
ROI Maximization
in Stochastic Online Decision-Making

Supplementary Material

A Decision-Making Policies
In this section, we give a formal functional definition of the decision-making policies introduced
in Section 3. During each task, the agent sequentially observes samples xi ∈ [−1, 1] representing
realizations of stochastic observations of the current innovation value. A map τ : [−1, 1]N → N is a
duration (of a decision task) if for all x ∈ [−1, 1]N, its value d = τ(x) ∈ N at x depends only on the
first d components x1, x2, . . . , xd of x = (x1, x2, . . .); mathematically speaking, if X is a discrete
stochastic process (i.e., a random sequence), then τ(X) is a stopping time with respect to the filtration
generated by X . This definition reflects the fact that the components x1, x2, . . . of the sequence
x = (x1, x2, . . .) are generated sequentially, and the decision to stop testing an innovation depends
only on what occurred so far. A concrete example of a duration function is the one, mentioned in
the introduction and formalized in (4), that keeps drawing samples until the empirical average of the
observed values xi surpasses/falls below a certain threshold, or a maximum number of samples have
been drawn.

To conclude a task, the agent has to make a decision: either accepting or rejecting the current
innovation. Formally, we say that a function accept : N× [−1, 1]N → {0, 1} is a decision (to accept)
if for all d ∈ N and x ∈ [−1, 1]N, its value accept(d,x) ∈ {0, 1} at (d,x) depends only on the
first d components x1, . . . , xd of x = (x1, x2, . . .). Again, this definition reflects the fact that the
decision accept(d,x) to either accept (accept(d,x) = 1) or reject (accept(d,x) = 0) the current
innovation after observing the first d values x1, . . . , xd of x = (x1, x2, . . .) is oblivious to all future
observations xd+1, xd+2, Following up on the concrete example above, the decision function is
accepting the current innovation if and only if the the empirical average of the observed values xi
surpasses a certain threshold.6

Since the only two choices that an agent makes in a decision task are when to stop drawing new
samples and whether or not to accept the current innovation, the behavior of the agent during each
task is fully characterized by the choice of a pair π = (τ, accept) that we call a (decision-making)
policy, where τ is a duration and accept is a decision.

B Technical Lemmas for Theorem 1
In this section, we give formal proofs of all results needed to prove Theorem 1.

Lemma 5. Under the assumptions of Theorem 1, the event

r̂−n (k) ≤ reward(πk) ≤ r̂+
n (k) and ĉ−n (k) ≤ cost(πk) ≤ ĉ+n (k) (12)

occurs simultaneously for all n = 1, . . . , Nex and all k = 1, . . . ,max(Cn) with probability at least
1− δ.

Proof. Let, for all n, k,

εn =

√
ln(4KNex/δ)

2n
, rn(k) = r̂+

n (k)− 2εn, cn(k) = ĉ+n (k)− (k − 1)εn (13)

6Note that, even for decision functions that only look at the mean of the first d values, our definition is more
general than simple threshold functions of the form I{mean ≥ εd}, as it also includes all decisions of the form
I{mean ∈ Ad}, for all measurable Ad ⊂ R.

16

Note that cn(k) is the empirical average of n i.i.d. samples of cost(πk) for all n, k by definitions
(13), (6), (1), (3), and point 4 in the formal definition of our protocol (Section 3). We show now
that rn(k) is the empirical average of n i.i.d. samples of reward(πk) for all n, k; then claim (8)
follows by Hoeffding’s inequality. Indeed, by the conditional independence of the samples and being
accept(k,x) independent of the variables (xk+1, xk+2, . . .) by definition, for all tasks n, all policies
k ∈ Cn, and all i > max(Cn) (≥ k by monotonicity of k 7→ k),

E
[
Xn,i accept

(
τk(Xn),Xn

) ∣∣∣µn] = E [Xn,i | µn]E
[
accept

(
τk(Xn),Xn

) ∣∣∣µn]
= µn E

[
accept

(
τk(Xn),Xn

) ∣∣∣µn]
= E

[
µn accept

(
τk(Xn),Xn

) ∣∣∣µn]
Taking expectations with respect to µn on both sides of the above, and recalling definitions (13), (5),
(1), (3), (4) proves the claim. Thus, Hoeffding’s inequality implies, for all fixed n, k,

