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A DISCUSSION

This section discusses several pertinent questions that might arise from the ZO-Offloading frame-
work, providing deeper insights into the design decisions and operational nuances of the system.

• CPU offloading does not excessively consume CPU memory. Typically, in traditional
PyTorch training, CPU memory is inevitably consumed to accommodate the model’s pa-
rameters, as both the model’s initialization and its subsequent storage necessitate CPU
memory allocation.

• The disk offloading strategy has been abandoned. Although our asynchronous check-
pointing could inspire the disk offloading strategy to extend CPU offloading, prior experi-
mentation with disk offloading revealed that the latency involved in disk-CPU-GPU com-
munication significantly hampers performance—occasionally, the time taken for a single
block’s communication exceeds the total computation time of the model on the GPU. Our
goal is to maximize throughput without compromising it through offloading. Consequently,
we have abandoned the disk offloading strategy.

• The multi-GPU strategy is not adopted. The primary aim of this paper is to reduce
reliance on GPU memory by leveraging increased CPU memory instead. We believe that
the current system architecture adequately supports most model sizes (up to 175 billion
parameters) without the need for expanding to multiple expensive GPUs.

B ADDITIONAL DETAILS ON MOTIVATIONS AND PREVIOUS APPROACHES

(a) Model using first-order optimizer with forward-
backward passes workflow

(b) Model using zero-order optimizer with only for-
ward passes workflow

Figure 5: Motivation. Comparison of model workflows using first-order and zeroth-order optimiz-
ers. (a) depicts a traditional first-order optimizer workflow with forward and backward passes, while
(b) shows a zeroth-order optimizer workflow utilizing only forward passes.

Why ZO is Suitable for CPU Offloading Figure 5 illustrates the distinct operational differences
between first-order and zeroth-order optimization methods applied to model training. Figure 5(a)
demonstrates a traditional first-order optimizer setup, where the model employs a forward-backward
pass sequence to update weights. Here, the input X progresses through several linear transforma-
tions (Linear 1, 2, 3), generating intermediate activations (X1, X2) and the final output Y , which
is used to compute the loss. Subsequent backward passes calculate gradients (dW1, dW2, dW3) for
each weight and derivatives for each activation (dX, dX1, dX2), necessary for parameter updates
through gradient descent. In this setup, each parameter W is offloaded from the GPU to the CPU
after the forward computation but requires reloading during backpropagation, resulting in dual trans-
fers for each parameter in the computation process. Additionally, activations consume significant
GPU memory.

In contrast, Figure 5(b) presents the zeroth-order optimizer’s workflow, which simplifies the train-
ing process by eliminating the backward passes. This setup involves dual forward passes through
slightly perturbed versions of the model weights (W 0

1,W
0
2,W

0
3) at each layer (Dual Linear 1, 2, 3).

The resulting outputs from each layer (X 0
, X

0
1, X

0
2) and the final output Y 0 are used to compute a

dual loss. This dual loss approximates the gradient required for updating the original weights, re-
lying solely on forward computations. This approach not only reduces computational overhead and
memory demands by obviating the need to store activations but also enhances efficiency by requir-
ing only a single transmission of each parameter W during the entire computational flow—-from
the GPU to the CPU after its final usage in the dual forward passes—-thereby eliminating the need
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for subsequent reloading during backpropagation. The ZO method’s reliance on forward-only com-
putations and efficient CPU offloading significantly benefits the training of large models on limited
hardware setups.

Figure 6: Workflow of the naive and non-overlap ZO-Offloading framework with only dual forward
passes. This diagram demonstrates the sequential process without communication and computation
overlap, using the pure PyTorch framework.

Why the Dynamic Scheduler and Overlap Matter Figure 6 provides a visual depiction of the
workflow in the naive ZO-Offloading framework, specifically illustrating the naive, non-overlapping
approach to dual forward passes. In this workflow, data is initially loaded from the CPU to the
GPU, starting with the input processed through the embedding layer. Each transformer block (from
Block 1 to Block n) is then sequentially processed: first uploaded to the GPU, where dual forward
computations occur, and then offloaded back to the CPU after computation is complete.

This step-by-step process highlights a significant inefficiency in the current implementation: the
GPU must wait for each block to be offloaded back to the CPU before the next block can be up-
loaded and processed. This results in substantial idle times for the GPU during offloads, and the
CPU during uploads, as each unit must wait for the other to complete its task before proceeding.
Such lack of overlap between computation (green arrows) and communication (blue arrows) tasks
demonstrates a critical area for improvement, underlining the necessity for an overlapped or asyn-
chronous approach to enhance overall system efficiency and throughput. By addressing this ineffi-
ciency, we can significantly reduce the training time and increase the utilization of both CPU and
GPU resources.

