© 0O N o o B~ W Nno=

- a4 a4 a4 a4 A o
0 N o o H~ W N =+ O

-
©

20

21
22
23
24
25
26
27
28

Learning to Walk from Three Minutes of Data with
Semi-structured Dynamics Models

Anonymous Author(s)
Affiliation
Address

email

Abstract: Traditionally, model-based reinforcement learning (MBRL) methods
exploit neural networks as flexible function approximators to represent a priori
unknown environment dynamics. However, training data is typically scarce in
practice, and these black-box models often fail to generalize beyond the train-
ing data. Modelling architectures that leverage known physics can substantially
reduce the complexity of system-identification, but break down in the face of
complex real-world phenomena such as contact. This paper introduces a novel
framework for learning predictive models for contact-rich system which seam-
lessly integrates structured first-principles modeling techniques with black-box
autoregressive models. Specifically, we develop an ensemble of probabilistic mod-
els to estimate external forces, conditioned on historical observations and actions,
and integrate these predictions using known Lagrangian dynamics. This semi-
structured approach enables us to make accurate predictions far into the future
with substantially fewer training samples than prior methods. We leverage this
capability to push the sample-complexity boundary for real-world model-based
reinforcement learning. We validate our approach through real-world experiments
with a Unitree Gol quadruped robot, learning dynamics gaits — from scratch — on
both hard and soft surfaces with just minutes of data.

Keywords: Model-Based Reinforcement Learning, Physics-Based Models

Data | Vel. Data | Vel.

1.0 (033
§ 15 013

2.0 | 0.68

3.0 | 0.98

min. | m/s min. | m/s

Figure 1: Training a Unitree Gol quadruped to walk from scratch using our method on hard ground
(left) and memory foam (right).

1 Introduction

Effective robotic agents must navigate complex interactions between the robot and its environment,
which are difficult to model using first principles. Model-based reinforcement learning is a powerful
paradigm for controller synthesis [1], wherein the robot learns a generative dynamics model through
repeated interaction with the environment. The model can then be used to hallucinate synthetic roll-
outs [2], providing a source of data augmentation for policy optimization algorithms [3, 4, 5]. When
the model is accurate, it can generate long rollouts which extrapolate beyond the training data and
substantially reduce the number of real samples needed to learn an effective control strategy. How-
ever, in practice, the black-box neural network models favored in the model-based reinforcement

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50

51

52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78

learning (MBRL) literature struggle to generalize beyond the training data [6, 7, 8], and thus do not
outperform modern model-free alternatives [9, 10]. Currently, both paradigms are too inefficient and
unreliable to make learning new behaviors in the real world practical for many applications.

An appealing alternative is to leverage knowledge of physics to design model classes which can
generalize beyond small real-world training sets. This general approach has been used for efficient
controller synthesis across many bodies of work, ranging from classic adaptive control techniques
[11, 12, 13, 14] to more recent physics-informed neural architectures [15, 16, 17]. However, while
models built upon physical first principles can reliably capture the rough structure of the dynamics,
they break down in the face of complex phenomena which are difficult to model such as contact
[18]. Moreover, even modelling these interactions typically requires access to privileged information
about the environment. State-of-the-art MBRL methods [6, 7, 8] ‘branch’ hallucinated trajectories
off states encountered by the robot in the real world, but high-fidelity contact solvers [19, 20] require
access to features such as the geometry of the ground under the robot and precise locations where
contact is made. Reliably estimating these quantities at runtime is an open and active area of research
[21, 22, 23, 24, 25]. Due to these challenges, however, real-world learning of control policies using
first-principles models has largely excluded contact-rich systems.

These issues beg the question: can we develop a model-based policy optimization framework that
is implementable in the real world and which leverages the structure of physics-based models to
accelerate learning? To make this question concrete, this paper focuses on the problem of learning
an effective locomotion strategy for a quadrupedal robot entirely from scratch in the real world,
as depicted in Fig. 1. We consider the case where the robot’s observations include proprioceptive
measurements via joint encoders, IMU measurements, and a global velocity estimator.

We can begin unpacking this question by studying the Lagrangian dynamics for the robot:
M(q)i+C(g,4) + G(g) = Br + J'F*, (1)

where ¢ and ¢ are the generalized coordinates and velocities of the robot, motor torques 7 are dis-
tributed to the joints by the matrix B, F'® represents the external forces acting on the robot, J is the
Jacobian, and M, C, and G are the mass matrix, Coriolis terms, and gravity vector. Here, B, M, C,
and G are determined by the geometry and inertial properties of the robot, which are known a priori.

Thus, J7 F* is the only unknown term in the dynamics, but we can fully exploit the remaining struc-
ture of the Lagrangian differential when performing system identification. We estimate J F® using
an ensemble of probabilistic models [26] which are conditioned on a history of available observa-
tions and actions. The history enables the models to infer latent representations of the environment,
similar to recent works on simulation-based training [27], that are useful for inferring the exter-
nal torques that will act on the robot. We fit these models by a) propagating the external torque
estimate through the Lagragian dynamics (1) to construct informative multi-step prediction losses,
and () using techniques from filtering theory [12] to attenuate the effects of noisy state estimates.
By using these techniques, we avoid the need to add random fjittering’ exploration noise to the
robots actions when learning the dynamics model, which can potentially damage hardware but is
required but is required for many less structured approaches. Altogether, our approach (Fig. 2) uni-
fies structured system identification techniques with black-box modeling and learns semi-structured
(auto-regressive, history-conditioned) models which demonstrate substantial generalization capabil-
ities beyond typical approaches.

Finally, we put these piece together to push model-based policy optimization algorithms into new
regimes of sample efficiency. The sample efficiency of modern policy optmization algorithms are
limited by the update-to-data ratio (UTD), which is ratio of policy updates to real world data points.
In particular, when too many updates are performed algorithms will over-fit to the data set and be-
come unstable. Because black-box MBRL algorithms can produce synthetic data, they can support
relatively high UTD’s. Our approach, however, is able to produce rollouts that generalize far be-
yond the available training data and leverage a substantially richer synthetic data set. As a result,
our approach supports UTDs that are substantially higher that prior model-based method, enabling
aggressive policy optimization in low-data regimes.

