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A THEORY

We first present the properties of the exponential family distribution. Then we provide the proof for
Proposition 1.

A.1 EXPONENTIAL FAMILY DISTRIBUTIONS

Definition 2 (Exponential family) A probability distribution belongs to the exponential family if
its density has the following form:

p(x|θ) = Q(x)e<T(x),λ(θ)>

Z(θ)
(15)

where x ∈ X and θ ∈ Θ, T : X → Rk is the sufficient statistic, λ : Θ → Rk is the corresponding
parameter, Q : X → R is the base measure (Lebesgue measure), Z(θ) is the normalizing constant
and < ·, · > stands for the dot product. More precisely, we can refer to equation (15) as conditional
exponential family (Pacchiardi & Dutta, 2022).

Theorem 1 (Universal approximation capability) Let p(x|θ) be a conditional probability density
function. Assume that X and Θ are compact Hausdorff spaces, and that p(x|θ) > 0 almost surely
∀(x,θ) ∈ X × Θ. Then for each ϵ > 0, there exists (ϕ, k) ∈ Φ × N,ϕ = (T,λ), where k is the
dimension of the feature extractor, such that sup(x,θ)∈X×Θ |pθ(x|θ)− p(x|θ)| < ϵ.

Authors in Khemakhem et al. (2020b) provide the above Theorem that shows the universal approxima-
tion capability of conditional exponential family. Specifically, they show that for compact Hausdorff
spaces X and Θ, any conditional probability density p(x|θ) can be approximated arbitrarily well.
Thus, through the consideration of a freely varying k, and general T and λ, the conditional exponen-
tial family is endowed with universal approximation capability over the set of conditional probability
densities. In practice, it is possible to achieve almost perfect approximation by choosing k greater
than the input dimension. However, this result does not take into account the practicality of fitting the
approximation family to data, and increasing k may make it more difficult to fit the data distribution
in real-world scenarios.

A.2 PROOF OF PROPOSITION 1

Proposition 1 Under the assumptions of infinite capacity for E and f , the solution (ϕ∗,γ∗,θ∗) ∈
argminϕ,γ,θL(ϕ,γ,θ) of the loss function (14) guarantees that Ēϕ∗,γ∗(x) is disentangled with
respect to ξ, as defined in Definition 1.

Proof Following the approach in Shen et al. (2022), we give a proof of this proposition. We suppose
that d = m. For ∀ i = 1, 2, ...,m, we consider two cases separately. In the first case, Lsup,i(ϕ,γ) is
cross-entropy loss:

Lsup,i(ϕ,γ) = E(x,y,u)

[
−yilog σ(Ē(x,u)i)− (1− yi)log (1− σ(Ē(x,u)i))

]
= −

∫
q(x,u)p(yi|x,u)[yilog σ(Ē(x,u)i)

+(1− yi)log (1− σ(Ē(x,u)i))]dxdudyi (16)

where P (yi = 1|x,u) = E(yi|x,u), P (yi = 0|x,u) = 1− E(yi|x,u). Let ∂Lsup,i(ϕ,γ)

∂σ(Ē(x,u)i)
= 0, we

know that Ē∗(x,u)i = σ−1(E(yi|x,u)) = σ−1(ξi) can minimize Lsup,i(ϕ,γ).

In the second case, Lsup,i(ϕ,γ) is Mean Squared Error (MSE):

Lsup,i(ϕ,γ) = E(x,y,u)

[
(yi − Ē(x,u)i)2

]
=

∫
q(x,u)p(yi|x,u)(yi − Ē(x,u)i)2dxdudyi (17)

Let ∂Lsup,i(ϕ,γ)

∂σ(Ē(x,u)i)
= 0, we know that Ē∗(x,u)i = E(yi|x,u) = ξi can minimize the Lsup,i(ϕ,γ).

