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ABSTRACT

We study the problem of learning Bayesian networks where an ε-fraction of the
samples are adversarially corrupted. We focus on the fully-observable case where
the underlying graph structure is known. In this work, we present the first nearly-
linear time algorithm for this problem with a dimension-independent error guaran-
tee. Previous robust algorithms with comparable error guarantees are slower by at
least a factor of (d/ε), where d is the number of variables in the Bayesian network
and ε is the fraction of corrupted samples. Our work establishes a direct connec-
tion between robust learning of Bayesian networks and robust mean estimation.
By exploiting this connection, our algorithm and analysis are considerably sim-
pler than those in previous work. As a subroutine in our algorithm, we develop a
robust mean estimation algorithm whose runtime is nearly-linear in the number of
nonzeros in the input, which may be of independent interest.

1 INTRODUCTION

Probabilistic graphical models (Koller & Friedman, 2009) offer an elegant and succinct way to
represent structured high-dimensional distributions. The problem of inference and learning in prob-
abilistic graphical models is an important problem that arises in many disciplines (see Wainwright
& Jordan (2008) and the references therein), which has been studied extensively during the past
decades (see, e.g., Chow & Liu (1968); Dasgupta (1997); Abbeel et al. (2006); Wainwright et al.
(2006); Anandkumar et al. (2012); Santhanam & Wainwright (2012); Loh & Wainwright (2012);
Bresler et al. (2013; 2014); Bresler (2015)).

Bayesian networks (Jensen & Nielsen, 2007) are an important family of probabilistic graphical mod-
els that represent conditional dependence by a directed graph (see Section 2 for a formal definition).
In this paper, we study the problem of learning Bayesian networks where an ε-fraction of the sam-
ples are adversarially corrupted. We focus on the simplest setting: all variables are binary and
observable, and the structure of the Bayesian network is given to the algorithm.

Formally, we work with the following corruption model:
Definition 1.1 (ε-Corrupted Set of Samples). Given 0 < ε < 1/2 and a distribution family P on Rd,
the algorithm first specifies the number of samples N , and N samples X1, X2, . . . , XN are drawn
from some unknown P ∈ P . The adversary inspects the samples, the ground-truth distribution P ,
and the algorithm, and then replaces εN samples with arbitrary points. The set of N points is given
to the algorithm as input. We say that a set of samples is ε-corrupted if it is generated by this process.

This is a strong corruption model and it generalizes many existing models (including but not limited
to, e.g., Huber’s contamination model (Huber, 1964)). Given as input an ε-corrupted set of samples,
we would like to design robust algorithms for learning Bayesian networks whose error guarantee is
independent of the dimensionality d of the problem.

In the fully-observable fixed-structure setting, the problem is straightforward when there are no
corruptions. We know that the empirical estimator (which computes the empirical conditional prob-
abilities) is sample efficient and runs in linear time (Dasgupta, 1997). The problem becomes much
more challenging when there are corruptions.

Recent work (Diakonikolas et al., 2016) gave polynomial-time robust algorithms for learning binary
product distributions with error O(ε

√
log 1/ε). Subsequently, (Cheng et al., 2018) showed that it is
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possible to learn Bayesian networks with similar error guarantees under mild assumptions. However,
the algorithm in (Cheng et al., 2018) runs in time Ω(Nd2/ε), which is slower by at least a factor of
(d/ε) compared to the fastest non-robust estimator. Motivated by this gap in the running time, in
this work we want to resolve the following question:

Can we design a robust algorithm for learning Bayesian networks in the fixed-
structure fully-observable setting that runs in nearly-linear time?

1.1 OUR RESULTS AND CONTRIBUTIONS

We resolve this question affirmatively by proving Theorem 1.2. A Bayesian network is c-balanced
if all its conditional probabilities are between c and 1 − c. Let m be the size of the conditional
probability table and α be the minimum parental configuration probability (defined in Section 2).

Theorem 1.2 (informal statement). Consider an ε-corrupted set of N = Ω̃(m/ε2) samples drawn
from a d-dimensional Bayesian network P . Suppose P is c-balanced and has minimum parental
configuration probability α, where both c and α are universal constants. We can compute a Bayesian
network Q in time Õ(Nd) such that dTV (P,Q) ≤ ε

√
ln(1/ε). 1

For simplicity, we stated our result in the very special case where both c and α are Ω(1). Our
approach works for general values of α and c, where our error guarantee degrades gracefully as α
and c gets smaller. A formal version of Theorem 1.2 is given as Theorem 4.1 in Section 4.

The sample complexity of our algorithm is optimal up to polylogarithmic factors. A sample com-
plexity lower bound of Ω(m/ε2) holds even without corrupted samples (Canonne et al., 2017).

Our Contributions. We establish a more direct connection between robust mean estimation and
robustly learning Bayesian networks. At a high level, we show that one can essentially reduce
robust learning of Bayesian networks to robust mean estimation. This allows us to utilize recent
advancements in robust mean estimation to get faster algorithms.

As a subroutine in our approach, we develop a nearly-linear time algorithm for robust mean estima-
tion when the input is sparse. More specifically, our algorithm runs in time nearly linear in the total
number of nonzero entries in the input, which may be of independent interest.

Our algorithm and analysis is considerably simpler than those in previous work. Consider binary
product distribution as an example. The algorithm in the prior work of Cheng et al. (2018) used the
fact that the true covariance matrix should be diagonal (because each coordinate is independent),
and tried to remove samples to make the empirical covariance matrix closer to a diagonal matrix. In
contrast, in our approach, we show that it is sufficient to minimize the spectral norm of the empirical
covariance matrix, regardless of whether it is close to being diagonal or not.

1.2 RELATED WORK

Learning in the presence of outliers has been studied since the 1960s (Huber, 1964). After decades
of work, many efficient robust estimators have been discovered (Tukey, 1975; Devroye & Györfi,
1985; Chen et al., 2018). However, these classic statistical estimators either have errors that scales
polynomially with the dimension d, or are hard to compute in the worst-case.

Recent work (Diakonikolas et al., 2016; Lai et al., 2016) gave the first polynomial-time algorithms
for a wide range of high-dimensional unsupervised learning tasks (e.g., mean and covariance estima-
tion) that achieves dimension-independent error guarantees. After the dissemination of (Diakoniko-
las et al., 2016; Lai et al., 2016), the algorithmic question of designing efficient robust estimators in
high-dimensions has attracted a lot of recent attention and has been studied extensively (see, e.g.,
Balakrishnan et al. (2017); Charikar et al. (2017); Diakonikolas et al. (2017a;b; 2018a); Steinhardt
et al. (2018); Diakonikolas et al. (2018b;c); Hopkins & Li (2018); Kothari et al. (2018); Prasad et al.
(2018); Diakonikolas et al. (2019a); Klivans et al. (2018); Diakonikolas et al. (2019b); Liu et al.
(2020); Cheng et al. (2018; 2020); Zhu et al. (2020)). In particular, Cheng et al. (2018) gave the first
polynomial-time algorithms for the robust learning of fixed-structure Bayesian networks.

1Throughout the paper, we use Õ(f) to denote O(f polylog(f)).
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While recent work gave polynomial-time robust algorithms for many fundamental tasks, these al-
gorithms are often significantly slower than the fastest non-robust algorithms (e.g., sample average
for mean estimation). The work of Cheng et al. (2019a) gave the first nearly-linear time algorithm
for robust mean estimation and initiated the direction of designing robust estimators that are as ef-
ficient as their non-robust counterparts. Since then, there have been several works on obtaining
faster asymptotic algorithms for robust high-dimensional estimation (Dong et al., 2019; Depersin &
Lecué, 2019; Cheng et al., 2019b; Li & Ye, 2020; Cherapanamjeri et al., 2020).

Organization. In Section 2, we define our notations and provide some background on robust learn-
ing of Bayesian networks and robust mean estimation. In Section 3, we give an overview of our
approach and highlight some of our key technical results. In Section 4, we present our algorithm for
robust learning of Bayesian networks and prove our main result.