79

80
81

82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98

99

101
102
103
104
105
106
107
108

110
111

Probabilistic dynamics model ensemble

Lagrangian Dynamics

M(q)§ +C(q,9)q + G(q) = Br

i

Deterministic
Policy

&

Model-free RL

Real world

A~

Hallucination

T
Stochastic

Policy N‘;,v Noise Estimators

Policy updates

Figure 2: Our approach. A deterministic policy is used to collect data from the real world while a
stochastic policy is utilized in conjunction with the learned dynamics model to “hallucinate” short
synthetic rollouts which branch from this data. The model incorporates Lagrangian dynamics and
encodes previous state predictions, which are fed to external torque and noise estimators to predict
future states. The synthetic data is used with a model-free RL algorithm to update the policies.

2 Preliminaries and Problem Formulation

Our goal is to learn control policies from scratch in the real-world which enable the Unitree Gol
quadruped to locomote as rapidly as possible.

Control Architecture: In this work, we use a policy which only has access to histories of proprio-
ceptive measurements from joint encoders and IMU measurements, but not access to global coordi-
nates such as the height of the robot above the ground. We adopt the control architecture depicted
in Fig. 3, which is similar to many prior works on RL-based locomotion [27, 28, 29]. We optimize
a feed-forward neural network policy which takes in histories of available observations and outputs
(i) changes to parameters of a nominal feed-forward repetitive stepping motion that generates de-
sired foot positions and (ii) offsets to these nominal foot positions. The resulting foot positions are
sent to an inverse kinematics solver which computes desired joint positions. These desired joint
positions are output at 100 Hz to low-level joint PD controllers for conversion to torques.

Notation: While the underlying dynamics of the robot evolve in continuous time according to the
differential equation (1), the policy acts in discrete time and we will use subscripts to denote discrete
time steps. The state of the robot s; € S C R*1 captures the available proprioceptive states within
q¢ and their velocities ¢;. We capture the state of the environment (or extrinsics) with the variable
e: € &, which includes non-proprioceptive information (such as the height of the robot above the
ground) and the state of the ground underfoot (such as terrain deformation and temperature effects).
The actions for the robot a; € A C R*2 are simply the aforementioned outputs of the policy. The
overall dynamics for the robot and the environment are defined by:

Robot Transitions: s¢+1 ~ ps(+|St, ar,e;) Environment Transitions: e;y1 ~ pe(-|st, ar,er). (2)

To control this joint system, we will denote the policy the agent optimizes via a; ~ 7(-|s¢, ht),
where h; = ($¢—_1, ..., St—p) bundles the histories of proprioceptive state measurements.

Reinforcement Learning Problem: We formally frame the learning of a locomotion controller in
the real world in terms of a partially observable Markov decision process (POMDP) [30], defined
by the tuple (X, A,p,7,Q,0,v). Here, X = S x & is the overall state space for the system,
and p(-|st, at, er) = (ps(:|St, a, er), pe (]S, a, e+)) captures the joint robot-environment dynamics.
The space of observations {2 consists of the proprioceptive states that can be measured, and the
observation distribution §; ~ O(:|s¢, at, ;) provides estimates of the proprioceptive states from
onboard sensors. The reward function r (s, as, s¢+1) depends only upon the robot states and actions,
and is therefore directly measurable in the real world. We define the reward function to maximize
the robot’s forward velocity, maintain upright orientation, minimize angular rates, conserve energy,
and avoid excessive torques. Finally, we define a termination flag d; € {0,1} where d; = 1 when
body roll or pitch exceed limits. Exact definitions of the observation space, reward function, and

112
113
114

115

116
117
118
119

120

121
122
123
124
125
126
127
128
129

130

131
132
133
134
135
136
137
138

139
140

Stepping
Parameters Gait motion

" | Generator

Inverse Torques
Kinematics

Solver

| controllers

’

i

i

i

i

i

i

i

angles || Joint PD

i

i

i

Foot position offsets i
i
i

]
'
]
1
'
'
1
'
'
'
]
1
'
'
'
1
'
'
'
i

History of Proprioceptive Observations

Figure 3: Control architecture. The policy takes in a history of observations and outputs parameters
to an open-loop gait generator and offsets to the gait. The resulting foot positions are sent to an
inverse kinematics solver which computes desired joint angles for joint level PD controllers.

termination condition are found in the supplementary material. Given an episode length T € N,
discount factor v € (0,1), and a distribution xy over X of initial conditions for the system, the goal
is to maximize the expected discounted total reward: max, E Ztho Y1 —dy) - r(se, ag, Spa1)-

3 Reinforcement Learning with Semi-structured Dynamics Models

We now present our framework for leveraging semi-structured dynamics models for real-world
MBRL. First, we detail our novel method for training proprioceptive contact models, which are
integrated with known robot dynamics to generate accurate multi-step predictions. Next, we outline
the key features of our algorithm that enable efficient real-world training.

3.1 Training Proprioceptive Contact Models for Dynamics Prediction

We construct our approximations to the discrete-time probabilistic robot transition dynamics ;41 ~
ps(|st, at, e,) by building on top of the deterministic Lagrangian differential equation (1). At a
high level, our approach uses an ensemble of neural networks which are conditioned on the history
of observations—including a compressed internal representation for the state of the environment—
to estimate the external torques exerted on the robot by its environment. A numerical integrator is
then used to propagate these predictions through the Lagrangian dynamics to produce deterministic
predictions for the next state. Finally, we fit Gaussian noise models to these deterministic predic-
tions to account for uncertainty in the learned estimators, noise from onboard state estimators, and
inherent stochasticity in the dynamics which are not captured in (1).