P
(
r̂−n (k) ≤ reward(πk) ≤ r̂+

n (k)
)

= P
(∣∣rn(k)− reward(πk)

∣∣ ≤ 2εn

)
≥ 1− δ

2KNex

P
(
ĉ−n (k) ≤ cost(πk) ≤ ĉ+n (k)

)
= P

(∣∣cn(k)− cost(πk)
∣∣ ≤ (K − 1)εn

)
≥ 1− δ

2KNex

Applying a union bound shows that event (8) occurs simultaneously for all n ∈ {1, . . . , Nex} and
k ∈ {1, . . . ,max(Cn)} with probability at least 1− δ.

Lemma 6. Under the assumptions of Theorem 1, if the event (12) occurs simultaneously for all
n = 1, . . . , Nex and all k = 1, . . . ,max(Cn), and ∆ > 0, (i.e., if there is a unique optimal policy),
then all suboptimal policies are eliminated after at most N ′ex tasks, where

N ′ex ≤
288K2 ln(4KNex/δ)

∆2
+ 1 (14)

Proof. Note first that (12) implies, for all n ≥ 2K2 ln(4KNex/δ) (guaranteed by line 5) and all
k ∈ Cn

r̂−n (k)

ĉ+n (k)
≤ reward(πk)

cost(πk)
≤ r̂+

n (k)

ĉ−n (k)
if r̂+

n (k) ≥ 0

r̂−n (k)

ĉ−n (k)
≤ reward(πk)

cost(πk)
≤ r̂+

n (k)

ĉ+n (k)
if r̂+

n (k) < 0

In other words, the interval[
r̂−n (k)

ĉ+n (k)
I
{
r̂+
n (k) ≥ 0

}
+
r̂−n (k)

ĉ−n (k)
I
{
r̂+
n (k) < 0

}
,
r̂+
n (k)

ĉ−n (k)
I
{
r̂+
n (k) ≥ 0

}
+
r̂+
n (k)

ĉ+n (k)
I
{
r̂+
n (k) < 0

}]
is a confidence interval for the value reward(πk)/cost(πk) that measures the performance of πk. Let,
for all n, k,

εn =

√
ln(4KNex/δ)

2n
, rn(k) = r̂+

n (k)− 2εn, cn(k) = ĉ+n (k)− (k − 1)εn (15)

If r̂+
n (k) ≥ 0, by the definitions in (15), the length of this confidence interval is

rn(k) + 2εn
cn(k)− (k − 1)εn

− rn(k)− 2εn
cn(k) + (k − 1)εn

=
2εn
(
2 cn(k) + (k − 1) rn(k)

)
cn(k)2 − (k − 1)2 ε2n

≤ 12Kεn

where for the numerator we used the fact that cn(k) (resp., rn(k)) is an average of random variables
all upper bounded by k (resp., 1) and the denominator is lower bounded by 1/2 because cn(k)2 ≥ 1,
(k2 − 1) ε2n ≤ 1/2 by n ≥ 2K2 ln(4KNex/δ) (line 4), and k/K ≤ 1 (by monotonicity of k 7→ k).
Similarly, if r̂+

n (k) < 0, the length of the confidence interval is

rn(k) + 2εn
cn(k) + (k − 1)εn

− rn(k)− 2εn
cn(k)− (k − 1)εn

=
2εn
(
2 cn(k)− (k − 1) rn(k)

)
cn(k)2 − (k − 1)2 ε2n

≤ 12Kεn

17

where, in addition to the considerations above, we used 0 < −r̂+
n (k) < −rn(k) ≤ 1. Hence, as

soon as the upper bound 12Kεn on the length of each of the confidence interval above falls below
∆/2, all such intervals are guaranteed to be disjoint and by definition of Cn (line 5), all suboptimal
policies are guaranteed to have left Cn+1. In formulas, this happens at the latest during task n, where
n ≥ 2K2 ln(4KNex/δ) satisfies

12Kεn <
∆

2
⇐⇒ n > 288 (K/∆)2 ln(4KNex/δ)

This proves the result.