2 PRELIMINARIES

Bayesian Networks. Fix a d-node directed acyclic graph H whose nodes are labelled [d] =
{1, 2, . . . , d} in topological order (every edge goes from a node with smaller index to one with
larger index). Let Parents(i) be the parents of node i in H . A probability distribution P on
{0, 1}d is a Bayesian network (or Bayes net) with graph H if, for each i ∈ [d], we have that
PrX∼P [Xi = 1 | X1, . . . , Xi−1] depends only on the values Xj where j ∈ Parents(i).

Conditional Probability Table. Let P be a Bayesian network with graph H . Let Γ = {(i, a) :
i ∈ [d], a ∈ {0, 1}|Parents(i)|} be the set of all possible parental configurations. Let m = |Γ|. For
(i, a) ∈ Γ, the parental configuration Πi,a is defined to be the event that X(Parents(i)) = a. The
conditional probability table p ∈ [0, 1]m of P is given by pi,a = PrX∼P [X(i) = 1 | Πi,a] .

In this paper, we often index p as anm-dimensional vector. We use the notation pk and the associated
events Πk, where each k ∈ [m] stands for an (i, a) ∈ Γ lexicographically ordered.

Notations. For a vector v, let ‖v‖2 and ‖v‖∞ be the `2 and `∞ norm of v respectively. We write√
v and 1/v for the entrywise square root and entrywise inverse of a vector v respectively. For two

vectors x and y, we write x>y for their inner product, and x ◦ y for their entrywise product.

We use I to denote the identity matrix. For a matrix M , let Mi be the i-th column of M , and let
‖M‖2 be the spectral norm of M . For a vector v ∈ Rn, let diag(v) ∈ Rn×n denote a diagonal
matrix with v on the diagonal.

Throughout this paper, we use P to denote the ground-truth Bayesian network. We use d for the
dimension (i.e., the number of nodes) of P , N for the number of samples, ε for the fraction of
corrupted samples, and m =

∑d
i=1 2|Parents(i)| for the size of the conditional probability table of P .

We use p ∈ Rm to denote the (unknown) ground-truth conditional probabilities of P , and q ∈ Rm
for our current guess of p.

Let G? be the original set of N uncorrupted samples drawn from P . After the adversary corrupts an
ε-fraction of G?, let G ⊆ G? be the remaining set of good samples, and B be the set of bad samples
added by the adversary. The set of samples S = G ∪ B is given to the algorithm as input. Let
X ∈ Rd×N denote the sample matrix whose i-th column Xi ∈ Rd is the i-th input sample. Abusing
notation, we sometimes also use X as a random variable (e.g., a sample drawn from P ).

We use πP ∈ Rm to denote the parental configuration probabilities of P . That is, πPk =
PrX∼P [X ∈ Πk]. For a set S of samples, we use πS ∈ Rm to denote the empirical parental
configuration probabilities over S: πSk = PrX [X ∈ Πk] where X is uniformly drawn from S.

Balance and Minimum Configuration Probability. We say a Bayesian network P is c-balanced
if all conditional probabilities of P are between c and 1− c. We use α for the minimum probability
of parental configuration of P : α = mink π

P
k .

In this paper, we assume that the ground-truth Bayesian network is c-balanced, and its minimum
parental configuration probability α satisfies that α = Ω

(
(ε
√

ln(1/ε))2/3c−1/3)
)
. Without loss of

generality, we further assume that both c and α are given to the algorithm.
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2.1 TOTAL VARIATION DISTANCE BETWEEN BAYESIAN NETWORKS

Let P and Q be two distributions supported on a finite domain D. For a set of outcomes A, let
P (A) = PrX∼P [X ∈ A]. The total variation distance between P and Q is defined as

dTV (P,Q) = max
A⊆D

|P (A)−Q(A)| .

For two balanced Bayesian networks that share the same structure, it is well-known that the closeness
in their conditional probabilities implies their closeness in total variation distance. Formally, we use
the following lemma from Cheng et al. (2018), which upper bounds the total variation distance
between two Bayesian networks in terms of their conditional probabilities.
Lemma 2.1 (Cheng et al. (2018)). Let P and Q be two Bayesian networks that share the same
structure. Let p and q denote the conditional probability tables of P and Q respectively. We have

(dTV (P,Q))2 ≤ 2
∑
k

√
πPk π

Q
k

(pk − qk)2

(pk + qk)(2− pk − qk)
.

2.2 EXPANDING THE DISTRIBUTION TO MATCH CONDITIONAL PROBABILITY TABLE

Lemma 2.1 states that to learn a known-structure Bayesian network P , it is sufficient to learn its
conditional probabilities p. However, a given coordinate of X ∼ P may contain information about
multiple conditional probabilities (depending on which parental configuration happens).

To address this issue, we use a similar approach as in Cheng et al. (2018). We expand each sampleX
into an m-dimensional vector f(X, q), such that each coordinate of f(X, q) corresponds to an entry
in the conditional probability table. Intuitively, q ∈ Rm is our current guess for p, and initially we
set q to be the empirical conditional probabilities. We use q to fill in the missing entries in f(X, q)
for which the parental configurations fail to happen.
Definition 2.2. Let f(X, q) for {0, 1}d × Rm → Rm be defined as follows:

f(X, q)i,a =

{
Xi − qi,a X ∈ Πi,a

0 otherwise

When X ∼ P and q = p, the distribution of f(X, p) has many good properties. Using the condi-
tional independence of Bayesian networks, we can compute the first and second moment of f(X, p)
and show that f(X, p) has subgaussian tails.
Lemma 2.3. For X ∼ P and f(X, p) as defined in Definition 2.2, we have

(i) E(f(X, p)) = 0. (ii) Cov[f(X, p)] = diag(πP ◦ p ◦ (1− p)).

(iii) For any unit vector v ∈ Rm, we have PrX∼P
[
|v>f(X, p)| ≥ T

]
≤ 2 exp(−T 2/2).

We defer the proof of Lemma 2.3 to Appendix A. A slightly stronger version of Lemma 2.3 was
proved in Cheng et al. (2018), which discusses tail bounds for f(X, q). For our analysis, Lemma 2.3
is sufficient.

For general values of q, we can similarly compute the mean of f(X, q):
Lemma 2.4. Let πP denote the parental configuration of P . For X ∼ P and f(X, q) as defined in
Definition 2.2, we have E[f(X, q)] = πP ◦ (p− q).

2.3 DETERMINISTIC CONDITIONS ON GOOD SAMPLES

To avoid dealing with the randomness of the good samples, we require the following deterministic
conditions to hold for the original set G? of N good samples (before the adversary’s corruption).

We prove in Appendix A that these three conditions hold simultaneously with probability at least
1− τ if we draw N = Ω(m log(m/τ)/ε2) samples from P .

The first condition states that we can obtain a good estimation of p from G?. Let pG
?

denote the
empirical conditional probabilities over G?. We have∥∥∥√πP ◦ (p− pG

?

)
∥∥∥
2
≤ O(ε) . (1)
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The second condition says that we can estimate the parental configuration probabilities πP from any
(1− 2ε)-fraction of G?. Formally, for any subset T ⊂ G? with |T | ≥ (1− 2ε)N , we have∥∥πT − πP∥∥∞ ≤ O(ε) . (2)

The third condition is that the empirical mean and covariance of any (1 − 2ε)-fraction of G? are
very close to the true mean and covariance of f(X, p). Formally, for any subset T ⊂ G? with
|T | ≥ (1− 2ε)N , we require the following to hold for δ1 = ε

√
ln 1/ε and δ2 = ε ln(1/ε):∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, p)

∥∥∥∥∥
2

≤ O(δ1) ,

∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, p)f(Xi, p)
> − Σ

∥∥∥∥∥
2

≤ O(δ2) , (3)

where Σ = Cov[f(X, p)] = diag(πP ◦ p ◦ (1− p)).

2.4 ROBUST MEAN ESTIMATION AND STABILITY CONDITIONS

Robust mean estimation is the problem of learning the mean of a d-dimensional distribution from
an ε-corrupted set of samples. As we will see in later sections, to robustly learn Bayesian networks,
we repeatedly use robust mean estimation algorithms as a subroutine.

Recent work (Diakonikolas et al., 2016; Lai et al., 2016) gave the first polynomial-time algorithms
for robust mean estimation with dimension-independent error guarantees. The key observation in Di-
akonikolas et al. (2016) is the following: if the empirical mean is inaccurate, then many samples must
be far from the true mean in roughly the same direction. Consequently, these samples must alter the
variance in this direction more than they distort the mean. Therefore, if the empirical covariance
behaves as we expect it to be, then the empirical mean provides a good estimate to the true mean.