In detail, we can we can write the deterministic Lagrangian dynamics as:
M(q)q +C(q.4) + G(q) = Br + J(s,) " F*(s.e,7), (3)

Te(s,e,7)

where we now explicitly denote the dependence of the contact Jacobian J(s, e) on the configura-
tion of the robot and the environment variables and the dependence of the external contact forces
Fe(s,e,) on these terms as well as the low-level torque output by the robot. As discussed in Sec-
tion 1, identifying precise locations where contact occurs on the robot can be extremely difficult from
on-board measurements. Thus, instead of inferring J and F'® separately, we directly estimate the
external torques 7¢ = J7 F'® imposed in the joint coordinates by the interactions between the robot
and its environment. Altogether, we leverage the Lagrangian dynamics to produce a deterministic
prediction for the next robot state using the following successive computation:

Latent Encoding of History: 2z = Ey(he)
Estimated Low-Level Motor Torques: =G (st,a)
Deterministic External Torque Estimators: 7, = be (s¢,az, z¢) 4)

Integrated Deterministic State Predictions: 57, = I(s4, 73,7/)
Overall Deterministic State Prediction: 5;1 = S"(s¢,ae,),

where z; is a compressed latent representation of e; produced by an encoder E, with parameters
¢, T¢ is a zero-order hold estimate for the low-level motor torques applied to the robot over the

141
142
143
144
145
146
147

148
149
150
151

152
153
154
155
156
157
158
159
160
161

162

163
164
165
166
167
168
169

170
171
172
173
174
175
176
177

sampling interval, and G is known map that captures how the state of the robot and action by the
policy are processed by the gait generator and low-level PD controller into motor commands. 7;""
is ¢-th predicted external torque predicted by network Tfp with parameters 1);, I captures how the
numerical integrator propagates the current state estimate and zero-order holds 74 and 7; through
the Lagrangian dynamics over the sampling interval to produce the i-th deterministic prediction for
the next state, and S* neatly encapsulates the overall mapping from s, as, and h; to 3¢ 1 1. We then
apply learned additive Gaussian noise to produce uncertainty-aware predictions for the next state:

Additive Noise Estimates: i = pr (8¢, at, 2t))
Uncertainty-Aware State Predictions: 3} ~ p, (-[s¢, ar, he) := N (5144, 2}),
where X! is a diagonal covariance matrix which is inferred from a second head Ny, ¢ of the networks
used to estimate the mean contact force, and pw (I8¢, at, hi) & ps(-|st, az, er) is the 1-th member
in our ensemble of probabilistic dynamics models which aim to infer the next robot state from the
history of available measurements.

Auto-Regressive State Predictions: Our ensemble of probabilistic dynamics models is used to
hallucinate k-step synthetic rollouts used for policy optimization, summarized in Algorithm 1. Given
a state s; and state history h, to generate a synthetic rollout we: (i) an action is sampled from
the policy, (ii) a model in the ensemble is randomly chosen, and then (iii) an uncertainty-aware
prediction is computed with (5). This prediction is added to the state history and then both are used to
sample the next action from the policy. By propagating state predictions and incorporating them back
into the state history, we are implicitly propagating our estimate for the latent environment states z;
forwards in time, without needing to explicitly learn a predictive model for the howe the environment
changes over time. In particular, the multi-step prediction losses we introduce below ensure that
this auto-regressive representation for the robot and environments carries enough information to be
predictive of the robot’s state far into the future, which is our ultimate goal.

Algorithm 1 Auto-Regressive State Predictions

1: Inmputs hallucination buffer Dyo4e1, models {ﬁfm }, policy 7y, start state sg, start history hq
2: fort=0...k—1do

3: Sample action a; ~ mo(- | s¢, hy)

4 Randomly choose model i ~ U[1, ..., P] and pred1ct next state §; ; with (5)

5: Update state history h,1 with &, and Sty1 < 8% +1

6 Compute reward r; and termination d; and add transition (s, at, 7t, St+1, dt) 10 Dyoge1
7: Return Dpoge1

Approximate Maximum Likelihood Estimation: To train our ensemble of probabilistic dynam-
ics models, we maximize the joint-likelihood of state predictions along these synthetic rollouts,
resulting in a multi-step loss approach demonstrated to enhance performance in MBRL [31, 32].
Due to the Markov assumption (Section 2), the joint distribution of the next H states, starting at
state s; is Ps (St 104140 | Str Qe Hy Clo4H) = Hfzo Ds(St4145 | St4jsQyjs€t45). Approx-
imating the robot transition dynamics with our probabilistic dynamics models and expressing the
joint-likelihood as the negative-log-likelihood, we arrive at our loss function for the i-th model:
N.—H H
L(

— St4145) (Eiﬂ')_l [§i+1+j — S1414] + log det Ziﬂ‘- (6)

z_HN
thJO

Here, N, is the size of a buffer of real-world transitions Dg,,, mean state predictions are propa-
gated deterministically according to 5, ; = S*(5}, at, h), and each prediction 5} is used to update
the state history h;. For each state s, in the buffer, (6) generates a synthetic rollout H steps long
and computes a loss related to how much the propagated states differ from the experienced states.
Optimizing the joint-likelihood across multiple steps leads to improved reinforcement learning (RL)
performance compared to a single-step loss approach (Section 4.2) because (i) model updates are en-
riched as upstream predictions influence downstream predictions, and (ii) predictions are smoothed
over the synthetic rollout horizon, effectively filtering out noise between transitions.

178

179
180
181
182

183
184
185
186
187
188
189
190

191
192
193
194
195
196
197
198

199

200

201
202

204
205
206
207

209
210
211
212
213
214
215

3.2 Policy Optimization

Our approach (Algorithm 2) to policy optimization is based on the well-known MBPO [6] algorithm,
but with two key differences: (i) the robot acts deterministically in the real world, and (ii) multiple
steps are performed in the real world before updating the policy. As we demonstrate in Section 4,
these changes lead to substantial improvements in sample-efficiency and ultimate performance.

Deterministic policy. Steps in the real environment are taken using deterministic policy pg which
simply outputs the mean action from the stochastic policy. Using a deterministic policy in the real
world helps to prevent damage to the robot and its actuators; however, poses an immediate question
regarding exploration. We employ a stochastic policy during hallucination per Algorithm 1 in order
to ensure adequate exploration during the learning process; the stochasticity of our ensemble of
predictive models also aids in exploration, but they also embed sufficient structure to accurately
extrapolate during random exploration. Policy parameters 6 are trained with soft-actor critic (SAC)
[33], using a mixture of transitions from real-world and hallucination buffers Dep, and Dyeger -

Enabling real-world training. In the original model-based policy optimization (MBPO) implemen-
tation [6], hallucination and policy updates are performed after every environment step, which is not
computationally feasible for real-world training. Crucially, we add Line 5 to Algorithm 2 which
allows rollouts of length N to be collected in the real world before hallucinating and updating the
policy. This addition also creates a loop where hallucination is performed, the policy is updated, and
hallucination is repeated with the updated policy. This iterative process results in multiple policies
being used to generate hallucinations, leading to more diverse hallucinated experiences, and boosts
the update-to-data (UTD) ratio in this scenario where longer rollouts are collected in the real world.

