

TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second Noah Hollmann*, Samuel Müller*, Katharina Eggensperger and Frank Hutter

* Equal contribution

Neural Networks for Small Tabular Datasets

Premises

- Neural Networks excel for large amounts of data or given effective inductive biases (such as CNNs for images), but:
 - Overfit on small datasets unless regularized properly (e.g., [1]) **.** For tabular data identifying effective inductive biases is challenging
- The long tail of Machine learning datasets: Many real-world datasets are small, but most ML research datasets are large (e.g., [2])

Idea: Model inductive biases and regularize using Bayesian priors. Bayesian inference is enabled through Prior Fitted Networks.

[1] NeurIPS 2021: Well-tuned Simple Nets Excel on Tabular Datasets [2] Nature Neuroscience: Big data from small data: data-sharing in the 'long tail' of neuroscience

All datasets sorted by dataset size

Bayesian Supervised Learning

Feature

Prior p(t): With latents t: parameterizing functions

Plot based on scitkit-learn example by Jan Hendrik Metzen, Guillaume Lemaitre Feature

distributuion:

Intractable exactly!

Prior-Data Fitted Networks (PFNs)

A Permutation-Invariant Transformer

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Transformers Can Do Bayesian Inference. In International Conference on Learning Representations, 2022.

Prior-Data Fitted Networks (PFNs) Prior-fitting

 $\begin{aligned} \text{Sample prior datasets } D^{(i)} \sim p(\mathcal{D}) \\ D^{(1)} &= D^{(1)}_{train} \cup \{(x^{(1)}_{test}, y^{(1)}_{test})\} \\ &\vdots \\ D^{(K)} &= D^{(K)}_{train} \cup \{(x^{(K)}_{test}, y^{(K)}_{test})\} \end{aligned}$

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. **Transformers Can Do Bayesian Inference**. In International Conference on Learning Representations, 2022.

Train the PFN by minimizing $-\sum_{i=1}^{K} \log q_{\theta}(y_{test}^{(i)} | x_{test}^{(i)}, D_{train}^{(i)})$

PFN with parameters θ^*

Prior-Data Fitted Networks (PFNs)

Prior-fitting & Inference

 $\begin{aligned} \text{Sample prior datasets } D^{(i)} \sim p(\mathcal{D}) \\ D^{(1)} &= D^{(1)}_{train} \cup \{(x^{(1)}_{test}, y^{(1)}_{test})\} \\ &\vdots \\ D^{(K)} &= D^{(K)}_{train} \cup \{(x^{(K)}_{test}, y^{(K)}_{test})\} \end{aligned}$

Actual training dataset and test input

 (D_{train}, x_{test})

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. **Transformers Can Do Bayesian Inference**. In International Conference on Learning Representations, 2022.

Prior-Data Fitted Networks (PFNs)

Prior-fitting & Inference

 $\begin{aligned} \text{Sample prior datasets } D^{(i)} \sim p(\mathcal{D}) \\ D^{(1)} &= D^{(1)}_{train} \cup \{(x^{(1)}_{test}, y^{(1)}_{test})\} \\ &\vdots \\ D^{(K)} &= D^{(K)}_{train} \cup \{(x^{(K)}_{test}, y^{(K)}_{test})\} \end{aligned}$

Actual training dataset and test input

 (D_{train}, x_{test})

PFNs allow Bayesian inference for any prior we can sample from

TabPFN Prior: Structural Causal Models

Building a synthetic dataset for training

Initialize: Build dataset:

TabPFN Prior: Simplicity Principle

Prior likelihood

Graph Complexity

TabPFN Prior: Pior samples Data for meta-learning is purely synthetic

def create_random_scm(graph_nodes): for node, i in enumerate(g.nodes): g.nodes[node]['size'] = random.randint(...) g.nodes[node]['is_feature'] = False

```
nodes_per_layer = list(nx.topological_generations(g))
layers, node_ids_per_layer = [], []
adj = nx.adjacency_matrix(g)
```

```
for i, _ in enumerate(nodes_per_layer[:-1]):
```


Colors indicate target classes

Bayesian Supervised Learning

Prior p(t) : SCM prior With latents t: parameterizing SCMs, i.e. weights, graph structure, activation function, etc

Posterior:

Posterior predictive distribution:

 $p(t|D) = \frac{p(D|t)p(t)}{\int p(D|t)dt}$ $p(y|x, D) = \int p(y|x)$ $\int p(y|x,t)p(t|D)dt$

Simplifying AutoML for Real-time Training AutoML pipeline

Image credit Biedenkapp et al. (https://www.automl.org/blog-2nd-automl-challenge/)

Simplifying AutoML for Real-time Training TabPFN pipeline

The TabPFN

Results on OpenML-CC18 suite subset with < 1000 examples

Time spent for training, prediction and tuning combined (s)

The TabPFN

Results on OpenML-CC18 suite subset with < 1000 examples

Additional evaluation on 149 validation datasets in our work!

Future Work

Improving predictions: Categorical/Missing data

Larger applicability: Generalizations to non-tabular data and regression tasks, architectural changes to remove quadratic memory scaling

Application of TabPFN: Instantaneous tabular predictions for small datasets in production: exploratory data analysis, novel feature engineering, active learning

Conclusions

TabPFN is fully learned: We do not specify the learning algorithm, but only prior assumptions from which the PFN learns a general prediction method

Strong performance on small datasets: 1000 training samples, 100 features, 10 classes; stronger results for continuous data

Training and prediction in < 1s: TabPFN can be parallelized on GPU using standard matrix operations

We thank Eddie Bergman, Ravin Kohli, Matthias Feurer, Robert Bosch GmbH