Many robust mean estimation algorithms follow the above intuition, and they require the following
stability condition to work (Definition 2.5). Roughly speaking, the stability condition states that
the mean and covariance of the good samples are close to that of the true distribution, and more
importantly, this continues to hold if we remove any 2ε-fraction of the samples.
Definition 2.5 (Stability Condition (see, e.g., Diakonikolas & Kane (2019))). Fix 0 < ε < 1

2 . Fix
a d-dimensional distribution X with mean µX . We say a set S of samples is (ε, β, γ)-stable with
respect to X , if for every subset T ⊂ S with |T | ≥ (1− 2ε)|S|, the following conditions hold:

(i)
∥∥∥ 1
|T |
∑
X∈T (X − µX)

∥∥∥
2
≤ β , (ii)

∥∥∥ 1
|T |
∑
X∈T (X − µX) (X − µX)> − I

∥∥∥
2
≤ γ .

Subsequent work (Cheng et al., 2019a; Dong et al., 2019; Depersin & Lecué, 2019) improved the
runtime of robust mean estimation to nearly-linear time. In particular, we have the following lemma
from Dong et al. (2019).
Lemma 2.6 (Robust Mean Estimation in Nearly-Linear Time (Dong et al., 2019)). Fix a set of N
samples G? in Rd. Suppose G? is (ε, β, γ)-stable with respect to a d-dimensional distribution X
with mean µX ∈ Rd. Let S be an ε-corrupted version of G?. Given as input S, ε, β, γ, there exists
an algorithm that can output an estimator µ̂ ∈ Rd in time Õ(Nd), such that with high probability,
‖µ̂− µX‖2 ≤ O(

√
εγ + β + ε

√
log 1/ε) .

As we will see later, a black-box use of Lemma 2.6 does not give the desired runtime in our setting.
Instead, we extend Lemma 2.6 to handle sparse input such that it runs in time nearly-linear in the
number of non-zeros in the input (see Lemma 3.3).

3 OVERVIEW OF OUR APPROACH

In this section, we give an overview of our approach and highlight some of our key technical results.

To robustly learn the ground-truth Bayesian network P , it is sufficient to learn its conditional prob-
abilities p ∈ Rm. At a high level, we start with a guess q ∈ Rm for p and then iteratively improve
our guess to get closer to p. For any q ∈ Rm, we can expand the input samples into m-dimensional
vectors f(X, q) as in Definition 2.2. We first show that the expectation of f(X, q) gives us useful
information about (p− q).
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Recall that πP is the parental configuration probabilities of P . By Lemma 2.4, we have

EX∼P [f(X, q)] = πP ◦ (p− q) .
Note that if we had access to this expectation and the vector πP , we could recover p immediately:
we can set q′ = E[f(X, q)] ◦ (1/πP ) + q which simplifies to q′ = p.

Note that since S is an ε-corrupted set of samples ofP , we know that {f(Xi, q)}i∈S is an ε-corrupted
set of samples of the distribution f(X, q) (with X ∼ P ). Therefore, we can run robust mean
estimation algorithms on {f(Xi, q)}i∈S to learn E[f(X, q)]. It turns out a good approximation of
E[f(X, q)] can help us improve our current guess q.

There are two main difficulties in getting this approach to work.

The first difficulty is that, to use robust mean estimation algorithms, we need to show that f(X, q)
satisfies the stability condition in Definition 2.5. This requires us to analyze the first two moments
and tail bounds of f(X, q). Consider the second moment for example. Ideally, we would like to
have a statement of the form Cov[f(X, q)] ≈ Cov[f(X, p)] + (p − q)(p − q)>, but this is false
because we only have f(X, p)k − f(X, q)k = (p − q)k if the k-th parental configuration happens
for X . Intuitively, the “error” (p − q) is shattered into all samples where each sample only gives d
out of m coordinates of (p− q), and there is no succinct representation for Cov[f(X, q)].

The second difficulty is that f(X, q) ism-dimensional. We cannot explicitly write down all the sam-
ples {f(Xi, q)}Ni=1, because this takes time Ω(Nm), which could be much slower than our desired
running time of Õ(Nd). Similarly, a black-box use of nearly-linear time robust mean estimation
algorithms (e.g., Lemma 2.6) runs in time Ω(Nm), which is too slow.

In the rest of this section, we explain how we handle these two issues.

Stability Condition of f(X, q). Because the second-order stability condition in Lemma 2.3 is
defined with respect to I , we first scale the samples so that the covariance of f(X, p) becomes I .
Lemma 2.3 shows that Cov[f(X, p)] = diag(πP ◦p◦(1−p)). To make it close to I , we can multiply
the k-th coordinate of f(X, p) by (πPk pk(1 − pk))−1/2. However, we do not know the exact value
of πP or p, instead we use the corresponding empirical estimates πS and qS (see Algorithm 1).
Definition 3.1. Let πS and qS denote the parental configuration probabilities and conditional means
estimated over S. Let s = 1/

√
(πS ◦ qS ◦ (1− qS)). Throughout this paper, for a vector v ∈ Rm,

we use v̂ ∈ Rm to denote v ◦ s. In particular, we have X̂i = Xi ◦ s (and similarly p̂, q̂, f̂(x, q)).

Now we analyze the concentration bounds for f̂(X, q). Formally, we prove the following lemma.
Lemma 3.2. Assume the conditions in Section 2.3 hold for the original set of good samples G?.
Then, for δ1 = ε

√
log 1/ε and δ2 = ε log(1/ε), the set of samples

{
f̂(Xi, q)

}
i∈G? is(

ε, O
( δ1√

αc
+ ε ‖p̂− q̂‖2

)
, O
( δ2
αc

+B +
√
B
))

-stable,

where B = ‖
√
πP ◦ (p̂− q̂)‖22.

We provide some intuition for Lemma 3.2 and defer its proof to Appendix B.

For the first moment, the difference between E[f̂(X, q)] and the empirical mean of f̂(X, q) comes
from several places. Even if q = p, we would incur an error of δ1 from the concentration bound in
Equation equation 3, which is at most δ1(αc)−1/2 after the scaling by s. Moreover, on average πPk
fraction of the samples gives us information about (p̂ − q̂)k. Since an ε-fraction of the samples are
removed when proving stability, we may only have (πPk − ε)-fraction instead, which introduces an
error of ε ‖p̂− q̂‖2. This is why the first-moment parameter is

(
δ1(αc)−1/2 + ε ‖p̂− q̂‖2

)
.

For the second moment, after the scaling, we have Cov[f̂(X, p)] ≈ I . Ideally, we would like to
prove Cov[f̂(X, q)] ≈ I + (πP ◦ (p̂− q̂))(πP ◦ (p̂− q̂))>, but this is too good to be true. For two
coordinates k 6= `, whether a sample gives information about (p̂− q̂)k or (p̂− q̂)` is not independent.
We can upper bound the probability that both parental configurations happen by min(πPk , π

P
` ). If

they were independent we would have a bound of πPk π
P
` . The difference in these two upper bounds

is intuitively why
√
πP appears in the second-moment parameter. See Appendix B for more details.
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Robust Mean Estimation with Sparse Input. To overcome the second difficulty, we exploit the
sparsity of the expanded vectors. Observe that each vector f(X, q) is guaranteed to be d-sparse
because exactly d parental configuration can happen (see Definition 2.2). The same is true for
f̂(X, q) because scaling does not change the number of nonzeros. Therefore, there are in total
O(Nd) nonzero entries in the set of samples {f̂(X, q)}i∈S .

We develop a robust mean estimation algorithm that runs in time nearly-linear in the number of
nonzeros in the input. Combined with the above argument, if we only invoke this mean estimation
algorithm polylogarithmic times, we can get the desired running time of Õ(Nd).
Lemma 3.3. Consider the same setting as in Lemma 2.6. There is an algorithm Omean with the
same error guarantee that runs in time Õ(nnz(S) + N + m) where nnz(S) is the total number of
nonzeros in S. That is, given an ε-corrupted version of an (ε, β, γ)-stable set of N samples w.r.t.
a d-dimensional distribution with mean µX , the algorithm Omean outputs an estimator µ̂ ∈ Rd in
time Õ(nnz(S)+N+m) such that with high probability, ‖µ̂− µX‖2 ≤ O(

√
εγ+β+ε

√
log 1/ε) .

