
Learning to Walk from Three Minutes of Data with
Semi-structured Dynamics Models

Anonymous Author(s)
Affiliation
Address
email

Abstract: Traditionally, model-based reinforcement learning (MBRL) methods1

exploit neural networks as flexible function approximators to represent a priori2

unknown environment dynamics. However, training data is typically scarce in3

practice, and these black-box models often fail to generalize beyond the train-4

ing data. Modelling architectures that leverage known physics can substantially5

reduce the complexity of system-identification, but break down in the face of6

complex real-world phenomena such as contact. This paper introduces a novel7

framework for learning predictive models for contact-rich system which seam-8

lessly integrates structured first-principles modeling techniques with black-box9

autoregressive models. Specifically, we develop an ensemble of probabilistic mod-10

els to estimate external forces, conditioned on historical observations and actions,11

and integrate these predictions using known Lagrangian dynamics. This semi-12

structured approach enables us to make accurate predictions far into the future13

with substantially fewer training samples than prior methods. We leverage this14

capability to push the sample-complexity boundary for real-world model-based15

reinforcement learning. We validate our approach through real-world experiments16

with a Unitree Go1 quadruped robot, learning dynamics gaits – from scratch – on17

both hard and soft surfaces with just minutes of data.18

Keywords: Model-Based Reinforcement Learning, Physics-Based Models19

Figure 1: Training a Unitree Go1 quadruped to walk from scratch using our method on hard ground
(left) and memory foam (right).

1 Introduction20

Effective robotic agents must navigate complex interactions between the robot and its environment,21

which are difficult to model using first principles. Model-based reinforcement learning is a powerful22

paradigm for controller synthesis [1], wherein the robot learns a generative dynamics model through23

repeated interaction with the environment. The model can then be used to hallucinate synthetic roll-24

outs [2], providing a source of data augmentation for policy optimization algorithms [3, 4, 5]. When25

the model is accurate, it can generate long rollouts which extrapolate beyond the training data and26

substantially reduce the number of real samples needed to learn an effective control strategy. How-27

ever, in practice, the black-box neural network models favored in the model-based reinforcement28

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

learning (MBRL) literature struggle to generalize beyond the training data [6, 7, 8], and thus do not29

outperform modern model-free alternatives [9, 10]. Currently, both paradigms are too inefficient and30

unreliable to make learning new behaviors in the real world practical for many applications.31

An appealing alternative is to leverage knowledge of physics to design model classes which can32

generalize beyond small real-world training sets. This general approach has been used for efficient33

controller synthesis across many bodies of work, ranging from classic adaptive control techniques34

[11, 12, 13, 14] to more recent physics-informed neural architectures [15, 16, 17]. However, while35

models built upon physical first principles can reliably capture the rough structure of the dynamics,36

they break down in the face of complex phenomena which are difficult to model such as contact37

[18]. Moreover, even modelling these interactions typically requires access to privileged information38

about the environment. State-of-the-art MBRL methods [6, 7, 8] ‘branch’ hallucinated trajectories39

off states encountered by the robot in the real world, but high-fidelity contact solvers [19, 20] require40

access to features such as the geometry of the ground under the robot and precise locations where41

contact is made. Reliably estimating these quantities at runtime is an open and active area of research42

[21, 22, 23, 24, 25]. Due to these challenges, however, real-world learning of control policies using43

first-principles models has largely excluded contact-rich systems.44

These issues beg the question: can we develop a model-based policy optimization framework that45

is implementable in the real world and which leverages the structure of physics-based models to46

accelerate learning? To make this question concrete, this paper focuses on the problem of learning47

an effective locomotion strategy for a quadrupedal robot entirely from scratch in the real world,48

as depicted in Fig. 1. We consider the case where the robot’s observations include proprioceptive49

measurements via joint encoders, IMU measurements, and a global velocity estimator.50

We can begin unpacking this question by studying the Lagrangian dynamics for the robot:51

M(q)q̈ + C(q, q̈) +G(q) = Bτ + JTF e, (1)

where q and q̇ are the generalized coordinates and velocities of the robot, motor torques τ are dis-52

tributed to the joints by the matrix B, F e represents the external forces acting on the robot, J is the53

Jacobian, and M , C, and G are the mass matrix, Coriolis terms, and gravity vector. Here, B,M,C,54

andG are determined by the geometry and inertial properties of the robot, which are known a priori.55

Thus, JTF e is the only unknown term in the dynamics, but we can fully exploit the remaining struc-56

ture of the Lagrangian differential when performing system identification. We estimate JTF e using57

an ensemble of probabilistic models [26] which are conditioned on a history of available observa-58

tions and actions. The history enables the models to infer latent representations of the environment,59

similar to recent works on simulation-based training [27], that are useful for inferring the exter-60

nal torques that will act on the robot. We fit these models by a) propagating the external torque61

estimate through the Lagragian dynamics (1) to construct informative multi-step prediction losses,62

and (b) using techniques from filtering theory [12] to attenuate the effects of noisy state estimates.63

