24
Point patch size - - - 32

GPU device NVIDIA A100 NVIDIA A100 NVIDIA A100 NVIDIA A100

Table 1: Training recipes for 3D VQGAN, Voxel Generator, Grid Smoother and Point Upsampler.

8

Downstream Tasks Details Following Point-E [6], we use pre-trained PointNet++ as a classifier in9

all ACC, FID, and IS evaluations to extract the features and calculate the accuracy of generated point10

clouds. In point cloud generation and editing, we employ 8 or 4 steps for a parallel generation. The11

generation task utilizes initial voxel codebooks composed entirely of [MASK] tokens. In editing, we12
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Figure 1: The training overview of 3D VQGAN. We introduce the occupancy rate loss to have a
better reconstruction of the voxel.

extract VQGAN features from the original point cloud to initialize the voxel codebooks. As for the13

transfer classification task on ScanObjectNN [10] and ModelNet40 [14], we fully follow the previous14

work [2, 7] configuration and trained 300 epochs with the AdamW optimizer, and used the voting15

strategy in testing.16

A.2 Implementation Details of 3D VQGAN17

We show the detailed training overview of 3D VQGAN in Figure 1. Fllowing the tranditional training18

of VQGAN [3], we use L1 loss to supervise the reconstruction of voxel, and feed the reconstructed19

voxel into the discriminator to ensure the generated authenticity by GAN loss. Besides the L1 loss and20

GAN loss, we also introduce the occupancy rate loss to make the occupancy rate of the reconstructed21

voxel grid similar to the ground truth, so as to obtain a better reconstruction of the voxel.22

B Additional Experiments23

We conduct more experiments to further demonstrate the generation quality and universality of VPP.24

Including diversity & specific text-conditional generation, point-based mesh reconstruction, and25

few-shot transfer classification.26

B.1 Diversity & Specific Text-Conditional Generation27

We show the diversity qualitative results of VPP on text-conditional 3D generation in Figure 2 (a).28

It can observe that VPP can generate a broad category of shapes with rich diversity while remain29

faithful to the provided text descriptions. Meanwhile, we present the qualitative results of VPP on30

more specific text-conditional 3D generation in Figure 2 (b). Notably, VPP can generate high-fidelity31

shapes that well react to very specific text descriptions, like ’a round chair with arms’, ’a32

round table with four legs’ and ’an old-style propeller aircraft’, etc.33

B.2 Point-Based Mesh Reconstruction34

Besides the representation of point clouds, we also show the common mesh representation of35

generated shapes to demonstrate the high generation quality of VPP. We use DMTet [9] to reconstruct36

the mesh from the generated point clouds, where the reconstructed examples are presented in Figure 3.37

It is observed that the reconstructed mesh is still high-quality with fine geometric details, which38

further proves that VPP not only has high fidelity generation but also supports the output of mesh39

representation.40

B.3 Few-Shot Transfer Classification41

We conduct few-shot experiments on the ModelNet40 [14] dataset, and the results are shown in42

Table 2. In the self-supervised benchmark without the use of additional modality data, VPP achieves43

excellent performance compared to previous works.44

2



“an ak47” “a round chair 
with arms”

“a rectangular table 
with two legs”

“a sail boat”

“a boat”

“a porsche 911”

“a round table 
with four legs”

“a round table 
with five legs”

“a square chair”

“an aircraft during 
World War II”

“an old-style 
propeller aircraft”

“a cargo van”

“an airplane”

“a taxi car”“a bench”

(a) Diversity Text-Conditional Generation (b) Specific Text-Conditional Generation

Figure 2: (a) Diversity qualitative results of VPP on text-conditional 3D generation. (b) Qualitative
results of VPP on more specific text-conditional 3D generation. VPP can generate a broad category
of shapes with rich diversity and high fidelity, while remain faithful to the provided text descriptions.
Besides, VPP can react to very specific text descriptions, like "a round chair with arms".

“a taxi car” “a sofa chair”
“a round table 
with four legs”

“a sail boat”

Figure 3: Examples of reconstructed mesh from the generated point clouds. VPP not only has
high-fidelity generation but also supports the output of mesh representation.
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Method
5-way 10-way

10-shot 20-shot 10-shot 20-shot

Supervised Learning Only

DGCNN [13] 31.6 ± 2.8 40.8 ± 4.6 19.9 ± 2.1 16.9 ± 1.5
OcCo [12] 90.6 ± 2.8 92.5 ± 1.9 82.9 ± 1.3 86.5 ± 2.2

with Self-Supervised Representation Learning

Transformer [11] 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3
OcCo [12] 94.0 ± 3.6 95.9 ± 2.3 89.4 ± 5.1 92.4 ± 4.6
Point-BERT [15] 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
MaskPoint [5] 95.0 ± 3.7 97.2 ± 1.7 91.4 ± 4.0 93.4 ± 3.5
Point-MAE [7] 96.3 ± 2.5 97.8 ± 1.8 92.6 ± 4.1 95.0 ± 3.0
Point-M2AE [16] 96.8 ± 1.8 98.3 ± 1.4 92.3 ± 4.5 95.0 ± 3.0
VPP (ours) 96.9 ± 1.9 98.3 ± 1.5 93.0 ± 4.0 95.4 ± 3.1

Table 2: Few-shot transfer classification results on ModelNet40. Overall accuracy (%) without voting
is reported.

C Limitation and Future Work46

Although, as a generative model, the proposed VPP has achieved the unified model on multiple47

downstream 3D tasks, the current work focuses on some relatively simple tasks. For instance, we48

perform 3D completion task on point cloud upsampling, and the pre-training transfer learning on49

3D classification. It would be more valuable to extend it to more complex 3D applications, e.g.,50

shape completion and 3D pre-training on detection & segmentation. Furthermore, the current model51

is trained with ShapeNet [1], which is still a limited-scale dataset across different categories. It52

would be promising to explore large-scale 3D dataset for training the model to further improve the53

generation quality and capability.54

D Broader Impact55

Conditional 3D generation has the potential to improve the 3D design and assist practitioners56

efficiently to work on content creation. Similarly, we propose VPP with the hope of enhancing better57

creativity and work as an alternative tool for artists to more efficiently design. Besides, conditional58

3D generation methods allow the public to have more convenient access to 3D craft, which can bring59

many benefits to human-AI collaborative application.60
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