(a) Model parameter updates without the efficient
strategy.

(b) Model parameter updates with the efficient strat-
egy.

Figure 7: Comparison of model parameters updates without/with efficient strategy. (a) illus-
trates the process where, at the j-th iteration, the model computes the projected gradient gj using the
dual-forward method and subsequently updates the model parameters. (b) demonstrates that at the
j-th iteration, the model first updates the parameters using the previously saved projected gradient
gj�1, and then performs the dual-forward pass to compute the new projected gradient gj .

Figure 7 illustrates the traditional and efficient approaches to model parameter updates. Typically, in
the j-th iteration, model parameters are updated post the dual-forward passes, which necessitates the
offloading of parameters from the GPU to the CPU following these computations. This offloading
results in the parameters needing to be re-uploaded to the GPU solely for updates, leading to dual
communication overhead (indicated by the two dotted boxes).
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In contrast, our strategy reconfigures the j-th iteration by first applying the projected gradient from
the j � 1-th iteration to update the model parameters. Subsequently, the j-th dual-forward pass
is performed to compute the new projected gradient. This adjustment reduces the communication
demands to a single instance (indicated by the one dotted box) per iteration, streamlining the entire
process and reducing time delays associated with multiple data transfers.

C EXPERIMENT SETTINGS

1. MODEL SPECIFICATIONS:

• Model Family: We used the Open Pre-trained Transformer (OPT) (Zhang et al., 2022)
model family for our experiments, ranging from 125 million to 175 billion parameters, to
assess our framework’s scalability and performance across different complexities.

• Baseline Model: The MeZO (Memory-efficient Zeroth-Order) serves as the baseline for
comparison, known for its efficiency in memory throughput among Zeroth-Order offload-
ing methods.

2. DATASET:

• Dataset Used: All performance evaluation experiments were conducted using the Stanford
Sentiment Treebank (SST-2) dataset, a standard benchmark for evaluating natural language
processing models.

3. HYPERPARAMETERS:

• Learning Rate: 1⇥ 10�7

• Steps: 100
• Batch Size: 1
• Sequence Length: 2048

4. COMPUTATIONAL RESOURCES:

• GPU: NVIDIA A100 with 80GB of memory.
• CPU: AMD Milan.
• Software: Experiments were conducted using Python version 3.11, PyTorch 2.4.0, and

CUDA 12.1.

5. EVALUATION METRICS:

• GPU Memory Usage: Measured in gigabytes (GiB).
• Throughput: Evaluated as tokens per second to assess the efficiency of the model training

under various configurations.

D MORE EXPERIMENT RESULTS

Table 4: Main results of ZO-Offloading precision on OPT-13B

Method SST-2 (%) RTE (%) CB (%) BoolQ (%) WSC (%) WIC (%) MultiRC (%)
MeZO 91.4 66.1 67.9 67.6 63.5 61.1 60.1

ZO-Offloading 91.4 66.1 67.9 67.6 63.5 61.1 60.1

Results on Accuracy. In this experimental evaluation, we aim to demonstrate the effectiveness
of the ZO-Offloading method in maintaining precision across multiple NLP benchmarks when
fine-tuning the OPT-13B model. The benchmarks selected for this study include SST-2 (Socher
et al., 2013) for sentiment analysis, RTE (Dagan et al., 2005) for recognizing textual entailment,
CB (De Marneffe et al., 2019) for coreference resolution, BoolQ (Clark et al., 2019) for ques-
tion answering, WSC (Levesque et al., 2012) for Winograd schema challenge, WIC (Pilehvar &
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Camacho-Collados, 2018) for word-in-context disambiguation, and MultiRC (Khashabi et al., 2018)
for multiple-choice reading comprehension. These datasets are chosen due to their diverse linguistic
challenges and the depth of language understanding they require.

As shown in Table 4, ZO-Offloading achieves identical precision rates to the baseline MeZO ap-
proach across all evaluated benchmarks. This parity in performance is significant as it underscores
the ZO-Offloading’s ability to effectively maintain model precision despite the GPU memory usage
reductions afforded by zeroth-order optimizers.

Table 5: Throughput (token/sec) results to validate proposed features.