By using these techniques, we avoid the need to add random ‘jittering’ exploration noise to the64

robots actions when learning the dynamics model, which can potentially damage hardware but is65

required but is required for many less structured approaches. Altogether, our approach (Fig. 2) uni-66

fies structured system identification techniques with black-box modeling and learns semi-structured67

(auto-regressive, history-conditioned) models which demonstrate substantial generalization capabil-68

ities beyond typical approaches.69

Finally, we put these piece together to push model-based policy optimization algorithms into new70

regimes of sample efficiency. The sample efficiency of modern policy optmization algorithms are71

limited by the update-to-data ratio (UTD), which is ratio of policy updates to real world data points.72

In particular, when too many updates are performed algorithms will over-fit to the data set and be-73

come unstable. Because black-box MBRL algorithms can produce synthetic data, they can support74

relatively high UTD’s. Our approach, however, is able to produce rollouts that generalize far be-75

yond the available training data and leverage a substantially richer synthetic data set. As a result,76

our approach supports UTDs that are substantially higher that prior model-based method, enabling77

aggressive policy optimization in low-data regimes.78

2

Figure 2: Our approach. A deterministic policy is used to collect data from the real world while a
stochastic policy is utilized in conjunction with the learned dynamics model to “hallucinate” short
synthetic rollouts which branch from this data. The model incorporates Lagrangian dynamics and
encodes previous state predictions, which are fed to external torque and noise estimators to predict
future states. The synthetic data is used with a model-free RL algorithm to update the policies.

2 Preliminaries and Problem Formulation79

Our goal is to learn control policies from scratch in the real-world which enable the Unitree Go180

quadruped to locomote as rapidly as possible.81

Control Architecture: In this work, we use a policy which only has access to histories of proprio-82

ceptive measurements from joint encoders and IMU measurements, but not access to global coordi-83

nates such as the height of the robot above the ground. We adopt the control architecture depicted84

in Fig. 3, which is similar to many prior works on RL-based locomotion [27, 28, 29]. We optimize85

a feed-forward neural network policy which takes in histories of available observations and outputs86

(i) changes to parameters of a nominal feed-forward repetitive stepping motion that generates de-87

sired foot positions and (ii) offsets to these nominal foot positions. The resulting foot positions are88

sent to an inverse kinematics solver which computes desired joint positions. These desired joint89

positions are output at 100Hz to low-level joint PD controllers for conversion to torques.90

Notation: While the underlying dynamics of the robot evolve in continuous time according to the91

differential equation (1), the policy acts in discrete time and we will use subscripts to denote discrete92

time steps. The state of the robot st ∈ S ⊆ Rk1 captures the available proprioceptive states within93

qt and their velocities q̇t. We capture the state of the environment (or extrinsics) with the variable94

et ∈ E , which includes non-proprioceptive information (such as the height of the robot above the95

ground) and the state of the ground underfoot (such as terrain deformation and temperature effects).96

The actions for the robot at ∈ A ⊂ Rk2 are simply the aforementioned outputs of the policy. The97

overall dynamics for the robot and the environment are defined by:98

Robot Transitions: st+1 ∼ ps(·|st, at, et) Environment Transitions: et+1 ∼ pe(·|st, at, et). (2)

To control this joint system, we will denote the policy the agent optimizes via at ∼ π(·|st, ht),99

where ht = (st−1, . . . , st−h) bundles the histories of proprioceptive state measurements.100

Reinforcement Learning Problem: We formally frame the learning of a locomotion controller in101

the real world in terms of a partially observable Markov decision process (POMDP) [30], defined102

by the tuple (X ,A, p, r,Ω, O, γ). Here, X = S × E is the overall state space for the system,103

and p(·|st, at, et) = (ps(·|st, at, et), pe(·|st, at, et)) captures the joint robot-environment dynamics.104

The space of observations Ω consists of the proprioceptive states that can be measured, and the105

observation distribution ŝt ∼ O(·|st, at, et) provides estimates of the proprioceptive states from106

onboard sensors. The reward function r(st, at, st+1) depends only upon the robot states and actions,107

and is therefore directly measurable in the real world. We define the reward function to maximize108

the robot’s forward velocity, maintain upright orientation, minimize angular rates, conserve energy,109

and avoid excessive torques. Finally, we define a termination flag dt ∈ {0, 1} where dt = 1 when110

body roll or pitch exceed limits. Exact definitions of the observation space, reward function, and111

3

Figure 3: Control architecture. The policy takes in a history of observations and outputs parameters
to an open-loop gait generator and offsets to the gait. The resulting foot positions are sent to an
inverse kinematics solver which computes desired joint angles for joint level PD controllers.

termination condition are found in the supplementary material. Given an episode length T ∈ N,112

discount factor γ ∈ (0, 1), and a distribution x0 over X of initial conditions for the system, the goal113

is to maximize the expected discounted total reward: maxπ E
∑T
t=0 γ

t(1− dt) · r(st, at, st+1).114

3 Reinforcement Learning with Semi-structured Dynamics Models115

We now present our framework for leveraging semi-structured dynamics models for real-world116