Algorithm 2 Policy Optimization with Semi-structured Dynamics Models

1: Initialize models p.,, policy 7, critics Qg,
2: for Nepocns epochs do
3: Train models Py, on Deyy using loss (6)
Take N steps in the environment deterministically with py and add transitions to Depy
for K hallucination updates do
for M model rollouts do
Sample state sg uniformly from Dey,, and hallucinate with Algorithm 1

Perform G updates of policy 7y using mixture of Dy, and Dyege1 at ratio rp

® Nk

4 Experimental Results

4.1 Real-world Results

We demonstrate our approach through two real-world experiments where a Unitree Gol quadruped
is trained from scratch to achieve maximum speed on both hard ground and memory foam.

Experimental setup. Training is performed from scratch in the real-world according to Algorithm 2
over Nepochs = 18 epochs with Ng = 1000 environment steps per epoch, resulting in 18,000
environment steps or only 3.0 min of interaction with the real-world. We perform up to K =
1,000 hallucination updates per epoch and G = 40 gradient updates per hallucination update—
resulting in a UTD of 40—and 20, 000 actor and critic updates between rollouts in the real world.
We use an observation history length of h = 5, a multi-step loss horizon of H = 4 to train the
model, and hallucinate synthetic rollouts up to k£ = 20 steps long; the full listing of hyperparameters
is found in the supplementary material. We reset the model, actor, and critic at 10,000 steps to
improve plasticity [34]. Joint positions and velocities are measured from joint-level encoders, body
orientation and angular velocity are obtained from the onboard IMU, and body linear velocity is
acquired through a Vicon motion capture system. Neural networks are trained using JAX [35] and
low-level joint angle commands are sent to the Gol via Unitree’s ROS interface [36]. We compute
the mass matrix, Coriolis terms, and gravity vector in (3) with the differentiable simulator Brax

216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

234

235

236
237

238
239

240
241

242
243

244
245
246
247
248
249
250
251
252
253
254
255
256

257

259
260
261
262

264
265

[37]. Training the probabilistic dynamics models with (6) requires taking gradients though these
computations, which is facilitated by the simulator’s differentiability.

Results. Fig. 1 shows a time-lapse of rollouts generated by intermediate poli-
cies as training progresses. As shown in Fig. 4 (right), after only 3.0min
of real-world training data, the quadruped

—1 —— Ground Foam

achieves an average velocity of 0.98 ms™" on
hard ground and 0.53 ms~! on memory foam.
Figure 4 (left) plots the reward accumulated in
each episode up to the first termination (i.e., E“OO
at which d; = 1). Early in training, the ¢ A
quadruped is prone to falling over and this leads =M A/ o

to low reward, but after roughly 1.5min of ! TR

training the learned policy is robust enough to o 12 3 o 12 3
avoid falling, and subsequent rewards increase Minutes of bata Minutes of Data

steadily. th.:n walking on memory foarg, .the Figure 4: Real-world results. With our approach,
robot’s feet sink deeply, which makes training the quadruped steadily learns to walk faster.
more difficult. Nonetheless, forward velocity

steadily improves in both scenarios despite their significantly different contact dynamics, demon-
strating the adaptability of our approach.

Average Velocity (m/s)
o
=

4.2 Simulated Experiments

In addition to the results presented here, we provide extensive ablations on standard RL benchmarks
in the supplementary. Here, we investigate the following hypotheses:

Hypothesis 1. Utilizing semi-structured dynamics models improves performance and sample effi-
ciency for MBRL in contact-rich environments.

Hypothesis 2. Training semi-structured dynamics models with a multi-step loss enhances perfor-
mance compared to using a single-step loss.

Hypothesis 3. Uncertainty-aware predictions from semi-structured dynamics models are robust
against errors in a priori knowledge of the robot’s inertial properties.

Experimental setup. The setup for experiments performed in simulation is similar to the the real-
world setup (Section 4.1), except environment rollouts are simulated in Brax [37]; exact parameters
used during training may be found in the supplementary material. To study the importance of using
semi-structured dynamics models per Hypothesis 1, we compare our semi-structured state predic-
tions (4) to black-box predictions of the form: 5., = s + B}, (st,a, 2;), where {Bj, } are an
ensemble of networks. Learned additive Gaussian noise is also applied to the black-box model,
resulting in the same probabilistic ensemble model found in MBPO [6], except this model receives
the latent encoding and does not predict rewards since the reward function is provided. We perform
runs with both a single-step loss (H = 1) and multi-step loss (H = 4) to test Hypothesis 2. We
also benchmark against SAC [33], allowing the agent to act stochastically in the environment for
this algorithm only. Finally, to simulate the modeling errors of Hypothesis 3, we randomly vary
each link’s mass by +25% and each joint’s damping by +50% for the Gol environment used for
simulated data collection. All runs are repeated for 4 random seeds.

Results. The results of our simulated experiments are presented in Fig. 5. In Fig. 5 (left), we ob-
serve that our semi-structured dynamics models lead to significantly improved performance when
compared with black-box models, supporting Hypothesis 1. By incorporating physics-based knowl-
edge, our models produce hallucinated rollouts that generalize beyond the available training data,
providing richer synthetic data. We also observe in Fig. 5 (left) that, while black-box models show
similar performance for both single- and multi-step losses, our semi-structured dynamics models
exhibit significantly improved performance when using a multi-step loss, confirming Hypothesis 2.
Finally, in Fig. 5 (right), training is similar in performance when there are errors in the a priori
knowledge of the robot’s inertial properties, supporting Hypothesis 3.

266

267
268

269
270
271
272
273
274
275
276

277
278
279

281
282
283

284
285
286
287
288

290

291

292
293
294
295

297
298
299

2000 2000

—— Ours, 4-step loss —— No errors
Ours 1-step loss Modeling errors
1500 ~ —— Black-box, 4-step loss 1500 ~=
—— Black-box, 1-step loss /_/\/\/\/
1000 T SAC

Reward
Reward

1000 A
NI ..
: NI

0

0 10000 20000 30000 40000 0 10000 20000 30000 40000
Steps Steps

Figure 5: Simulated results. Left—using our semi-structed dynamics models and multi-step loss for
training results in better performance. Right—our approach is robust to errors in a priori knowledge
of the robot’s inertial properties. Plots show the mean and standard deviation for episodic rewards.