Lemma 7. Under the assumptions of Theorem 1, if the event (12) occurs simultaneously for all
n = 1, . . . , Nex and all k = 1, . . . ,max(Cn), and the test at line 6 is true for some N ′ex ≤ Nex, then

RN ≤ min

(
(2K + 1)Nex

N
,

(2K + 1)
(
288 (K/∆)2 ln(4KNex/δ) + 1

)
N

)
(16)

Proof. Note that if the test at line 6 is true, than by (12) there exists a unique optimal policy, i.e., we
have ∆ > 0. We can therefore apply Lemma 6, obtaining a deterministic upper bound N ′′ex on the
number N ′ex of tasks needed to identify the optimal policy, where

N ′′ex = min

(
Nex,

128K2 ln(4KNex/δ)

∆2
+ 1

)
The total expected reward of Algorithm 1 divided by its total expected cost is lower bounded by

ξ =
E
[
−N ′ex +

∑N
n=N ′

ex+1 reward(πk? , µn)
]

E
[
2
∑N ′

ex
m=1 max(Cm) +

∑N
n=N ′

ex+1 cost(πk? , µn)
]

If ξ < 0, we can further lower bound it by

(N −N ′′ex) reward(πk?)−N ′′ex
(N −N ′′ex) cost(πk?) + 2N ′′ex

≥ reward(πk?)

cost(πk?)
− 3N ′′ex

N

where the inequality follows by (a− b)/(c+ d) ≥ a/c− (d+ b)/(c+ d) for all a, b, c, d ∈ R with
0 6= c > −d and a/c ≤ 1, and then using c+ d ≥ N which holds because cost(πk?) ≥ 1. Similarly,
if ξ ≥ 0, we can further lower bound it by

(N −N ′′ex) reward(πk?)−N ′′ex
(N −N ′′ex) cost(πk?) + 2KN ′′ex

≥ reward(πk?)

cost(πk?)
− (2K + 1)N ′′ex

N

Thus, the result follows by K ≥ 1 and the definition of N ′′ex.

Lemma 8. Under the assumptions of Theorem 1, if the event (12) occurs simultaneously for all
n = 1, . . . , Nex and all k = 1, . . . ,max(Cn), and the test at line 6 is false for all tasks n ≤ Nex

(i.e., if line 7 is executed with CNex+1 containing two or more policies), then

RT ≤ (K + 1)

√
8 ln(4KNex/δ)

Nex
+

(2K + 1)Nex

N

Proof. Note first that by (12) and the definition of Cn (line 5), all optimal policies belong to CNex+1.
Let, for all n, k,

εn =

√
ln(4KNex/δ)

2n
, rn(k) = r̂+

n (k)− 2εn, cn(k) = ĉ+n (k)− (k − 1)εn (17)

18

By (12) and the definitions of k′, r̂±n (k), and εn (line 7, (5), (5), and (17) respectively), for all optimal
policies πk? , if r̂+

Nex
(k?) ≥ 0, then also r̂+

Nex
(k′) ≥ 07 and

reward(πk?)

cost(πk?)
≤
r̂+
Nex

(k?)

ĉ−Nex
(k?)

≤
r̂+
Nex

(k′)

ĉ−Nex
(k′)

≤ reward(πk′) + 4εn
cost(πk′)− 2(k′ − 1)εn

≤ reward(πk′)

cost(πk′)
+

2(k′ + 1)εn
cost(πk′)− 2(k′ − 1)εn

where all the denominators are positive because Nex ≥ 8(K − 1)2 ln(4KNex/δ) and the last
inequality follows by (a + b)/(c − d) ≤ a/c + (d + b)/(c − d) for all a ≤ 1, b ∈ R, c ≥ 1, and
d < c; next, if r̂+

Nex
(k?) < 0 but r̂+

Nex
(k′) ≥ 0 the exact same chain of inequalities hold; finally, if

both r̂+
Nex

(k?) < 0 and r̂+
Nex

(k′) < 0, then r̂+
Nex

(k) < 0 for all k ∈ CNex+1
8, hence, by definition of

k′ and the same arguments used above

reward(πk?)

cost(πk?)
≤
r̂+
Nex

(k?)