Model MeZO ZO-Offloading ZO-Offloading ZO-Offloading ZO-Offloading(no scheduler overlap) (no reusable memory) (no efficient update)
OPT-125M 14889 9486 (x0.64) 5807 (x0.39) 13031 (x0.88) 13074 (x0.89)
OPT-350M 5274 3432 (x0.65) 1951 (x0.37) 5099 (x0.97) 5099 (x0.97)
OPT-1.3B 1954 1109 (x0.57) 735 (x0.38) 1567 (x0.80) 1954 (x1.00)
OPT-2.7B 1087 573 (x0.52) 422 (x0.39) 849 (x0.78) 1087 (x1.00)
OPT-6.7B 499 225 (x0.45) 184 (x0.37) 373 (x0.74) 499 (x1.00)
OPT-13B 270 105 (x0.39) 103 (x0.38) 198 (x0.73) 270 (x1.00)
OPT-30B - 35 46 81 122
OPT-66B - 22 15 36 40

OPT-175B - 8 5 13 14

Full Ablation Study on Throughput. This comprehensive ablation study extends our evaluation
across the entire OPT model family, from 125 million to 175 billion parameters, validating the im-
pact of key features on throughput. As detailed in Table 5, removing scheduler overlap consistently
leads to notable throughput reductions, particularly in larger models, highlighting its importance in
task management. The absence of reusable memory shows the most substantial decreases across all
sizes, emphasizing its role in efficient memory management. Similarly, disabling efficient param-
eter updating variably impacts throughput, with larger models demonstrating a critical dependence
on this feature for maintaining performance.

Table 6: Throughput (token/sec) results to validate proposed asynchronous checkpointing.

Model MeZO MeZO ZO-Offloading ZO-Offloading ZO-Offloading
(torch.save) (torch.save) (Async-Checkpoint)

OPT-1.3B 1954 319 (x0.16) 1954 (x1.00) 462 (x0.24) 1954 (x1.00)
OPT-2.7B 1087 160 (x0.15) 1087 (x1.00) 221 (x0.20) 1087 (x1.00)
OPT-6.7B 499 52 (x0.10) 499 (x1.00) 88 (x0.18) 499 (x1.00)

Asynchronous Checkpointing Experiment and Results Analysis. The asynchronous checkpoint-
ing feature was implemented in our ZO-Offloading framework to minimize the delays associated
with traditional checkpointing in large-scale models like OPT-1.3B, OPT-2.7B, and OPT-6.7B. The
experiment tested five scenarios: MeZO without checkpointing (“MeZO”), MeZO with traditional
synchronous checkpointing using torch.save (“MeZO (torch.save)”), ZO-Offloading without
checkpointing (“ZO-Offloading”), ZO-Offloading with traditional synchronous checkpointing using
torch.save (“ZO-Offloading (torch.save)”), and ZO-Offloading with asynchronous checkpoint-
ing (“ZO-Offloading (Async-Checkpoint)”). The checkpointing process involved dividing model
parameters into two halves, p1 and p2, which were alternately saved to disk asynchronously to
prevent interruption in model computation.

The throughput results, detailed in Table 6, show that traditional checkpointing with
torch.save() significantly reduces throughput across all models tested, with the most consider-
able drop seen in the OPT-6.7B model to just 10% of its baseline performance. However, the drop is
less severe in “ZO-Offloading (torch.save)” compared with “MeZO (torch.save)” due to the limited
data transfer time from GPU to CPU. We can see that ZO-Offloading with asynchronous check-
pointing maintained full baseline throughput compared with ZO-Offloading without checkpointing.
These findings demonstrate the effectiveness of the asynchronous checkpointing mechanism, which
ensures that the training process remains uninterrupted and efficient.

Differential Batch-size and Sequence Length Analysis. This analysis explores the impact of
varying batch sizes and sequence lengths on the performance of the ZO-Offloading compared to
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Table 7: Different batch-size analysis.

Model B Memory Usage (MB) Throughput (tokens/sec)
MeZO ZO-Offloading MeZO ZO-Offloading

OPT-1.3B 9117 4413 (x0.48) 1954 1954 (x1.00)
OPT-2.7B 1 15277 5261 (x0.34) 1087 1087 (x1.00)
OPT-6.7B 32083 8329 (x0.26) 499 499 (x1.00)
OPT-1.3B 10809 6617 (x0.61) 1055 1055 (x1.00)
OPT-2.7B 2 16575 7563 (x0.46) 594 594 (x1.00)
OPT-6.7B 33857 9865 (x0.29) 278 278 (x1.00)
OPT-1.3B 13249 9451 (x0.71) 566 566 (x1.00)
OPT-2.7B 4 19409 10397 (x0.54) 312 312 (x1.00)
OPT-6.7B 37239 13485 (x0.36) 145 145 (x1.00)
OPT-1.3B 18917 15119 (x0.80) 289 289 (x1.00)
OPT-2.7B 8 24745 16065 (x0.65) 160 160 (x1.00)
OPT-6.7B 42278 19153 (x0.45) 75 75 (x1.00)

Table 8: Different sequence length analysis.