We prove Lemma 3.3 by extending the algorithm in Dong et al. (2019) to handle sparse input. The
main computation bottleneck of recent nearly-linear time robust mean estimation algorithms (Cheng
et al., 2018; Dong et al., 2019) is in using the matrix multiplicative weight update (MMWU) method.
In each iteration of MMWU, a score is computed for each sample. Roughly speaking, this score in-
dicates whether one should continue to increase the weight on the corresponding sample. Previous
algorithms use the Johnson-Lindenstrauss lemma to approximate the scores for all N samples si-
multaneously. We show that the sparsity of the input vectors allows for faster application of the
Johnson-Lindenstrauss lemma, and all N scores can be computed in time nearly-linear in nnz(S).

We defer the proof of Lemma 3.3 to Appendix C.

4 ROBUST LEARNING OF BAYESIAN NETWORKS IN NEARLY-LINEAR TIME

In this section, we prove our main result. We present our algorithm (Algorithm 1) and prove its
correctness and analyze its running time (Theorem 4.1).
Theorem 4.1. Fix 0 < ε < ε0 where ε0 is a sufficiently small universal constant. Let P be a
c-balanced Bayesian network on {0, 1}d with known structure H . Let α be the minimum parental
configuration probability of P . Assume α = Ω̃(ε2/3c−1/3).

Let S be an ε-corrupted set of N = Ω̃(m/ε2) samples drawn from P . Given H , S, ε, c, and α,
Algorithm 1 outputs a Bayesian network Q in time Õ(Nd) such that, with probability at least 9/10,
dTV (P,Q) ≤ O(ε

√
log(1/ε)/

√
αc).

The dependence on c and α in the error guarantee also appears in prior work (Cheng et al., 2018).
Removing this dependence is an important technical question that is beyond the scope of this paper.

Theorem 4.1 follows from three key technical lemmas. At the beginning of Algorithm 1, we first
scale all the input vectors as in Definition 3.1. We maintain a guess q for p and gradually move it
closer to p. In our analysis, we track our progress by the `2-norm of πP ◦ (p̂− q̂).

Initially, we set q to be the empirical conditional mean over S. Lemma 4.2 proves that∥∥πP ◦ (p̂− q̂′)
∥∥
2

is not too large for our first guess. Lemma 4.3 shows that, as long as q is still
relatively far from p, we can compute a new guess such that

∥∥πP ◦ (p̂− q̂)
∥∥
2

decreases by a con-
stant factor. Lemma 4.4 states that, when the algorithm terminates and

∥∥πP ◦ (p̂− q̂)
∥∥
2

is small,
we can conclude that the output Q is close to the ground-truth P in total variation distance.

In the following three lemmas, we consider the same setting as in Theorem 4.1 and assume the
conditions in Section 2.3 hold.
Lemma 4.2 (Initialization). In Algorithm 1, we have∥∥πP ◦ (p̂− q̂0)

∥∥
2
≤ O(ε

√
d/
√
αc) .

Lemma 4.3 (Iterative Refinement). Fix an iteration t in Algorithm 1. Assume the robust mean
estimation algorithm Omean succeeds. If

∥∥πP ◦ (p̂− q̂t)
∥∥
2
≤ ρt and ρt = Ω(ε

√
log(1/ε)/

√
αc),

then we have
∥∥πP ◦ (p̂− q̂t+1)

∥∥
2
≤ c1ρt for some universal constant c1 < 1.

7
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Algorithm 1: Robustly Learning Bayesian Networks
Input : The dependency graph H of a c-balanced Bayesian network P with minimum

parental configuration α, an ε-corrupted set S of N = Ω̃(m/ε2) samples {Xi}Ni=1
drawn from P , and the values of ε, c and α.

Output: A Bayesian network Q such that, with probability at least 9/10,
dTV (P,Q) ≤ O(ε

√
log(1/ε)/

√
αc).

Compute the empirical probabilities πS where πS(i, a) = PrX∈S [Πi,a];
Compute the empirical conditional probabilities qS where qS(i, a) = PrX∈S [X(i) = 1 | Πi,a];
Compute the scaling vector s = 1/

√
(πS ◦ qS ◦ (1− qS));

Let T = O(log d) and q0 = qS ;
Let ρ0 = O(ε

√
d/
√
αc). (We maintain upper bounds ρt s.t.

∥∥πP ◦ (p̂− q̂t)
∥∥
2
≤ ρt for all t);

for t = 0 to T − 1 do
βt = O(ερt/α), γt = O((ρt)2/α+ ρt/

√
α) ;

Solve a robust mean estimation problem. Let ν = Omean
(
{f̂(Xi, q

t)i∈S}, ε, βt, γt);
qt+1 = ν ◦ (1/s) ◦ (1/πS) + qt; ρt+1 = c1ρ

t;

return the Bayesian network Q with graph H and conditional probabilities qT ;

Lemma 4.4. Let Q be a Bayesian network that has the same structure as P . Suppose that (1) P is
c-balanced, (2) α = Ω(r + ε/c), and (3)

∥∥πP ◦ (p̂− q̂)
∥∥
2
≤ r/2. Then we have dTV (P,Q) ≤ r.

We defer the proofs of Lemmas 4.2, 4.3, and 4.4 to Appendix D and we first prove Theorem 4.1.

Proof of Theorem 4.1. We first prove the correctness of Algorithm 1.

The original set of N = Ω(m log(m/ε)/ε2) good samples drawn from P satisfies the conditions in
Section 2.3 with probability at least 1− 1

20 . With high probability, the robust mean estimation oracle
Omean succeeds in all iterations. For the rest of this proof, we assume the above conditions hold,
which by a union bound happens with probability at least 9/10.

From Lemma 4.2, we have the following condition on the initial estimate q0.∥∥πP ◦ (p̂− q̂0)
∥∥
2

= O(ε
√
d/
√
αc) .

We start with an upper bound ρ0 of
∥∥πP ◦ (p̂− q̂0)

∥∥
2

= O(ε
√
d/
√
αc). By Lemma 4.3, in each

iteration, if ρt = Ω(ε
√

log(1/ε)/
√
αc), we can obtain a new estimate qt+1 and an upper bound ρt+1

on
∥∥πP ◦ (p̂− q̂t)

∥∥
2

such that ρt+1 is smaller than ρt by a constant factor. Hence after O(log(d))

iterations, we can get a vector qt such that∥∥πP ◦ (p̂− q̂t)
∥∥
2

= O(ε
√

log(1/ε)/
√
αc) .

Let Q be the Bayesian network with conditional probability table qt. The assumption that α =

Ω̃(ε2/3c−1/3) allows us to apply Lemma 4.4 with r = O(ε
√

log(1/ε)/
√
αc), which gives the

claimed upper bound on dTV (P,Q).

Now we analyze the runtime of Algorithm 1. First, qS and πS can be computed in time Õ(Nd)
because each sample only affects d entries of q. We do not explicitly write down f(X, q). In each
iteration, we solve a robust mean estimation problem with input

{
f̂(Xi, q

t)
}
i∈S

, which takes time

Õ(Nd). This is because there are N input vectors, each vector is d-sparse, and the robust mean
estimation algorithm runs in time nearly-linear in the number of nonzeros in the input (Lemma 3.3).
We can compute qt+1 = ν ◦ (1/s) ◦ (1/πS) + qt in time in time O(m).

Since there are O(log d) iterations, the overall running time is

Õ(Nd) +O(log d)
(
Õ(Nd) +O(m)

)
= Õ(Nd) .
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A DETERMINISTIC CONDITIONS ON GOOD SAMPLES

In this section, we will first prove Lemma 2.3, then we prove that the deterministic conditions in
Section 2.3 hold with high probability if we take enough samples.
Lemma A.1. For X ∼ P and f(X, p) as defined in Definition 2.2, we have

(i) E(f(X, p)) = 0.

(ii) Cov[f(X, p)] = diag(πP ◦ p ◦ (1− p)).