Next, because of the infinite capacity of f and Theorem 1, we know that qϕ∗,γ∗(x, z̃|u) is contained
within the distribution family of pθ(x, z̃|u). Then by minimizing the loss in (14) over θ, we can find
θ∗ such that pθ∗(x, z̃|u) matches qϕ∗,γ∗(x, z̃|u) and thus

−ELBO(ϕ∗, γ∗, θ∗) = DKL(qϕ∗,γ∗(x, z̃|u)∥pθ∗(x, z̃|u)) + constant (18)
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reaches minimum.

Therefore, by minimizing the loss function (14) of CauF-VAE, we can get the solution, that is,
Ē∗(x,u)

i
= ri(ξ

i) with ri(ξ
i) = σ−1(ξi) if cross-entropy loss is used, and ri(ξ

i) = ξi if MSE is
used. Here, x denotes random variable.

To sum up, Ēϕ∗,γ∗(x,u) is disentangled with respect to ξ, as defined in Definition 1.

B EXPERIMENTAL DETAILS

We present the main settings used in our experiments. Our experiments on Pendulum utilize one
NVIDIA GeForce RTX 2080ti GPU, while experiments on CelebA use one NVIDIA GeForce RTX
3080 GPU. To train DEAR, we use two NVIDIA GeForce RTX 2080ti GPUs. Due to blind review
requirements, code is currently available only in the supplementary material.

B.1 DATA PREPROCESSING

Pendulum We generate the pendulum dataset using the synthetic simulators mentioned in Shen
et al. (2022) and Yang et al. (2021). For detailed generation procedures, please refer to Appendix F
in Shen et al. (2022) or Appendix C.1.1 in Yang et al. (2021). The pendulum images are resized to
64×64×3 resolution, and the training and testing sets consist of 5847 and 1461 samples, respectively.

CelebA We employ the default training and testing sets in CelebA, with 162770 and 19962 samples,
respectively. We also resize the images to 64×64×3 resolution. We set the values of features that are
−1 to 0.

B.2 EXPERIMENTAL SETUP

Causal Flows Implementation In CauF-VAE, we incorporate causal flows to enhance the model’s
ability to capture causal underlying factors. As discussed in Section 2.2, complex composite functions
can be obtained by composing multiple simple transformations, which is the main mechanism adopted
by flow models. However, in order to preserve the causal relationships between variables in the output
representation and to verify the ability of the causal flows, we only use a single layer of causal flow in
our experiments. As Proposition 1 shows, the mean of the output latent variables from the causal flow
can achieve disentanglement. In practice, finding the exact value of the mean can be challenging, so
we use random sampling to approximate it by drawing N samples. In our experiments, we set N to
be 1. In causal flows, besides the affine transformation introduced in Section 3, other implementation
methods such as integration-based transformers (Wehenkel & Louppe, 2019) can also be used, but
the computational cost for sampling or density estimation needs to be taken into consideration when
modeling.

Conditional prior Implementation Regarding the setting of conditional prior, since it is generally
difficult to directly fit the exponential family of distributions, we use a special form of exponential
distribution, namely the Gaussian distribution in our experiments. For simplicity, we adopt a factorial
distribution, as described in Yang et al. (2021) and Khemakhem et al. (2020a). However, unlike them,
we set the mean and variance as learnable parameters for training, which enhances the flexibility of
the prior distribution.

Supervised loss Implementation For Pendulum, we resize the factors’ labels to [−1, 1] since they
are continuous, and we use MSE as the loss function Lsup. For CelebA, as the factors’ labels are
binary, we convert −1 to 0 and use cross-entropy loss.

Architecture and Hyperparameters The network structures of encoder and decoder are presented
in Table 3. The encoder’s output, i.e., mean and log variance, share parameters except for the final
layer. A single-layer causal flow implemented by an MLP implementation is used for fitting the
posterior distribution, and a causal weight matrix A is added in a manner inspired by Wehenkel &
Louppe (2021). The decoder’s output is resized to generate pixel values for a three-channel color
image. βsup is roughly tuned during our hyperparameter selection process. We train the model using
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the Adam optimizer, and all training parameters are shown in Table 4. Although we cannot guarantee
finding the optimal solution in the experiments, the results still demonstrate the excellent performance
of our model.