ĉ+Nex
(k?)

≤
r̂+
Nex

(k′)

ĉ+Nex
(k′)

≤ reward(πk′) + 4εn
cost(πk′) + 2(k′ − 1)εn

≤ reward(πk′)

cost(πk′)
+

2(k′ + 1)εn
cost(πk′) + 2(k′ − 1)εn

≤ reward(πk′)

cost(πk′)
+

2(k′ + 1)εn
cost(πk′)− 2(k′ − 1)εn

That is, for all optimal policies πk? , the policy πk′ run at line 7 satisfies

reward(πk′) ≥ cost(πk′)

(
reward(πk?)

cost(πk?)
− 2(k′ + 1)εn

cost(πk′)− 2(k′ − 1)εn

)
≥ cost(πk′)

(
reward(πk?)

cost(πk?)
− 4(K + 1)εn

)
where in the last inequality we lower bounded the denominator by 1/2 using cost(πk′) ≥ 1 and
εn ≤ εNex

≤ 1/2 which follows by n ≥ Nex ≥ 8K2 ln(4KNex/δ) and the monotonicity of k 7→ k.
Therefore, for all optimal policies πk? , the total expected reward of Algorithm 1 divided by its total
expected cost (i.e., the negative addend in (2)) is at least

E
[
−Nex + (N −Nex) reward(πk′)

]
E
[
2
∑Nex

n=1 max(Cn) + (N −Nex) cost(πk′)
]

≥ −Nex

2
∑Nex

n=1 E
[
max(Cn)

]
+ (N −Nex)E

[
cost(πk′)

]
+

(N −Nex)E
[
cost(πk′)

]
2
∑Nex

n=1 E
[
max(Cn)

]
+ (N −Nex)E

[
cost(πk′)

] (reward(πk?)

cost(πk?)
− 4(K + 1)εn

)

≥ reward(πk?)

cost(πk?)
− 4(K + 1)εn −

Nex + 2
∑Nex

n=1 E
[
max(Cn)

]
2
∑Nex

n=1 E
[
max(Cn)

]
+ (N −Nex)E

[
cost(πk′)

]
≥ reward(πk?)

cost(πk?)
− 4(K + 1)εn −

(2K + 1)Nex

N

where we used a
b+a (x− y) ≥ x− y − b

b+a for all a, b, y > 0 and all x ≤ 1 to lower bound the third
line, then the monotonicity of k 7→ k and 2E

[
max(Cn)

]
≥ E

[
cost(πk′)

]
≥ 1 for the last inequality.

Rearranging the terms of the first and last hand side in the previous display, using the monotonicity
of k 7→ k, and plugging in the value of εn, gives

RT ≤ 4(K + 1)εn +
(2K + 1)Nex

N
= (K + 1)

√
8 ln(4KNex/δ)

Nex
+

(2K + 1)Nex

N

7Indeed, k′ ∈ argmaxk∈CNex+1

(
r̂+
Nex

(k)/ĉ−Nex
(k)
)

in this case, and r̂+
Nex

(k′) ≥ 0 follows by the two
inequalities r̂+

Nex
(k′)/ĉ−Nex

(k′) ≥ r̂+
Nex

(k?)/ĉ−Nex
(k?) ≥ 0.

8Otherwise k′ would belong to the set argmaxk∈CNex+1

(
r̂+
Nex

(k)/ĉ−Nex
(k)
)

which in turn would be in-
cluded in the set

{
k ∈ CNex+1 : r̂+

Nex
(k) ≥ 0

}
and this would contradict the fact that r̂+

Nex
(k′) < 0.

19

C A Technical Lemma for Theorem 4
In this section, we give a formal proof for a result needed to prove Theorem 4.

Lemma 2. Let Π be a countable set of policies. If ESC is run with δ ∈ (0, 1), ε1, ε2, . . . ∈ (0, 1],
and halts returning K, then k? ≤ K for all optimal policies πk? with probability at least 1− δ.