5 Related Work

Due to space constraints, we provide an abridged discussion of related work here and leave a fuller
discussion to the supplementary material.

Model-Based Reinforcement Learning: Our works builds on a wealth of prior works that use gen-
eral function approximators and probabilistic modelling to account for uncertainty when identifying
dynamics that are impractical model by hand [38, 6, 26]. Model-based reinforcement learning al-
gorithms either learn a model that is used for online planning [39, 26, 40] or Dyna-style algorithms
which hallucinate imagined rollouts for direct policy optimization [6, 3, 4]. While we leverage the
latter for the purposes of this work, we believe that our general modelling strategies can be use gain-
fully with online planning algorithms. We build on the insights of these works by integrating their
insights with structured system identification techniques.

Learning External Contact Forces: As we have emphasize throughout the this work, inferring the
information needed to fully localize and estimate contact forces acting on a robot may be impractical
in the real-world, given limitations of on-board sensing modalities. Prior work [41, 15] leverages
complementary formulations to predict contact forces, but relies on the availability of a signed-
distance function to represent constraints, which may be impractical to construct and evaluate in the
real-world. In [42] contacts are inferred from proprioception, but the method assumes the availability
of onboard contact force sensor measurements.

Learning Locomotion Strategies in the Real World: Learning locomotion behaviors from scratch
directly in the real-world has primarily been studied in the context of model-free reinforcement
learning [43, 44, 45, 46], with a few works using black-box models in the context of model-based
reinforcement learning [47, 48]. Several other works investigate fine-tuning locomotion controllers
trained in simulation to reduce the burden on real world data [49, 50]. Compared to these works, our
semi-strucured modelling approach enable the robot to achieve dynamic locomotion strategies than
these previous approaches, with just a fraction of the real-world samples.

6 Limitations

This paper presents a novel framework for model-based reinforcement learning, which leverages
physics-informed, semi-structured dynamics models to enable highly sample-efficient policy learn-
ing in the real world. However there are several key limitations. First, our method requires ob-
servability of enough proprioceptive states to propagate the Lagrangian dynamics of the robot. Ad-
ditionally, relying solely on proprioception restricts the model’s ability to predict changes to the
environment such as the appearance of an obstacle or transitions between different ground surfaces.
In the future we plan to extend the current framework to include additional perceptual modalities
which can infer more about the state of the environment around the robot.

300

301
302

303
304

305
306

307

309
310

311
312

313
314
315

316
317
318

319
320

321
322

323
324

325
326

327
328
329
330

331

332
333
334

335
336

337
338
339

340
341

References

[1] T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker, et al. Model-based reinforcement learn-
ing: A survey. Foundations and Trends® in Machine Learning, 16(1):1-118, 2023.

[2] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603,2019.

[3] R.S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160-163, 1991.

[4] R.S. Sutton, C. Szepesviri, A. Geramifard, and M. P. Bowling. Dyna-style planning with linear
function approximation and prioritized sweeping. arXiv preprint arXiv:1206.3285, 2012.

[5] H. Yao, S. Bhatnagar, D. Diao, R. S. Sutton, and C. Szepesvari. Multi-step dyna planning for
policy evaluation and control. Advances in neural information processing systems, 22, 2009.

[6] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. Advances in neural information processing systems, 32, 2019.

[7] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-
based offline policy optimization. Advances in Neural Information Processing Systems, 33:
14129-14142, 2020.

[8] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn. Combo: Conservative
offline model-based policy optimization. Advances in neural information processing systems,
34:28954-28967, 2021.

[9] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double g-learning: Learning
fast without a model. arXiv preprint arXiv:2101.05982, 2021.

[10] T. Hiraoka, T. Imagawa, T. Hashimoto, T. Onishi, and Y. Tsuruoka. Dropout g-functions for
doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034, 2021.

[11] J.-J. E. Slotine and W. Li. On the adaptive control of robot manipulators. The international
Jjournal of robotics research, 6(3):49-59, 1987.

[12] S. Sastry and M. Bodson. Adaptive control: stability, convergence and robustness. Courier
Corporation, 2011.

[13] T. Westenbroek, D. Fridovich-Keil, E. Mazumdar, S. Arora, V. Prabhu, S. S. Sastry, and C. J.
Tomlin. Feedback linearization for uncertain systems via reinforcement learning. In 2020
IEEFE International Conference on Robotics and Automation (ICRA), pages 1364—1371. IEEE,
2020.

[14] G. Tao. Adaptive control design and analysis, volume 37. John Wiley & Sons, 2003.

[15] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu. Neural networks with physics-
informed architectures and constraints for dynamical systems modeling. In Learning for Dy-
namics and Control Conference, pages 263-277. PMLR, 2022.

[16] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. Lagrangian neural
networks. arXiv preprint arXiv:2003.04630, 2020.

[17] M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks: Using physics as model prior
for deep learning. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=Bk1HpjCqKm.

[18] B. Acosta, W. Yang, and M. Posa. Validating robotics simulators on real-world impacts. IEEE
Robotics and Automation Letters, 7(3):6471-6478, 2022.

https://openreview.net/forum?id=BklHpjCqKm

342
343
344

345
346
347

349

350
351

353
354
355

356
357
358

359
360

361
362
363

364
365

366
367

368
369
370

371
372

373
374
375

376
377
378

379
380
381

382
383
384

[19] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[20] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026-5033. IEEE,
2012.

[21] P. Fankhauser, M. Bloesch, and M. Hutter. Probabilistic terrain mapping for mobile robots
with uncertain localization. IEEE Robotics and Automation Letters, 3(4):3019-3026, 2018.

[22] R. Yang, G. Yang, and X. Wang. Neural volumetric memory for visual locomotion control. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1430-1440, 2023.

[23] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis. Rloc: Terrain-aware
legged locomotion using reinforcement learning and optimal control. IEEE Transactions on
Robotics, 38(5):2908-2927, 2022.