Table 3: Architecture for the Encoder and Decoder in CauF-VAE (d = 4 for Pendulum and d = 100
for CelebA).

Encoder Decoder

- Input z̃ ∈ Rd

3×3 conv, MaxPool, 8 SELU, stride 1 FC, 256 SELU
3×3 conv, MaxPool, 16 SELU, stride 1 FC, 16×12×12 SELU
3×3 conv, MaxPool, 32 SELU, stride 1 2×2 conv, 32 SELU, stride 1
3×3 conv, MaxPool, 64 SELU, stride 1 2×2 conv, 64 SELU, stride 1
3×3 conv, MaxPool, 8 SELU, stride 1 2×2 conv, 128 SELU, stride 1

FC 256×2 FC, 3×64×64 Tanh

Table 4: Hyperparameters of CauF-VAE.
Parameters Values (Pendulum) Values (CelebA)
Batch size 128 128
Epoch 801 101
Latent dimension 4 100
σ 0.1667 0.1667
βsup 8 5
β1 0.2 0.2
β2 0.999 0.999
ϵ 1e−8 1e−8
Learning rate of Encoder 5e−5 3e−4
Learning rate of Causal Flow 5e−5 3e−4
Learning rate of A 1e−3 1e−3
Learning rate of Conditional prior 5e−5 3e−4
Learning rate of Decoder 5e−5 3e−4

Experimental setup for baseline models We compare our method with several representative
baseline models for disentanglement in VAE (Locatello et al., 2019a), including vanilla VAE (Kingma
& Welling, 2013), β-VAE (Higgins et al., 2017), β-TCVAE (Chen et al., 2018), and DEAR (Shen
et al., 2022). We use the same conditional prior and loss term with labeled data for each of these
methods as in CauF-VAE, except that DEAR’s prior is SCM prior. Furthermore, apart from models
that specifically choose the architecture of encoder and decoder, we employ identical encoder and
decoder structures for the baselines. The implementations of β-TCVAE and DEAR are separately
referred to publicly available source codes https://github.com/AntixK/PyTorch-VAE
and http://jmlr.org/papers/v23/21-0080.html. The training optimizer of baseline
models is Adam except DEAR, and the parameters are the default parameters. For DEAR, except for
the β1 and β2 parameters in Adam, which are consistent with our model, all other parameters are the
same as in the original paper. We train DEAR for 400 epochs on Pendulum, 100 epochs on CelebA
(smile), and 70 epochs on CelebA (Attractive). All other baseline models are trained for 100 epochs.

We did not compare our results with CausalVAE (Yang et al., 2021) due to several reasons. Firstly, the
latent variable dimension in CausalVAE is equivalent to the number of underlying factors of interest.
However, when applied to real-world datasets like CelebA, it fails to consider all generative factors
of the images. Although there is consistency correlation between latent variables and factors in the
prior, it does not achieve true disentanglement as defined in Definition 1. Secondly, since the decoder
in CausalVAE contains a Mask layer, it is impossible to observe the changes of a single factor in
the reconstructed images when traversing each dimension of the learned representation. Finally, in
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the experimental aspect, the authors used a multi-dimensional latent variable vector to approximate
each concept to ensure good performance of the model. Therefore, the dimensionality setting of our
model’s latent variables cannot be unified with that of CausalVAE.

C ADDITIONAL RESULTS

Samples from interventional distributions In section 6.2, we describe the capability of our model
to perform interventions by generating new images that do not exist in the dataset. Specifically, our
model utilizes causal flows to sample from the interventional distributions, even though the model is
trained on observational data. The steps for intervening on one factor are explained in section 6.2, and
the same applies to intervening on multiple factors. As depicted in Figure 8(a), we intervene on the
values of two factors by fixing gender as female and gradually adjusting the value of receding hairline.
This produces a series of images showing women with a gradually receding hairline. Furthermore, as
shown in Figure 8(b), we intervene on gender and makeup, generating a series of images of men with
gradually applied makeup. These images are not commonly found or even don’t exist in the training
data which highlights the ability of our model to sample from the interventional distributions.