(iii) For any unit vector v ∈ Rm, we have PrX∼P
[
|v>f(X, p)| ≥ T

]
≤ 2 exp(−T 2/2).

Proof. We first claim that EX∼P [f(X, p)k|f(X, p)1, ..., f(X, p)k−1] = 0 for all k ∈ [m]. Let k =
(i, a), conditioned on f(X, p)1, ..., f(X, p)k−1, the event πi,a may or may not happen. A simple
calculation shows that in both cases, we have EX∼P [f(X, p)k|f(X, p)1, ..., f(X, p)k−1] = 0.

For (i), we have E[f(X, p)] = πP ◦ p+ (1− πP ) ◦ p− p = 0.

For (ii), we first show that for any (i, a) 6= (j, b), we have E[f(X, p)i,af(X, p)j,b] = 0. For the
case i = j, we can see at least one of Πi,a and Πj,b does not occur, so f(X, p)i,af(X, p)j,b is
always 0. For the case i 6= j, we assume without loss of generality that i > j, then we have
E[f(X, p)i,a|f(X, p)j,b] = 0.

For all (i, a) ∈ [m], we have E[f(X, p)2i,a] = πPi,aE[(X − pi,a)2|Πi,a] = πPi,api,a(1 − pi,a). Com-
bining these two, we get Cov[f(X, p)] = diag(πP ◦ p ◦ (1− p)).

For (iii), we recall that EX∼P [f(X, p)k|f(X, p)1, ..., f(X, p)k−1] = 0, thus the sequence∑`
k=1 vkf(X, q)k for 1 ≤ ` ≤ m is a martingale, and we can apply Azuma’s inequality. Note

that |vk| ≥ |vkf(X, p)k|, hence we have PrX∼P
[
|v>f(X, p)| ≥ T

]
≤ 2 exp(−T 2/2 ‖v‖22) =

2 exp(−T 2/2).

The conditions in Equations equation 1 and equation 2 are proved in Lemma A.2, and the conditions
in Equation equation 3 are proved in Corollary A.4.
Lemma A.2. Let P be a Bayesian network. LetG? be a set of Ω((m log(m/τ))/ε2) samples drawn
from P . Let πG

?

and pG
?

be the empirical parental configuration probabilities and conditional
probabilities of P given by G?. Then with probability 1− τ , the following conditions hold:

(i) For any subset T ⊂ G? with |T | ≥ (1− 2ε)N , we have

∥∥πT − πP∥∥∞ ≤ O(ε) .

(ii) ∥∥∥√πP ◦ (p− pG
?

)
∥∥∥
2
≤ O(ε) .

Proof. For (i), first consider the case of T = G? and fix an entry 1 ≤ k ≤ m in the conditional
probability table. Because each sample is drawn independently from P , by the Chernoff bound, we
have that when N = Ω(log(m/τ)/ε2), |πPk − πG

?

k | ≤ ε holds with probability at least 1 − τ/m.
Hence, after taking an union bound over k, we have that

∥∥πT − πP∥∥∞ ≤ ε holds with probability
at least 1− τ . Now for a general subset T ⊂ G?, notice that removing O(ε)-fraction of samples can
change πT by at most O(ε). Thus, condition (i) holds with probability at least 1− τ .

For (ii), for any k = (i, a), note that pG
?

k is estimated from πG
?

k N samples. In these samples, the
parental configuration Πk happens and the value of Xi is decided independently. By the Chernoff

bound and the union bound, we get that when N = Ω((m log(m/τ))/ε2), |pG?

k −pk| ≤ ε/
√
mπG

?

k

holds for every k with probability at least 1− τ , which implies∥∥∥√πG? ◦ (p− pG
?

)
∥∥∥
2
≤ O(ε).

Combining this with
∥∥πP − πG?∥∥

∞ ≤ ε, we get that condition (ii) holds.
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To prove Equation equation 3, we use the following concentration bounds for subgaussian distribu-
tions. Recall that a distribution D on Rd with mean µ is subgaussian if for any unit vector v ∈ Rd
we have Prx∼D[|〈v, x− µ〉| ≥ t] ≤ exp(−ct2), where c is a universal constant.

Lemma A.3. Let G? be a set of N = Ω((ε
√

log 1/ε)−2(d + log(1/τ))) samples drawn from a
d-dimensional subgaussian distribution with mean µ and covariance matrix Σ � I . Here A � B
means that B − A is a positive semi-definite matrix. Then, with probability 1 − τ , the following
conditions hold:

For δ1 = c1(ε
√

log 1/ε) and δ2 = c1(ε log 1/ε) where c1 is an universal constant, we have that for
any subset T ⊂ G? with |T | ≥ (1− 2ε)N ,∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µ)

∥∥∥∥∥
2

≤ δ1 ,

∥∥∥∥∥ 1

|T |
∑
i∈T

(Xi − µ)(Xi − µ)> − Σ

∥∥∥∥∥
2

≤ δ2 (4)

A special case of Lemma A.3 where Σ = I is proved in Diakonikolas et al. (2016). The proof for
the general case where Σ � I is almost identical. In particular, the concentration inequalities used
in Diakonikolas et al. (2016) for subgaussian distributions still hold when Σ � I (see, e.g., Vershynin
(2010)).

From Lemma A.3 and 2.3, we have the following corollary:

Corollary A.4. Let G? be a set of N = Ω((ε
√

log 1/ε)−2(m + log(1/τ))) samples drawn P .
Then, with probability 1 − τ , the following conditions to hold: For δ1 = c1(ε

√
log 1/ε) and δ2 =

c1(ε log 1/ε), where c1 is an universal constant, we have that for any subset T ⊂ G? with |T | ≥
(1− 2ε)N ,∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, p)

∥∥∥∥∥
2

≤ O(δ1) ,

∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, p)f(Xi, p)
> − Σ

∥∥∥∥∥
2

≤ O(δ2) , (5)

where Σ = Cov[f(X, p)] = diag(πP ◦ p ◦ (1− p)).

B STABILITY CONDITION OF f̂(X, q)

In this section, we prove the stability condition for the samples f̂(X, q) (Lemma 3.2). Recall the
definition of f̂(X, q) from Definitions 2.2 and 3.1. We first restate Lemma 3.2.

Lemma 3.2. Assume the conditions in Section 2.3 hold for the original set of good samples G?.
Then, for δ1 = ε

√
log 1/ε and δ2 = ε log(1/ε), the set of samples

{
f̂(Xi, q)

}
i∈G? is(

ε, O
( δ1√

αc
+ ε ‖p̂− q̂‖2

)
, O
( δ2
αc

+B +
√
B
))

-stable,

where B = ‖
√
πP ◦ (p̂− q̂)‖22.

We will prove the stability of f(X, q). The stability of f̂(X, q) follows directly. We introduce a
matrix CD,q which is crucial in proving the stability of f(X, q). Intuitively, the matrix CD,q is
related to the difference in the covariance of f(X, p) and that of f(X, q) on the sample set D.
Definition B.1. For any set D of samples {Xi}i∈D, we define the following m×m matrix

CD,q =
1

|D|
∑
i∈D

(f(Xi, p)− f(Xi, q))(f(Xi, p)− f(Xi, q))
> .

Observe that for x ∈ {0, 1}d with x /∈ Πk, we have f(x, p)k = f(x, q)k = 0. On the other hand, if
x ∈ Πk for some k = (i, a), we have f(x, p)k − f(x, q)k = (xi − pk)− (xi − qk) = qk − pk.

In the very special case where all parental configurations happen (i.e., a binary product distribution),
we would have CD,q = (p− q)(p− q)>. However, in general the information related to (p− q) is
spread among the samples. We show that even though CD,q does not have a succinct representation,
we can prove the following upper bound on the spectral norm of CD,q.
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Lemma B.2. ‖CD,q‖2 ≤
∑
k π

D
k (pk − qk)2 .

Proof. For notational convenience, let C = CD,q. For every 1 ≤ k, ` ≤ m, we have

|Ck,`| =
∣∣∣(Pr
D

[Πk ∧Π`])(pk − qk)(p` − q`)
∣∣∣ ≤ min{πDk , πD` } · |(pk − qk)(p` − q`)|

≤
(√

πDk |(pk − qk)|
)
·
(√

πD` |(p` − q`)|
)

We can upper bound the spectral norm of C in term of its Frobenius norm:

‖C‖22 ≤ ‖C‖
2
F =

∑
k,`

C2
k,` ≤

∑
k,`

(
πDk (pk − qk)2

) (
πD` (p` − q`)2

)
≤

(∑
k

πDk (pk − qk)2

)2

.