Model Length Memory Usage (MB) Throughput (tokens/sec)
MeZO ZO-Offloading MeZO ZO-Offloading

OPT-1.3B 8333 3747 (x0.45) 3689 3689 (x1.00)
OPT-2.7B 1024 14175 4669 (x0.33) 2092 2092 (x1.00)
OPT-6.7B 31475 7721 (x0.25) 901 901 (x1.00)
OPT-1.3B 9117 4413 (x0.48) 1954 1954 (x1.00)
OPT-2.7B 2048 15277 5261 (x0.34) 1087 1087 (x1.00)
OPT-6.7B 32083 8329 (x0.26) 499 499 (x1.00)
OPT-1.3B 11379 7581 (x0.67) 830 830 (x1.00)
OPT-2.7B 4096 16973 8453 (x0.50) 490 490 (x1.00)
OPT-6.7B 35549 11319 (x0.32) 250 250 (x1.00)
OPT-1.3B 32051 28253 (x0.88) 302 302 (x1.00)
OPT-2.7B 8192 37693 29173 (x0.77) 187 187 (x1.00)
OPT-6.7B 54365 32183 (x0.59) 108 108 (x1.00)
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the MeZO baseline. Tables 7 and 8 present the memory usage and throughput metrics for different
configurations of the OPT models, ranging from 1.3B to 6.7B parameters. Table 7 shows the results
for different batch-sizes. As batch size increases, there is a consistent trend where ZO-Offloading
maintains throughput equivalency with MeZO across all model sizes, despite significant reductions
in memory usage. Even at higher batch sizes, ZO-Offloading demonstrates robust performance,
showing no decrease in throughput relative to its MeZO counterpart. For example, in the OPT-
1.3B model at a batch size of 8, the throughput remains constant at 289 tokens/sec, maintaining
operational efficiency irrespective of the increased computational load.

Table 8 illustrates the impact of sequence length on throughput. Similar to the batch-size analysis,
increasing the sequence length does not compromise the throughput of ZO-Offloading, maintaining
parity with the MeZO model across varying lengths. Notably, even at a sequence length of 8192
for the OPT-1.3B model, ZO-Offloading sustains a throughput of 302 tokens/sec, effectively han-
dling larger input sizes without a drop in performance. The analyses confirm that ZO-Offloading
effectively manages larger batch sizes and sequence lengths without sacrificing throughput. This
resilience is crucial for practical deployments where varying input sizes and batch configurations
are common, underscoring the scalability and robustness of the ZO-Offloading approach in diverse
operational environments.

Table 9: Complete throughput (token/sec) results to validate AMP Mode. AMP auto-cast with
FP16 (top) and BF16 (below).

Model ZO-Offload ZO-Offload ZO-Offload ZO-Offload
(non-compress) (FP16) (BF16) (FP8)

OPT-1.3B 4827 4770 (x0.988) 4760 (x0.986) 4802 (x0.995)
OPT-2.7B 2811 2974 (x1.058) 2974 (x1.058) 2997 (x1.066)
OPT-6.7B 1271 1641 (x1.291) 1641 (x1.291) 1662 (x1.308)
OPT-13B 561 930 (x1.658) 930 (x1.658) 951 (x1.695)
OPT-30B 286 416 (x1.455) 416 (x1.455) 425 (x1.486)
OPT-66B 127 192 (x1.512) 192 (x1.512) 198 (x1.559)
OPT-175B 43 65 (x1.512) 65 (x1.512) 68 (x1.584)
OPT-1.3B 4565 4430 (x0.970) 4430 (x0.970) 4463 (x0.978)
OPT-2.7B 2778 2816 (x1.014) 2816 (x1.014) 2818 (x1.014)
OPT-6.7B 1273 1594 (x1.252) 1594 (x1.252) 1612 (x1.266)
OPT-13B 678 910 (x1.342) 910 (x1.342) 924 (x1.363)
OPT-30B 285 407 (x1.428) 407 (x1.428) 415 (x1.456)
OPT-66B 127 188 (x1.480) 188 (x1.480) 194 (x1.528)
OPT-175B 43 64 (x1.488) 64 (x1.488) 67 (x1.565)

Table 10: More Experiment Results for BLOOM (Workshop et al., 2023). Instances of ‘-’
in the table indicate scenarios where the corresponding method failed to execute due to memory
constraints. The values in parentheses (x) represent the ratio of each measurement compared to the
baseline MeZO (first column) configuration.

Model GPU Memory Usage (MB) # Throughput (tokens/sec) "
MeZO(32) ZO-Offload(32) MeZO(16) ZO-Offload(16) MeZO(32) ZO-Offload(32) MeZO(16) ZO-Offload(16)

BLOOM-176B - 49525 - 24864 - 14 - 37
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