Proof. Note fist that r̂−2j + 2εj (line 2) is an empirical average of mj i.i.d. unbiased estimators
of reward(π2j). Indeed, being accept(k,x) independent of the variables (xk+1, xk+2, . . .) by
definition of duration and the conditional independence of the samples (recall the properties of
samples in step 4 of our online protocol, Section 3), for all tasks n performed at line 2 during iteration
j and all i > 2j ,

E
[
Xn,i accept

(
τ2j (Xn),Xn

) ∣∣∣µn] = E [Xn,i | µn]E
[
accept

(
τ2j (Xn),Xn

) ∣∣∣µn]
= µn E

[
accept

(
τ2j (Xn),Xn

) ∣∣∣µn] = E
[
µn accept

(
τ2j (Xn),Xn

) ∣∣∣µn]
Taking expectations to both sides proves the claim. Thus, Hoeffding’s inequality implies

P
(
r̂−2j > reward(π2j)

)
= P

((
r̂−2j + 2εj

)
− reward(π2j) > 2εj

)
≤ δ

j(j + 1)

for all j ≤ j0. Similarly, for all l > j0, P
(
c2l − cost(π2l) > 2l εl

)
≤ δ

l(l+1) . Hence, the event{
r̂−2j ≤ reward(π2j)

}
∧
{
c2l ≤ cost(π2l)) + 2l εl

}
∀j ≤ j0,∀l > j0 (18)

occurs with probability at least

1−
j0∑
j=1

δ

j(j + 1)
−

j1∑
l=j0+1

δ

l(l + 1)
≥ 1− δ

∑
j∈N

1

j(j + 1)
= 1− δ

Note now that for each policy πk with reward(πk) ≥ 0 and each optimal policy πk? ,

reward(πk)

k
≤ reward(πk)

cost(πk)
≤ reward(πk?)

cost(πk?)
≤ 1

cost(πk?)
(19)

Hence, all optimal policies πk? satisfy cost(πk?) ≤ k/reward(πk) for all policies πk such that
reward(πk) > 0. Being durations sorted by index, for all k ≤ h

cost(πk) = E
[
cost(πk, µn)

]
≤ E

[
cost(πh, µn)

]
= cost(πh) (20)

Thus, with probability at least 1− δ, for all k > K

cost(πk)
(20)
≥ cost(πK)

(18)
≥ cK −K εlog2K

line 6
>

k0

r̂−k0
≥ k0

reward(k0)

where reward(k0) ≥ r̂−k0 > 0 by (18) and line (3); i.e., πk do not satisfy (19). Therefore, with
probability at least 1− δ, all optimal policies πk? satisfy k? ≤ K.

D Choice of Performance Measure
In this section, we discuss our choice of measuring the performance of policies π with∑N

n=1 E
[
reward(π, µn)

]∑N
m=1 E

[
cost(π, µm)

] =
reward(π)

cost(π)

We compare several different benchmarks and investigate the differences if the agent had a budget
of samples and a variable number of tasks, rather than the other way around. We will show that all
“natural” choices essentially go in the same direction, except for one (perhaps the most natural) which
turns out to be the worst.

20

At a high level, an agent constrained by a budget would like to maximize its ROI. This can be done
in several different ways. If the constraint is on the number N of tasks, then the agent could aim at
maximizing (over π = (τ, accept) ∈ Π) the objective g1(π,N) defined by

g1(π,N) = E

[∑N
n=1 reward(π, µn)∑N
m=1 cost(π, µm)

]
This is equivalent to the maximization of the ratio

reward(π)

cost(π)
=

E
[
reward(π, µn)

]
E
[
cost(π, µn)

]
in the sense that, multiplying both the numerator and the denominator in g1(π,N) by 1/N and ap-
plying Hoeffding’s inequality, we get g1(π,N) = Θ

(
reward(π)/cost(π)

)
. Furthermore, by the law

of large numbers and Lebesgue’s dominated convergence theorem, g1(π,N)→ reward(π)/cost(π)
when N →∞ for any π ∈ Π.