[24] L. Manuelli and R. Tedrake. Localizing external contact using proprioceptive sensors: The
contact particle filter. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5062-5069. IEEE, 2016.

[25] S. Haddadin, A. De Luca, and A. Albu-Schiffer. Robot collisions: A survey on detection,
isolation, and identification. IEEE Transactions on Robotics, 33(6):1292—-1312, 2017.

[26] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. Advances in neural information processing
systems, 31, 2018.

[27] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[28] G. Bellegarda and A. Ijspeert. Cpg-rl: Learning central pattern generators for quadruped loco-
motion. IEEE Robotics and Automation Letters, 7(4):12547-12554, 2022.

[29] T.-Y. Yang, T. Zhang, L. Luu, S. Ha, J. Tan, and W. Yu. Safe reinforcement learning for legged
locomotion. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2454-2461. IEEE, 2022.

[30] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial intelligence, 101(1-2):99—-134, 1998.

[31] M. Lutter, L. Hasenclever, A. Byravan, G. Dulac-Arnold, P. Trochim, N. Heess, J. Merel,
and Y. Tassa. Learning dynamics models for model predictive agents. arXiv preprint
arXiv:2109.14311, 2021.

[32] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555-2565. PMLR, 2019.

[33] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861-1870. PMLR, 2018.

[34] E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and A. Courville. The primacy bias in deep
reinforcement learning. In International conference on machine learning, pages 16828-16847.
PMLR, 2022.

10

385
386
387

388
389

390
391
392

393

395

396
397

398
399
400

401
402
403

404
405
406

407
408
409

410
411
412

413
414

415
416
417

418
419
420

421
422
423

424
425
426

427
428

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

U. Robotics. Unitree ros to real. https://github.com/unitreerobotics/unitree_ros_
to_real, 2021.

C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax-a differen-
tiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,
2021.

M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to pol-
icy search. In Proceedings of the 28th International Conference on machine learning (ICML-
11), pages 465472, 2011.

A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel. Value iteration networks. Advances in
neural information processing systems, 29, 2016.

S. Racaniere, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende, A. Puig-
domenech Badia, O. Vinyals, N. Heess, Y. Li, et al. Imagination-augmented agents for deep
reinforcement learning. Advances in neural information processing systems, 30, 2017.

S. Pfrommer, M. Halm, and M. Posa. Contactnets: Learning discontinuous contact dynamics
with smooth, implicit representations. In Conference on Robot Learning, pages 2279-2291.
PMLR, 2021.

D. Lim, M.-J. Kim, J. Cha, D. Kim, and J. Park. Proprioceptive external torque learning for
floating base robot and its applications to humanoid locomotion. In 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 8510-8517. IEEE, 2023.

N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.
In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 3, pages 2619-2624. IEEE, 2004.

R. Tedrake, T. W. Zhang, and H. S. Seung. Stochastic policy gradient reinforcement learning
on a simple 3d biped. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2849-2854. IEEE, 2004.

L. Smith, I. Kostrikov, and S. Levine. A walk in the park: Learning to walk in 20 minutes with
model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.

G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng. Learning cpg sensory
feedback with policy gradient for biped locomotion for a full-body humanoid. In AAAI, pages
1267-1273, 2005.

S. Choi and J. Kim. Trajectory-based probabilistic policy gradient for learning locomotion
behaviors. In 2019 International Conference on Robotics and Automation (ICRA), pages 1-7.
IEEE, 2019.

Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani. Data efficient rein-
forcement learning for legged robots. In Conference on Robot Learning, pages 1-10. PMLR,
2020.

L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference
on Robotics and Automation (ICRA), pages 1593-1599. IEEE, 2022.

T. Westenbroek, F. Castaneda, A. Agrawal, S. Sastry, and K. Sreenath. Lyapunov design for
robust and efficient robotic reinforcement learning. arXiv preprint arXiv:2208.06721, 2022.

11

http://github.com/google/jax
https://github.com/unitreerobotics/unitree_ros_to_real
https://github.com/unitreerobotics/unitree_ros_to_real
https://github.com/unitreerobotics/unitree_ros_to_real

429
430

431
432
433

434
435
436

437
438
439
440

441
442

443
444
445

446
447
448

[51] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
Journal of Machine Learning Research, 17(39):1-40, 2016.

[52] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin. A
general safety framework for learning-based control in uncertain robotic systems. IEEE Trans-
actions on Automatic Control, 64(7):2737-2752, 2018.

[53] R. Calandra, S. Ivaldi, M. P. Deisenroth, E. Rueckert, and J. Peters. Learning inverse dynamics
models with contacts. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 3186-3191. IEEE, 2015.

[54] J. Hwangbo, C. D. Bellicoso, P. Fankhauser, and M. Hutter. Probabilistic foot contact esti-
mation by fusing information from dynamics and differential/forward kinematics. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3872—
3878. IEEE, 2016.

[55] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

[56] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-
ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022.

[57] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforce-
ment learning for robust parameterized locomotion control of bipedal robots. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 2811-2817. IEEE, 2021.

12

449

450
451
452

453

454
455
456
457

458
459

461
462
463
464
465
466
467
468
469

470
471

A Implementation Details

In this appendix, we provide details of our implementation for the Unitree Gol Quadruped, including
the observation and action spaces, the reward function, the termination condition, and the control
architecture.

A.1 Observation and Action Spaces

The observation space 2 C R3° consists of the elements in Table 1. The z-axis of the base is the
forward direction, the y-axis is the leftward direction, and the z-axis is the upward direction. The
phase variable ¢ € [0, 27) represents progression along the gait cycle and is defined as ¢, = 27t /T
mod (27) where T, = 0.5 sec is the gait cycle period.

Observation Symbol Dimension
Quaternion orientation of the base %) 4
Joint angles ¢’ 12
Base linear velocity (local frame) (v®, 0¥, v%) 3
Base angular velocity (local frame) | (w®,wY, w?) 3
Joint speeds ¢’ 12
Cosine of phase cos @ 1

Sine of phase sin ¢ 1

Table 1: Observation space.

The action space A C R? outputs the change in nominal height for the gait generator and offsets to
nominal foot positions from the gait generator, as defined in Table 2.