The following lemma essentially proves the stability of f(X, q), except that in the second-order
condition, we should have Cov(f(X, q)) instead of Σ. We will bridge this gap in Lemma B.4.
Lemma B.3. Assume the conditions in Section 2.3 hold. For δ1 = ε

√
log 1/ε and δ2 = ε log(1/ε),

we have that for any subset T ⊂ G? with |T | ≥ (1− ε)|G?|,∥∥∥∥∥ 1

|T |
∑
i∈T

(f(Xi, q)− πP ◦ (p− q))

∥∥∥∥∥
2

≤ O(δ1 + ε ‖p− q‖2) , and∥∥∥∥∥ 1

|T |
∑
i∈T

(f(Xi, q)− πP ◦ (p− q))(f(Xi, q)− πP ◦ (p− q))> − Σ

∥∥∥∥∥
2

≤ O(δ2 +B +
√
B)

where B =
∥∥∥√πP ◦ (p− q)

∥∥∥2
2
≤ 1

α

∥∥πP ◦ (p− q)
∥∥2
2
, and Σ = diag(πP ◦ p ◦ (1 − p)) is the true

covariance of f(X, p) .

Proof. For the first moment, we have∥∥∥∥∥ 1

|T |
∑
i∈T

(f(Xi, q)− πP ◦ (p− q))

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

|T |
∑
i∈T

(f(Xi, p) + f(Xi, q)− f(Xi, p)− πP ◦ (p− q))

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, p)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

|T |
∑
i∈T

(f(Xi, q)− f(Xi, p)− πP (p− q))

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, p)

∥∥∥∥∥
2

+
∥∥(πT − πP ) ◦ (p− q)

∥∥
2

= O(δ1 + ε ‖p− q‖2) .

For the second moment, consider any unit vector v ∈ Rm. We have

v>

(
1

|T |
∑
i∈T

f(Xi, q)f(Xi, q)
>

)
v =

1

|T |
∑
i∈T
〈f(Xi, q), v〉2

=
1

|T |
∑
i∈T

(
〈f(Xi, p), v〉2 + 〈f(Xi, p)− f(Xi, q), v〉2 + 2〈f(Xi, p), v〉〈f(Xi, p)− f(Xi, q), v〉

)
≤ 1

|T |
∑
i∈T

(
〈f(Xi, p), v〉2 + 〈f(Xi, p)− f(Xi, q), v〉2

)

+ 2

√√√√ 1

|T |

(∑
i∈T
〈f(Xi, p), v〉2

)(
1

|T |
∑
i∈T
〈f(Xi, p)− f(Xi, q), v〉2

)

14
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where the last inequality follows from the Cauchy-Schwarz inequality. Therefore, we have∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, q)f(Xi, q)
> − Σ

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, p)f(Xi, p)
> − Σ

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

|T |
∑
i∈T

(f(Xi, p)− f(Xi, q))(f(Xi, p)− f(Xi, q))
>

∥∥∥∥∥
2

+ 2

√√√√∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, p)f(Xi, p)>

∥∥∥∥∥
2

∥∥∥∥∥ 1

|T |
∑
i∈T

(f(Xi, p)− f(Xi, q))(f(Xi, p)− f(Xi, q))>

∥∥∥∥∥
2

≤ δ2 + ‖CT,q‖2 + 2
√

1 + δ2

√
‖CT,q‖2 = O

(
δ2 + ‖CT,q‖2 +

√
‖CT,q‖2

)
Finally, we show that the second moment matrix 1

|T |
∑
i∈T f(Xi, q)f(Xi, q)

> is not too far from
the empirical covariance matrix of f(X, q).∥∥∥∥∥ 1

|T |
∑
i∈T

f(Xi, q)f(Xi, q)
> − 1

|T |
∑
i∈T

(f(Xi, q)− πP ◦ (p− q))(f(Xi, q)− πP ◦ (p− q))>
∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ 1

|T |
∑
i∈T

(f(Xi, q)− πP ◦ (p− q))

∥∥∥∥∥
2

‖πP ◦ (p− q)‖2 + ‖πP ◦ (p− q)‖22

≤ O ((δ1 + ε ‖p− q‖2) ‖πP ◦ (p− q)‖2) ≤ O
(
‖πP ◦ (p− q)‖22

)
.

Putting everything together and using Lemma B.2, we conclude this proof.

The stability of f̂(X, q) follows from the stability of f(X, q) (Lemma B.3), scaling all samples by
s, and replacing Σ̂ with I in the second-order condition using Lemma B.4.

Lemma B.4. Assume the conditions in Section 2.3 hold. Then after scaling, we have∥∥∥Σ̂− I
∥∥∥
2
≤ O

( ε
αc

)
.

where Σ̂ is the covariance matrix of f̂(X, p).

Proof. We recall that πPk pk(1 − pk) ≥ 1
2π

P
k min(pk, 1 − pk) = Ω(αc). Because ‖s‖∞ =

O(1/
√
αc), it suffices to show that

‖Cov(s ◦ f(X, p))− I‖2 ≤ O(ε) .

In other words, we need to show∥∥πP ◦ p ◦ (1− p)− πS ◦ qS ◦ (1− qS)
∥∥
∞ = O(ε) .

Let πG
?

and pG
?

be the empirical parental configuration probabilities and conditional probabilities
of P given by G?. We first prove that∥∥∥πG?

◦ pG
?

◦ (1− pG
?

)− πS ◦ qS ◦ (1− qS)
∥∥∥
∞

= O(ε) .

Note that
∥∥πG? − πS

∥∥
∞ = O(ε) and qSk (1− qSk ) < 1, so it is sufficient to show that∥∥∥πG?

◦ pG
?

◦ (1− pG
?

)− πG
?

◦ qS ◦ (1− qS)
∥∥∥
∞

= O(ε) .

15
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We have∥∥∥πG?

◦ pG
?

◦ (1− pG
?

)− πG
?

◦ qS ◦ (1− qS)
∥∥∥
∞

=
∥∥∥πG?

◦ pG
?

− πG
?

◦ qS − πG
?

◦ (pG
?

+ qS) ◦ (pG
?

− qS)
∥∥∥
∞
≤ 3

∥∥∥πG?

◦ (pG
?

− qS)
∥∥∥
∞
.

Let nk denote the number of times that the event Πk happens over G?, and let tk be the number
of times that X(i) = 1 when Πk = Πi,a happens. Because S is obtained by changing at most εN
samples in G?, we can get

|πG
?

k ◦ (pG
?

k − qSk )| ≤ nk
N
· ( tk + εN

nk − εN
− tk
nk

) =
nk(nk + tk)εN

Nnk(nk − εN)
≤ 2nkεN

0.5Nnk
= 4ε .

The last inequality follows from tk ≤ nk and nk − εN ≥ 0.5nk (because we assume the minimum
parental configuration probability is Ω(ε)).

This concludes
∥∥πG? ◦ pG? ◦ (1− pG?

)− πS ◦ qS ◦ (1− qS)
∥∥
∞ = O(ε).

Similarly, in order to prove that∥∥∥πP ◦ p ◦ (1− p)− πG
?

◦ pG
?

◦ (1− pG
?

)
∥∥∥
∞

= O(ε) .

We just need to show
∥∥πP ◦ (p− pG?

)
∥∥
2

= O(ε), which is follows from (ii) in Lemma A.2.

An application of triangle inequality finishes this proof.

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. By Lemma B.3 and the fact that ‖s‖∞ = O(1/
√
αc), we know that for any

subset T ⊂ G? with |T | ≥ (1− ε)|G?|, we have∥∥∥∥∥ 1

|T |
∑
i∈T

(f̂(Xi, q)− πP ◦ (p̂− q̂))

∥∥∥∥∥
2

≤ O(
δ1√
αc

+ ε ‖p̂− q̂‖2) , and∥∥∥∥∥ 1

|T |
∑
i∈T

(f̂(Xi, q)− πP ◦ (p̂− q̂))(f̂(Xi, q)− πP ◦ (p̂− q̂))> − Σ̂

∥∥∥∥∥
2

≤ O(
δ2
αc

+B +
√
B)

where B =
∥∥∥√πP ◦ (p̂− q̂)

∥∥∥2
2
, and Σ̂ is the true covariance of f̂(X, p). This is because the scaling

is applied to all vectors on both sides of the inequalities, so we only need to scale the scalars δ1 and
δ2 appropriately.