Assume now that the constraint is on the total number of samples instead. We say that the agent has
a budget of samples T if as soon as the total number of samples reaches T during task N (which
is now a random variable), the agent has to interrupt the run of the current policy, reject the current
value µN , and end the process. Formally, the random variable N that counts the total number of tasks
performed by repeatedly running a policy π = (τ, accept) is defined by

N = min

{
m ∈ N

∣∣∣∣ m∑
n=1

τ(Xn) ≥ T

}
In this case, the agent could aim at maximizing the objective

g2(π, T) = E

[∑N−1
n=1 reward(π, µn)

T

]
where the sum is 0 ifN = 1 and it stops atN−1 because the the last task is interrupted and no reward
is gained. As before, assume that τ ≤ D, for some D ∈ N. Note first that by the independence of µn
and Xn from past tasks, for all deterministic functions f and all n ∈ N, the two random variables
f(µn,Xn) and I{N ≥ n} are independent, because I{N ≥ n} = I

{∑n−1
i=1 τ(Xi) < T

}
depends

only on the random variables τ(X1), . . . , τ(Xn−1). Hence

E
[
reward(π, µn) I{N ≥ n}

]
= reward(π)P(N ≥ n)

E
[
cost(π, µn) I{N ≥ n}

]
= cost(π)P(N ≥ n)

Moreover, note that during each task at least one sample is drawn, hence N ≤ T and
∞∑
n=1

E
[∣∣reward(π, µn)

∣∣ I{N ≥ n}] ≤ T∑
n=1

E
[∣∣reward(π, µn)

∣∣] ≤ T <∞

∞∑
n=1

E
[
cost(π, µn) I{N ≥ n}

]
≤

T∑
n=1

E
[
cost(π, µn)

]
= T cost(π) ≤ TD <∞

We can therefore apply Wald’s identity (Wald, 1944) to deduce

E

[
N∑
n=1

reward(π, µn)

]
= E[N] reward(π) and E

[
N∑
n=1

cost(π, µn)

]
= E[N] cost(π)

which, together with

E

[
N∑
n=1

cost(π, µn)

]
≥ T ≥ E

[
N∑
n=1

cost(π, µn)

]
−D

and

E

[
N∑
n=1

reward(π, µn)

]
− 1 ≤ E

[
N−1∑
n=1

reward(π, µn)

]
≤ E

[
N∑
n=1

reward(π, µn)

]
+ 1

21

yields
E[N] reward(π)− 1

E[N] cost(π)
≤ g2(π, T) ≤ E[N] reward(π) + 1

E[N] cost(π)−D
if the denominator on the right-hand side is positive, which happens as soon as T > D2 by ND ≥∑N
n=1 τ(Xn) ≥ T and cost(π) ≥ 1. I.e., g2(π, T) = Θ

(
reward(π)/cost(π)

)
and noting that

E[N] ≥ T/D → ∞ if T → ∞, we have once more that g2(π, T) → reward(π)/cost(π) when
T →∞ for any π ∈ Π.

This proves that having a budget of tasks, samples, or using any of the three natural objectives
introduced so far is essentially the same.

Before concluding the section, we go back to the original setting and discuss a very natural definition
of objective which should be avoided because, albeit easier to maximize, it is not well-suited for this
problem. Consider as objective the average payoff of accepted values per amount of time used to
make the decision, i.e.,

g3(π) = E
[

reward(π, µn)

cost(π, µn)

]
We give some intuition on the differences between the ratio of expectations and the expectation of the
ratio g3 using the concrete example (4) and we make a case for the former being better than the latter.

More precisely, if N decision tasks have to be performed by the agent, consider the natural policy
class {πk}k∈{1,...,K} =

{
(τk, accept)

}
k∈{1,...,K} given by

τk(x) = min

k, inf

n ∈ N : |xn| ≥ c

√
ln KN

δ

n


 , accept(n,x) = I

xn ≥ c
√

ln KN
δ

n


for some c > 0 and δ ∈ (0, 1), where xn = (1/n)

∑n
i=1 xi is the average of the first n elements of

the sequence x = (x1, x2, . . .).