Action Symbol = Dimension Min. Max.
z-foot position changes Ap® 4 —0.15m | 0.15m
y-foot position changes ApY 4 —0.075m | 0.075m
Change in gait generator nominal height | AAh%ait 1 —0.1m 0.0m

Table 2: Action space.

A.2 Reward Function and Termination Condition

Reward Function. The reward function is a weighted sum of the terms in Table 3. We set the
weights and use exponentials in most of the terms to normalize the reward such that a forward
velocity of 1.0 m s~! with maximal values for all other terms will result in a reward of approximately
1.0 for a single time step. The roll ¢, pitch ¢¥, and yaw * of the base are obtained from the base
quaternion . We define a © b as the element-wise multiplication of vectors a and b. Actual torques
output from the joint-level PD controllers are not available; we estimate the torque applied at the
joint with (12). We define the following LinearLimit function which linearly penalizes the torque
applied at the j-th joint 77 when exceeding torque limits; within torque limits, the function is a
decaying exponential:

T — =1 if 7 < TH{in
_ o , —ex —Tj—i-Tj-} ifrl. <79 <0
LinearLimit(77, 7)., 7..) = P [) B B) (7)
—exp [TJ — Tn{ax] if0 <77 <71l
i+l -1 if 7l >7J .

Termination Condition. The termination flag d; stops the accumulation of reward after the
quadruped falls and is defined by:

1 if ¥ > w/4or |p]| > m/4
dt == .
0 otherwise.

®)

13

472

473
474
475
476
477
478

479
480
481
482

483
484

486
487
488
489

490

491

492
493

Reward Term Expression Weight

Maximize forward velocity vE 0.42
Limit base yaw rate exp [— (wt_H) /0.2] 0.11
Limit base roll exp [—(¢7,1)%/0.25 0.05
Limit base pitch exp [—(¢f,1)%/0.25 0.05
Limit base yaw exp |—(pfy1)?/0.07 0.11
Limit base side velocity exp |—(vf,1)?/0.01 0.11
Limit vertical acceleration exp [—(viy, — vf)?/0.02] 0.03
Limit base roll rate exp |—(¢fi — gpf)Q/O.OOl 0.03
Limit base pitch rate exp [— (o)1 — ¢f)? / 0.005 0.03
Limit energy ex Hqt—H O Tet1 H /450 0.05

Penalize excessive torques | >, L1nearL1m1t(/12 | 0.02

Table 3: Reward function terms. The reward at each time step is a weighted sum of these terms.

Tta mlna max)

A.3 Control Architecture

Here, we give detailed specification of the control architecture introduced in Section 2. Referring
to the action space definition Table 2, the policy takes in the current observation and a history
of observations and outputs offsets to foot positions and a nominal height for the gait generator:
(Ap%, Ap}, ARS2) ~ mo(- | 4, hy). The gait generator Gait : [0,1) x R — R? is open-loop and
generates for each leg, walking-in-place foot positions for the quadruped by computing vertical foot
position offsets from nominal standing foot positions:

Detana T {0 0, hSvine (1 — cos [271' (bll _TZZM:D — Ahf"‘it} if ¢! > rait
Pliana + (0,0, ARSI otherwise

(€))
where pL,,.4 € R? is the nominal standing foot position of the I-th leg, expressed in the local base
frame, h51& = (.09 m is the gait peak swing height, and 7®* = 0.5 is that fraction of the time feet
should remain in contact with the ground. The normalized phase ¢’ € [0, 1) specifies the progress
of the [-th leg along its gait cycle and is calculated with:

Gait(@l; ARSI = {

oL = <¢t+05+bl) mod 1, (10)

where b' is the phase bias for the I-th leg; we use a value of 0 for the front-right and rear-left legs,
and a value of 0.5 for the front-left and rear-right legs. The desired positions of the /-th foot in the
local base frame are given by:

pe(ApPh ApPt, ARG gy = [Apf’l,Ap?’l,O} + Gait(gl; ARSaIt), a1

where Apt and Apt’ are the z- and y-foot positions offsets for the I-th foot from the policy. For
each foot, the desired foot positions (11) are computed and sent to an inverse kinematics solver to
produce desired joint angles ¢%* € R!'2. The desired joint angles are sent to the joint level PD
controllers, where the desired torque outputs are:

T =Ky(q** - @) — K, (12)
and we use proportional gain K, = 112N m rad ! and derivative gain K, =35Nms rad !

B Simulated Benchmark Experiments

To demonstrate the versatility of our approach, we perform additional simulated experiments using
standard, contact-rich, benchmark environments [20] commonly used to evaluate RL algorithms.

14

494
495
496
497
498
499
500
501

503
504

505
506
507
508
509

510

511
512
513

514

516

517
518
519
520

521
522
523
524
525

Experimental setup. We use the standard MuJoCo [20] environments Hopper, Walker2d, and Ant,
which have been implemented as part of Brax [37]. Similar to the quadruped, each of these envi-
ronments feature a floating-base robot with articulated limbs which make and break contact with
the ground to produce motion. However, unlike the Gol environment, these environments lack
structured controllers. Instead, the outputs from the policy are only scaled linearly before being
directly applied as torques on the joints. To test Hypothesis 1 and Hypothesis 2, we compare our
semi-structured approach trained with a multi-step loss (H = 4) to the black-box approach from
Section 4.2 trained with the single-step loss (H = 1). In both of these cases, the agent acts determin-
istically within the environment per Algorithm 2. We also benchmark against SAC [33], allowing
the agent to act stochastically in the environment for this algorithm only. The hyperparameters used
for training are found in Appendix C and all runs are repeated for 4 random seeds.

Results. The results of these experiments are presented in Fig. 6. We observe a significant per-
formance improvement when utilizing our semi-structured models trained with a multi-step loss,
compared to the black-box approach trained with a single-step loss, confirming Hypothesis 1 and
Hypothesis 2. These results demonstrate that our approach works not only with the Gol environ-
ment, but also with other contact-rich environments with unstructured controllers.

Hopper Walker2d Ant
4000
600
3000
3000
° - 400 he]
& 2000 o I
2 2 2 2000
4 4 4
200
1000 1000
0 0 0 A s i AN ‘A“
0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 20000 40000 60000 80000
Steps Steps Steps
—— Ours, 4-step loss —— Black-box, 1-step loss —— SAC

Figure 6: Simulated benchmark results. Better performance is achieved when using our semi-
structured dynamics models and a multi-step loss. Plots show the mean and standard deviation
for episodic rewards.