We conclude the proof by replacing Σ̂ in the second-order condition with I using Lemma B.4.

C ROBUST MEAN ESTIMATION WITH SPARSE INPUT

In this section, we give a robust mean estimation algorithm that runs in time nearly-linear in the
number of nonzeros in the input. We build on the following lemma, which is essentially the main
result of Dong et al. (2019).

Lemma C.1 (essentially Dong et al. (2019)). Given an ε-corrupted version of an (ε, β, γ)-stable set
of N samples w.r.t. a d-dimensional distribution with mean µX , there is an algorithm outputs an
estimator µ̂ ∈ Rd such that with high probability,

‖µ̂− µX‖2 ≤ O(
√
εγ + β + ε

√
log 1/ε) .

Moreover, this algorithm runs in time Õ(nnz(S) + N + d + T (Oapx)), where nnz(S) is the total
number of nonzeros in the samples in S and T (Oapx)) is the runtime of an approximate score oracle
defined in Definition C.2.
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The computational bottleneck of the algorithm in Dong et al. (2019) is logarithmic uses of matrix
multiplicative weight update (MMWU). In each iteration of every MMWU, they need to compute a
score for each sample. Intuitively, these scores help the algorithm decide whether it should continue
to increase the weight on each sample or not.

We define some notations before we formally define the approximate score oracle. Let ∆N = {w ∈
RN : 0 ≤ wi ≤ 1,

∑
wi = 1} be theN -dimensional simplex. Given a set ofN samplesX1, ...,XN

and a weight vector w ∈ ∆N , let µ(w) = 1
|w|
∑
wiXi and Σ(w) = 1

|w|
∑
wi(Xi − µ(w))(Xi −

µ(w))> denote the empirical mean and covariance weighted by w.
Definition C.2 (Approximate Score Oracle). Given as input a set of N samples X1, . . . , XN ∈ Rd,
a sequence of t + 1 = O(log(d)) weight vectors w0, . . . , wt ∈ ∆N , and a parameter α > 0, an
approximate score oracle Oapx outputs (1± 0.1)-approximations (τ̃i)

N
i=1 to each of the N scores

τi = (Xi − µ(wt))>U(Xi − µ(wt))

for

U =
exp(α

∑t−1
i=0 Σ(wi))

tr exp(α
∑t−1
i=0 Σ(wi))

.

In addition, Oapx outputs a scalar q̃ such that

|q̃ − q| ≤ 0.1q + 0.05
∥∥Σ(wt)− I

∥∥
2
,where q = 〈Σ(wt)− I, U〉 .

These scores are computed using the Johnson-Lindenstrauss lemma. Our algorithm for computing
these scores are given in Algorithm 2.

Let r = O(logN log(1/δ)), ` = O(log d), and Q ∈ Rr×d be a matrix with i.i.d entries drawn from
N (0, 1/r). Algorithm 2 computes an r × d matrix

A = Q · P`

(
α

2

t−1∑
i=0

Σ(wi)

)
. (6)

where P`(Y ) =
∑`
j=0

1
j!Y

j is a degree-` Taylor approximation to exp(Y ).

The estimates for the individual scores are then given by

τ̃i =
1

tr(AA>)

∥∥A(Xi − µ(wt))
∥∥
2

(7)

and the estimate for q is given by

q̃ =

N∑
i=1

(τ̃i − 1) . (8)

Algorithm 2: Nearly-linear time approximate score computation

Input: A set S of N samples X1, . . . , XN ∈ Rd, a sequence of weight vectors w0, ..., wt, a
parameter α, and a failure probability δ > 0.

Let r = O(logN log(1/δ)) and ` = O(log d);
Let Q ∈ Rr×d have entries drawn i.i.d. from N (0, 1/r);
Compute the matrix A ∈ Rr×d as in Equation equation 6;
return (τ̃i)

N
i=1 given by Equation equation 7 and q̃ given by Equation equation 8;

The correctness of Algorithm 2 was proved in Dong et al. (2019).
Lemma C.3 (Dong et al. (2019)). With probability at least 1− δ, the output of Algorithm 2 satisfies
|q̃ − q| ≤ 0.1q + 0.05 ‖Σ(wt)− I‖2 and |τ̃i − τi| ≤ 0.1τi for all 1 ≤ i ≤ N .

Consequently, we only need to analyze the runtime of Algorithm 2.

Lemma C.4. Algorithm 2 runs in time Õ(t · (N + d+ nnz(S)) · log(1/δ)).
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Proof. We first show that matrix A ∈ Rr×d can be computed in time

Õ(t · (N + d+ nnz(S)) · log 1/δ) .

We will multiply each row of Q (from the left) through the matrix polynomial to obtain A. Let
v> ∈ R1×d be one of the rows of Q and let w ∈ RN be any weight vector. Observe that we can
compute all

(
v> (Xi − µ(w))

)N
i=1

in time

O

(
N∑
i=1

nnz(Xi) +N + d

)
= O(nnz(S) +N + d) .

This is because we can compute µ(w) and v>µ(w) just once, and then compute v>Xi for every i
and subtract v>µ(w) from it.

Then, we can compute

v>Σ(w) = v>

(
N∑
i=1

wi(Xi − µ(w))(Xi − µ(w))>

)

=

N∑
i=1

wi
(
v>(Xi − µ(w))

)
X>i −

(
N∑
i=1

wi
(
v>(Xi − µ(w)

))
µ(w)>

as the sum of N sparse vectors subtracting a dense vector in time O(nnz(S) +N + d).

Therefore, for any v ∈ Rm, we can evaluate v>
∑t−1
i=0 Σ(wi) in time O(t · (nnz(S) + d+N)).

Because P` is a degree-` matrix polynomial of
∑t−1
i=0 Σ(wi), we can use Horner’s method for poly-

nomial evaluation to compute v>P`
(
−α2

∑t−1
i=0 Σ(wi)

)
in timeO(`·t·(nnz(S)+d+N)). We need

to multiply each of r rows of A through, we can compute A in time O(r · ` · t · (nnz(S) + d+N)).

It remains to show that (τ̃i)
N
i=1 and q̃ as defined in Equations 7 and 8 can be computed quickly.

Note that tr(AA>) is the entrywise inner product of A with itself, so it can be computed in time
O(rd). The vectors (A(Xi − µ(wt)))

N
i=1 can be computed in time O (r · (

∑
i nnz(Xi) + d)) =

O(r · (nnz(S) + d)), because each AXi can be compute in time O(r ·nnz(Xi)) and Aµ(wt) can be
computed only once in time O(rd). Because r = O(logN log(1/δ)), we can compute all τ̃i in time
O(r · (nnz(S) + d)). Given the τ̃i’s, q̃ can be computed in O(N) time.

Recall that r = O(logN log(1/δ)) and ` = O(log d). Putting everything together, the overall
runtime of the oracle is

O(r ·` · t ·(nnz(S)+d+N))+O(r ·(nnz(S)+d)+N) = Õ(t ·(nnz(S)+d+N) · log(1/δ)) .

By Lemma C.4 and the fact that t = O(log d) and δ = 1/ poly(d), we can implement an approxi-
mate score oracle that succeeds with high probability and runs in time Õ(nnz(S) +N + d).

Lemma 3.3 follows from Lemma C.1 and the correctness and the runtime of the approximate score
oracle (Lemmas C.3, and C.4). (Note that we have nnz(S) = Nd, N = N , and d = m when
invoking these lemmas.)

D OMITTED PROOFS FROM SECTION 4

In this section, we prove the technical lemmas in Section 4. We restate each lemma before proving
it.

Lemma 4.2 states that the (scaled) initial estimation is not too far from the true conditional proba-
bilities p.