(a) Female gradually with receding hairline

(b) Male gradually with make up

Figure 8: Sample from interventional distributions.

Learning of causal structure CauF-VAE has the potential to learn causal structure between
underlying factors, even without using a SCM. This is helped by the supervised loss term. Here
we present the learning process of the adjacency weight matrix A, whose super-graph is shown in
Figure 9. Figure 9(b) shows the learning process of CelebA (Attractive). If we set a threshold of 0.25,
i.e., considering edges in the causal graph smaller than the threshold as non-existing, we can obtain
Figure 11(e). We observe an almost accurate graph, suggesting that there is potential for further
enhancement in causal discovery through future design.

Examining Causally Disentangled Representation To verify whether our model has obtained
causally disentangled representations, we consider two types of intervention operations: the "traverse"
operation and the "intervention" operation introduced in Section 6.2. We present the experimental
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results of CauF-VAE on CelebA(Attractive) in Figure 12 and the results of baseline models on three
datasets in Figure 13, 14, and 15.

(a) Pendulum (b) CelebA(Attractive)

Figure 9: Super-graph of Pendulum and CelebA(Attractive).

(a) Original A (b) After 20 epochs (c) After 50 epochs (d) After 80 epochs (e) Final A

Figure 10: The learned weighted adjacency matrix A given a super-graph on Pendulum. (a)-(d)
illustrate the changes in A as the training progresses. (e) represents A after edge pruning.

(a) Original A (b) After 5 epochs (c) After 20 epochs (d) After 120 epochs (e) Final A

Figure 11: The learned weighted adjacency matrix A given a super-graph on CelebA(Attractive).
(a)-(d) illustrate the changes in A as the training progresses. (e) represents A after edge pruning.

We also use MIC (Maximal Information Coefficient) and TIC (Total Information Coefficient) (Yang
et al., 2021; Kinney & Atwal, 2014) to measure the strength of association between learned repre-
sentations and ground-truth factors. We use all testing data to calculate MIC and TIC. As shown in
Table 5, bolded values indicate optimal results, and underlined values indicate sub-optimal results.
We can see that CauF-VAE achieves superior performance on the pendulum, while both CauF-VAE
and β-TCVAE show comparable results on CelebA. For CelebA, although β-TCVAE performs
slightly better than CauF-VAE, the improvements over CauF-VAE are marginal (2.6% and 3.01%
for "Attractive" and 1.31% and 0.61% for "Smile" in terms of MIC and TIC, respectively). In
contrast, CauF-VAE outperforms the current state-of-the-art causal disentanglement model DEAR
by 22.03% and 22.68% for "Attractive" and 11.29% and 10.67% for "Smile" in terms of MIC and
TIC. Additionally, compared to β-VAE and VAE, our model’s improvements are more substantial.
Furthermore, our downstream experiments in Table 1 and 2, and qualitative results in Appendix C
all corroborate our model’s superiority. Hence, this reveals that β-TCVAE’s higher MIC and TIC
scores on CelebA lies in its one latent variable containing information from multiple factors, resulting
in high correlations with multiple factors simultaneously, thus cannot achieve causal disentangled
representation learning. This confirms that our learned representations exhibit stronger correlation
with the ground-truth factors than most baseline models, further validating the effectiveness of our
model.
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(a) Traverse of CauF-VAE on CelebA(Attractive) (b) Intervention of CauF-VAE on CelebA(Attractive)

Figure 12: Results of the CauF-VAE model under two types of interventions on CelebA(Atractive).
Each row corresponds to one factor, in the same order as in Figure 2(b). We observe that our model
achieves disentanglement, and when intervening on the causal variables, it affects the effect variables,
while the opposite is not true.

Table 5: MIC and TIC between ground-truth factors and latent variable representations obtained by
different models on three datasets.