C Experiment Hyperparameters

Table 4 contains the hyperparameters used with our approach; these hyperparameters were also used
with the approach that incorporated black-box models. Table 5 contains the SAC hyperparameters
used for our approach, the black-box approach, and standard SAC.

D Expanded Related Work

Here we provide an extended related work beyond, expanding on the context provided in the main
submission.

Reinforcement Learning: Reinforcement learning algorithms are attractive because they enable
robots to learn general control policies through repeated interactions with the world [49, 51, 50].
However, when learning to control a system from scratch, the sample complexity, safety, and relia-
bility [52] of these algorithms remains a significant concern.

Our works builds on a wealth of prior works that use general function approximators and probabilis-
tic modelling to account for uncertainty when identifying dynamics that are impractical to model by
hand [38, 6, 26]. Model-based reinforcement learning algorithms either learn a model that is used
for online planning [39, 26, 40] or Dyna-style algorithms which hallucinate imagined rollouts for
direct policy optimization [6, 3, 4]. While we leverage the latter for the purposes of this work, we

15

526
527
528
529

530
531
532
533

535
536
537

538
539
540
541
542
543
544
545
546
547
548
549
550

Hyperparameter Gol (real world) Gol (simulated) | Benchmarks
Epochs, Nepochs 18 40 80
Environment steps per epoch, Ng 1000
Hallucination updates per epoch, K 10 — 1,000 over epochs 0 — 4
Model rollouts per hallucination update, M 400
1—20 1—45
Synthetic rollout length, &k over epochs over epochs
0— 10 0—15
Real to synthetic data ratio, rp 0.06
Gradient updates per hallucination update, G 40 60 20
State history length, h 5 1
Multi-step loss horizon, H 4 lor4
Model learning rate 1x1073
Model training batch size 200

Table 4: Hyperparameters for our approach and the baseline approach with black-box models. z —

y over epochs a — b denotes a clipped linear function, i.e. at epoch i, f(i) = clip(z + =% (y —
z),,y).
Hyperparameter Gol (real world) = Gol (simulated) = Benchmarks
Learning rate 2x 1073 3x 1073
Discount factor, ~y 0.99
Batch size 256
Target smoothing coefficient, 7 1x1073 5x 1073
Actor network (MLP) width x depth 512 x 2 256 x 2
Critic network (MLP) width x depth 512 x 2 256 x 2

Table 5: SAC hyperparameters used for our approach, the black-box approach, and standard SAC.

believe that our general modelling strategies can be use gainfully with online planning algorithms.
We build on the insights of these works by integrating their insights with structured system identifi-
cation techniques, substantially accelerating our ability to learn in the real-world for our quadrupedal
case-study.

While our work seeks to make model-based data-augmentations strategies more accurately reflect
the true dynamics of the system, a parallel line of work [9, 10, 49] aims to make off-policy model-
free algorithms (which form the back-bone for our policy optimization strategy) more stable and ef-
ficient in low-data regimes. These approaches introduce regularization techniques which enable the
use of higher update-to-data ratios without overfitting to the available data, matching the efficiency
of model-free methods such as the MBPO [6] algorithm that we build upon. These algorithmic ad-
vances are generally orthogonal to our contribution, and thus in the future we plan to incorporate
them into our framework to further accelerate real-world learning.

Learning External Contact Forces: As we have emphasized throughout the this work, inferring
the information needed to fully localize and estimate contact forces acting on a robot may be im-
practical in the real-world, given limitations of on-board sensing modalities. Prior work [41, 15]
leverages complementary formulations to predict contact forces, but computing these forces relies
on the availability of a signed-distance representation of surfaces the robot is making contact with,
which may be impractical to construct and evaluate in the real-world with available on-board sen-
sors. In [42] contacts are inferred from proprioception, but the method assumes the availability of
onboard contact force sensor measurements. In [53], contact forces are learned directly from avail-
able measurements, but these models are not history-conditioned and attempt to reconstruct multiple
independent contacts which may be occurring at different locations on the robot. Altogether, while
we build upon perspectives from many prior works, we introduce an semi-structured auto-regressive
formulation for inferring contact which is compatible with standard MBRL algorithms, lightweight,
and capable of learning from on-board observations in the real-world.

16

551
552
553

555
556
557
558
559
560

561
562
563
564
565
566
567

Learning Locomotion Strategies in the Real World: Learning locomotion behaviors from scratch
directly in the real-world has primarily been studied in the context of model-free reinforcement
learning [43, 44, 45, 46], with a few works using black-box models in the context of model-based
reinforcement learning [47, 48]. Compared to these works, our semi-strucured modelling approach
enable the robot to achieve more dynamic locomotion strategies than these previous approaches,
with just a fraction of the real-world samples. Specifically, our approach either achieves a signifi-
cantly higher walking speed than each of these approaches, or improves on their sample complexity
by approximately an order of magnitude. Several other works investigate fine-tuning locomotion
controllers trained in simulation to reduce the burden on real world data [49, 50] — as we discuss
below, we hope to investigate this direction in the near future.

Direct Transfer From Simulation: There has also been recent and rapid progress directly transfer-
ring locomotion controllers from simulation zero-shot [54, 55, 27, 56, 57], using techniques such as
domain adaptation and domain randomization. In this paper we have focused on learning locomo-
tion controllers from scratch, in an effort to demonstrate the ability of our framework to substantially
adapt the behavior of the robot with small amounts of real-world data. However, in the future we
plan to fine-tune policies that have been trained using extensive simulated experience, improving the
performance of these policies in cases where they fail [49] but leveraging a better initialization for
the policy for real-world learning.

17

	Introduction
	Preliminaries and Problem Formulation
	Reinforcement Learning with Semi-structured Dynamics Models
	Training Proprioceptive Contact Models for Dynamics Prediction
	Policy Optimization

	Experimental Results
	Real-world Results
	Simulated Experiments

	Related Work
	Limitations
	Implementation Details
	Observation and Action Spaces
	Reward Function and Termination Condition
	Control Architecture

	Simulated Benchmark Experiments
	Experiment Hyperparameters
	Expanded Related Work