Lemma 4.2. Consider the same setting as in Theorem 4.1. Assume the conditions in Section 2.3
hold. In Algorithm 1, we have ∥∥πP ◦ (p̂− q̂0)

∥∥
2
≤ O(ε

√
d/
√
αc) .
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Proof. Recall that q0 = qS is the empirical conditional probabilities over S, and v̂ = v ◦ s where s
is the scaling vector with ‖s‖∞ ≤ O(1/

√
αc).

Let πG
?

and pG
?

be the empirical parental configuration probabilities and conditional probabilities
given by G?.

We first show that ∥∥∥πG?

− πS
∥∥∥
2
≤ ε
√

2d .

Let nG
?

k and nSk denote the number of times that Πk happens in G? and S. Note that changing one
sample in G? can increase or decrease nG

?

k by at most 1. Moreover, in a single sample, exactly d
parental configuration events happen, so changing a sample can affect at most 2d nG

?

k ’s. Since S is
obtained from G? by changing εN samples, we have |nG?

k − nSk | ≤ εN for all k, and
∑
k |nG

?

k −
nSk | ≤ 2εdN . Together they imply

∥∥πG? − πS
∥∥
2
≤ ε
√

2d.

By a similar argument, we can show that∥∥∥πG?

◦ pG
?

− πS ◦ qS
∥∥∥
2
≤ ε
√

2d ,

because πG
?

k pG
?

k is the probability that Πk happens and X(k) = 1 over G?.

By the triangle inequality, we have∥∥∥πG?

◦ (pG
?

− qS)
∥∥∥
2
≤
∥∥∥πG?

◦ pG
?

− πS ◦ qS
∥∥∥
2

+
∥∥∥πG?

− πS
∥∥∥
2
≤ 3ε
√
d .

Using the condition in Equation equation 1 from Section 2.3, i.e.,
∥∥πG? ◦ (pG

? − p)
∥∥
2
≤ O(ε), we

get ∥∥∥πG?

◦ (p− qS)
∥∥∥
2
≤ O(ε

√
d) .

Now by Equation equation 2 from Section 2.3 and the assumption that the minimum parental con-
figuration probability mink π

P
k = α = Ω(ε), we have πPk ≤ πG

?

k +O(ε) ≤ O(πG
?

k ), and hence∥∥πP ◦ (p− qS)
∥∥
2
≤ O(ε

√
d) .

After scaling by s, we have ∥∥∥πG?

◦ (p̂− q̂S)
∥∥∥
2
≤ O(ε

√
d/
√
αc) .

Lemma 4.3 shows that, when q is relatively far from p, the algorithm can find a new q such that∥∥πP ◦ (p̂− q̂)
∥∥
2

decreases by a constant factor.

Lemma 4.3. Consider the same setting as in Theorem 4.1. Assume the conditions in Section 2.3 hold.
Fix an iteration t in Algorithm 1. Assume the robust mean estimation algorithm Omean succeeds. If∥∥πP ◦ (p̂− q̂t)

∥∥
2
≤ ρt and ρt = Ω(ε

√
log(1/ε)/

√
αc), then we have∥∥πP ◦ (p̂− q̂t+1)
∥∥
2
≤ c1ρt

for some universal constant c1 < 1.

Proof. We assume ρt > c4(ε
√

log(1/ε)/
√
αc) and α > c5ε for some sufficiently large universal

constants c4 and c5.

Because
∥∥πP ◦ (p̂− q̂t)

∥∥
2
≤ ρt, Lemma 3.2 shows that

{
f̂(Xi, q

t)
}
i∈G?

is(
ε, O

(
ε
√

log 1/ε√
αc

+
ε

α
ρt

)
, O

(
ε log 1/ε

αc
+

(ρt)2

α
+

ρt√
α

))
-stable.
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By Lemma 3.3, the robust mean estimation oracle Omean, which we assume to succeed, outputs a
ν ∈ Rm such that, for some universal constant c3,∥∥ν − πP ◦ (p̂− q̂t)

∥∥
2
≤ c3

(√
ε

α
ρt +

√
ε√
α
ρt +

ε

α
ρt +

ε
√

log(1/ε)√
αc

)

<

(
c3√
c5

+
c3√
c4

+
c3
c5

+
c3
c4

)
ρt .

From Section 2.3, we have
∥∥πS − πP∥∥∞ = O(ε), which implies∥∥(πS − πP ) ◦ (p̂− q̂t)

∥∥
2
≤ ε

α

∥∥πP ◦ (p̂− q̂t)
∥∥
2
≤ ε

α
ρt .

By the triangle inequality, we have∥∥ν − πS ◦ (p̂− q̂t)
∥∥
2
≤
(
c3√
c5

+
c3√
c4

+
c3 + 1

c5
+
c3
c4

)
ρt .

Algorithm 1 sets q̂t+1 = ν ◦ (1/πS) + q̂t, which is equivalent to

πS ◦ (p̂− q̂t+1) = πS ◦ (p̂− q̂t)− ν .

Since
∥∥πS − πP∥∥∞ = O(ε) and α = Ω(ε), we have

πPi ≤ 1.1πSi ∀1 ≤ i ≤ m .

Putting everything together, letting c1 = 1.1
(
c3√
c5

+ c3√
c4

+ c3+1
c5

+ c3
c4

)
, we have

∥∥πP ◦ (p̂− q̂t+1)
∥∥
2
≤ 1.1

∥∥πS ◦ (p̂− q̂t+1)
∥∥
2
< 1.1

(
c3√
c5

+
c3√
c4

+
c3 + 1

c5
+
c3
c4

)
ρt = c1ρ

t .

Because c4 and c5 can be sufficiently large, we have c1 < 1 as needed.

Lemma 4.4 shows that when the algorithm terminates, we can conclude that the output Q is close to
the ground-truth P in total variation distance.

Lemma 4.4. Consider the same setting as in Theorem 4.1. Assume the conditions in Section 2.3
hold. Let Q be a Bayesian network that shares the same structure with P . Suppose that (1) P is
c-balanced, (2) α = Ω(r + ε/c), and (3)

∥∥πP ◦ (p̂− q̂)
∥∥
2
≤ r/2. Then we have

dTV (P,Q) ≤ r .

Proof of Lemma 4.4. We have (pk + qk)(2− pk − qk) ≥ pk(1− pk). Hence,∑
k

√
πPk π

Q
k

(pk − qk)2

(pk + qk)(2− pk − qk)
≤
∑
k

√
πPk π

Q
k π

P
k

(pk − qk)2

πPk pk(1− pk)
,

From the proof of Lemma B.4, we know |πPk pk(1−pk)− 1
s2k
| = O(ε) and πPk pk(1−pk) ≥ πPk

pk
2 =

Ω(r), so we have∑
k

√
πPk π

Q
k π

P
k

(pk − qk)2

πPk pk(1− pk)
≤ 1.1

∑
k

√
πPk π

Q
k π

P
k (pk − qk)2s2k

= 1.1
∑
k

√
πPk π

Q
k π

P
k (p̂k − q̂k)2 .

It suffices to show that |πPk − π
Q
k | ≤ r, which implies πQk ≤ 1.1πPk and further implies

dTV (P,Q) ≤ 2
∥∥πP ◦ (p̂− q̂)

∥∥
2
.
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Let P≤i and Q≤i be the distributions of the first i coordinates of P and Q respectively. We prove
|πPk − πQk | ≤ r by induction on i. Suppose that for 1 ≤ j < i and all a′ ∈ {0, 1}|parents(j)|,
|πPj,a′ − πQj,a′ | ≤ r, then we have dTV (P≤(i−1), Q≤(i−1)) ≤ r. Because that events Πi,a only
depends on j < i, |πPi,a − π

Q
i,a| ≤ dTV (P≤(i−1), Q≤(i−1)) ≤ r for all a. Consequently, we have

dTV (P,Q) = dTV (P≤d, Q≤d) ≤ r.

21


	Introduction
	Our Results and Contributions
	Related Work

	Preliminaries
	Total Variation Distance between Bayesian Networks
	Expanding the Distribution to Match Conditional Probability Table
	Deterministic Conditions on Good Samples
	Robust Mean Estimation and Stability Conditions

	Overview of Our Approach
	Robust Learning of Bayesian Networks in Nearly-Linear Time
	Deterministic Conditions on Good Samples
	Stability Condition of (X, q)
	Robust Mean Estimation with Sparse Input
	Omitted Proofs from Section 4