Pendulum CelebA(Attractive) CelebA(Smile)
Model MIC TIC MIC TIC MIC TIC

CauF-VAE 93.27 89.90 42.38 42.09 58.53 58.60
DEAR 32.90 30.55 34.73 34.31 52.59 52.95
β-VAE 41.57 35.22 15.61 15.81 33.80 33.65

β-TCVAE 86.18 82.18 43.47 43.36 59.30 58.96
VAE 60.78 55.09 27.40 27.33 35.79 35.70

D REFLECTIONS ON DISENTANGLEMENT METRICS

Numerous disentanglement studies introduce their own metrics for assessing disentanglement, in-
cluding the β-VAE metric (Higgins et al., 2017), the FactorVAE metric (Kim & Mnih, 2018), the
Mutual Information Gap (MIG) (Chen et al., 2018), DCI (Eastwood & Williams, 2018) and more.
For a comprehensive overview and discussion of these metrics, we direct readers to Locatello et al.
(2019a).

Nevertheless, all these metrics are applicable solely in scenarios where the underlying generative
factors are mutually independent; they do not extend to cases where factors exhibit correlation. As an
illustration (Shen et al., 2022), the MIG score gauges the normalized gap in mutual information for
each factor between the highest and second highest coordinates in Ē(x,u). Consider a situation where
factor ξ1 is correlated with ξ2, and a disentangled representation Ē(x,u) is such that it accommodates
one-to-one functions, r1 and r2, leading to Ē1(x,u) = r1(ξ1) and Ē2(x,u) = r1(ξ2). Consequently,
both the mutual information of ξ1 with the highest coordinate Ē1(x,u) and the second highest
coordinate Ē2(x,u) would be substantial, resulting in a minimal difference between them. As a
consequence, a disentangled representation in this context would not yield the anticipated high MIG
score.

So far, the literature on metrics for causal disentanglement is limited and each has its shortcomings.
Shen et al. (2022) proposed a metric based on the FactorVAE metric. Compared to metrics like IRS
(Suter et al., 2019) and (UC and GC) (Reddy et al., 2022) that apply only under the assumption of
conditional independence of generative factors, this metric is the only suitable one for our model.
However, Kim et al. (2019) showed this metric does not work well. The FactorVAE metric may only
be partially indicative of the underlying disentanglement: all models attain a perfect scores, which
is also confirmed in our experiments. The results revealed in our supplementary experiments show
that the FactorVAE scores (Shen et al., 2022) obtained on CauF-VAE, VAE, β-TCVAE, β-VAE, and
DEAR were 0.50, 0.50, 0.50, 0.50, and 0.28, respectively. Such outcomes indicate that, at the very
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least, our model is superior to the latest models DEAR in the causal disentangled representation
learning. However, it’s evident that the shortcomings of this metric.

Therefore, for quantitative evaluation, we chose to conduct experiments solely on downstream tasks
and measured the performance using the MIC and TIC metrics, thereby demonstrating the superiority
of our model.
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(a) DEAR

(b) β-VAE

(c) β-TCVAE

(d) VAE
Figure 13: Traverse results of four baseline models on Pendulum. We observe that changing one
factor may result in changes in multiple factors, or no changes in any factor, such as the shadow
length in the β-TCVAE. Therefore, their representations are all entangled on Pendulum.
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(a) DEAR (b) β-VAE

(c) β-TCVAE (d) VAE
Figure 14: Traverse results of four baseline models on CelebA(Attractive). We observe that the
representations learned by the four models are still entangled, and some latent variables may not even
capture the corresponding factor, as there is no change in the corresponding factor when traversing its
value, such as the smile in the β-TCVAE.

(a) DEAR (b) β-VAE

(c) β-TCVAE (d) VAE
Figure 15: Traverse results of four baseline models on CelebA(Smile). The representations learned
by the four models are entangled. When the causal variable is changed, not only itself changes, but
also the effect variable changes, such as smile and mouth open in these four figures.
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