If K � 1, there are numerous policies in the class with a large cap. For concreteness, consider the
last one (τK , accept) and let k =

⌈
c2 ln(KN/δ)

⌉
. If µn is uniformly distributed on {−1, 0, 1}, then

(
τK(X0), accept

(
τK(X0),X0

))
=


(k, 1) if µ1 = 1

(k, 0) if µ1 = −1

(K, 0) if µ1 = 0

i.e., the agent understands quickly (drawing only k samples) that µn = ±1, accepting it or rejecting
it accordingly, but takes exponentially longer (K � k samples) to figure out that the value is
nonpositive when µn = 0. The fact that for a constant fraction of tasks (1/3 of the total) π invests a
long time (K samples) to earn no reward makes it a very poor choice of policy. This is not reflected
in the value of g3(πK) but it is so in reward(πK)/cost(πK). Indeed, in this instance

E
[

reward(πK , µn)

cost(πK , µn)

]
= Θ

(
1

k

)
� Θ

(
1

K

)
=

reward(πK)

cost(πK)

This is due to the fact that the expectation of the ratio “ignores” outcomes with null (or very small)
rewards, even if a large number of samples is needed to learn them. On the other hand, the ratio of
expectations weighs the total number of requested samples and it is highly influenced by it, a property
we are interested to capture within our model.

E An Impossibility Result
We conclude the paper by showing that, in general, given µn it is impossible to define an unbiased
estimator of the reward of all policies using only the samples drawn by the policies themselves, unless
µn is known beforehand.

Take a policy π1 = (1, accept) that draws exactly one sample. Note that such a policy is included in
all sets of policies Π so this is by no means a pathological example. As before, assume for the sake
of simplicity that samples take values in {−1, 1} and consider any decision function accept such
that accept(1,x) = (1 + x1)/2 for all x = (x1, x2, . . .). In words, the policy π1 looks at one single

22

sample x1 ∈ {−1, 1} and accepts if and only if x1 = 1. As discussed earlier (Section 2, Repeated
A/B testing, and Section D, where µ is concentrated around [−1, 0]∪{1}), there are settings in which
this policy is optimal, so this choice of decision function cannot be dismissed as a mathematical
pathology.

The following lemma shows that in the simple, yet meaningful case of the policy π1 described above,
it is impossible to define an unbiased estimator of its expected reward given µn

E
[
µn accept(1,Xn) | µn

]
= µn E

[
1 +Xn,1

2
| µn

]
=
µn + µ2

n

2

using only Xn,1, unless µn is known beforehand.

Lemma 9. Let X̃ be a {−1, 1}-valued random variable with E[X̃] = µ̃, for some real number µ̃. If
there exists an unbiased estimator f(X̃) of

(
µ̃+ µ̃2

)
/2, for some f : {−1, 1} → R, then f satisfies

f(−1) = 0 if µ̃ = −1

f(1) = µ̃− f(−1)
1− µ̃
1 + µ̃

if µ̃ 6= −1

i.e., to define any such f (thus, any unbiased estimator of
(
µ̃+ µ̃2

)
/2) it is necessary to know µ̃.

Proof. From E[X̃] = 1 · P(X̃ = 1) + (−1) · P(X̃ = −1) = −1 + 2P(X̃ = 1) and our assumption
E[X̃] = µ̃, we obtain P(X̃ = 1) = (1 + µ̃)/2.

Let f : {−1, 1} → R be any function satisfying E
[
f(X̃)

]
=
(
µ̃+ µ̃2

)
/2. Then, from the law of the

unconscious statistician

E
[
f(X̃)

]
= f(1)P(X̃ = 1) + f(−1)P(X̃ = −1) = f(1)

1 + µ̃

2
+ f(−1)

1− µ̃
2

and our assumption E
[
f(X̃)

]
=
(
µ̃+ µ̃2

)
/2, we obtain

f(1)(1 + µ̃) + f(−1)(1− µ̃) = µ̃+ µ̃2

Thus, if µ̃ = −1, we have f(−1) = 0. Otherwise, solving for f(1) gives the result.

23