MBRL. First, we detail our novel method for training proprioceptive contact models, which are117

integrated with known robot dynamics to generate accurate multi-step predictions. Next, we outline118

the key features of our algorithm that enable efficient real-world training.119

3.1 Training Proprioceptive Contact Models for Dynamics Prediction120

We construct our approximations to the discrete-time probabilistic robot transition dynamics st+1 ∼121

ps(·|st, at, et,) by building on top of the deterministic Lagrangian differential equation (1). At a122

high level, our approach uses an ensemble of neural networks which are conditioned on the history123

of observations—including a compressed internal representation for the state of the environment—124

to estimate the external torques exerted on the robot by its environment. A numerical integrator is125

then used to propagate these predictions through the Lagrangian dynamics to produce deterministic126

predictions for the next state. Finally, we fit Gaussian noise models to these deterministic predic-127

tions to account for uncertainty in the learned estimators, noise from onboard state estimators, and128

inherent stochasticity in the dynamics which are not captured in (1).129

In detail, we can we can write the deterministic Lagrangian dynamics as:130

M(q)q̈ + C(q, q̈) +G(q) = Bτ + J(s, e)TF e(s, e, τ)︸ ︷︷ ︸
τe(s,e,τ)

, (3)

where we now explicitly denote the dependence of the contact Jacobian J(s, e) on the configura-131

tion of the robot and the environment variables and the dependence of the external contact forces132

F e(s, e, τ) on these terms as well as the low-level torque output by the robot. As discussed in Sec-133

tion 1, identifying precise locations where contact occurs on the robot can be extremely difficult from134

on-board measurements. Thus, instead of inferring J and F e separately, we directly estimate the135

external torques τe = JTF e imposed in the joint coordinates by the interactions between the robot136

and its environment. Altogether, we leverage the Lagrangian dynamics to produce a deterministic137

prediction for the next robot state using the following successive computation:138

Latent Encoding of History: zt = Eϕ(ht)
Estimated Low-Level Motor Torques: τt = G(st, at)

Deterministic External Torque Estimators: τ̄e,it = T iψi
(st, at, zt)

Integrated Deterministic State Predictions: s̄it+1 = I(st, τt, τ̄
e,i
t)

Overall Deterministic State Prediction: s̄it+1 = Si(st, at, ht),

(4)

where zt is a compressed latent representation of et produced by an encoder Eϕ with parameters139

ϕ, τt is a zero-order hold estimate for the low-level motor torques applied to the robot over the140

4

sampling interval, and G is known map that captures how the state of the robot and action by the141

policy are processed by the gait generator and low-level PD controller into motor commands. τ̄e,it142

is i-th predicted external torque predicted by network T iψi
with parameters ψi, I captures how the143

numerical integrator propagates the current state estimate and zero-order holds τt and τ̂t through144

the Lagrangian dynamics over the sampling interval to produce the i-th deterministic prediction for145

the next state, and Si neatly encapsulates the overall mapping from st, at, and ht to s̄it+1. We then146

apply learned additive Gaussian noise to produce uncertainty-aware predictions for the next state:147

Additive Noise Estimates: Σit = N i
ψi(st, at, zt)

Uncertainty-Aware State Predictions: ŝit ∼ p̂iψi
(·|st, at, ht) := N (s̄it+1,Σ

i
t),

(5)

where Σit is a diagonal covariance matrix which is inferred from a second head N i
ψi

of the networks148

used to estimate the mean contact force, and p̂iψi
(·|st, at, ht) ≈ ps(·|st, at, et) is the i-th member149

in our ensemble of probabilistic dynamics models which aim to infer the next robot state from the150

history of available measurements.151

Auto-Regressive State Predictions: Our ensemble of probabilistic dynamics models is used to152

hallucinate k-step synthetic rollouts used for policy optimization, summarized in Algorithm 1. Given153

a state st and state history ht, to generate a synthetic rollout we: (i) an action is sampled from154

the policy, (ii) a model in the ensemble is randomly chosen, and then (iii) an uncertainty-aware155

prediction is computed with (5). This prediction is added to the state history and then both are used to156

sample the next action from the policy. By propagating state predictions and incorporating them back157

into the state history, we are implicitly propagating our estimate for the latent environment states zt158

forwards in time, without needing to explicitly learn a predictive model for the howe the environment159

changes over time. In particular, the multi-step prediction losses we introduce below ensure that160

this auto-regressive representation for the robot and environments carries enough information to be161

predictive of the robot’s state far into the future, which is our ultimate goal.

Algorithm 1 Auto-Regressive State Predictions

1: Inputs hallucination buffer Dmodel, models {p̂iψi
}, policy πθ, start state s0, start history h0

2: for t = 0 . . . k − 1 do
3: Sample action at ∼ πθ(· | st, ht)
4: Randomly choose model i ∼ U [1, . . . , P] and predict next state ŝit+1 with (5)
5: Update state history ht+1 with ŝit+1 and st+1 ← ŝit+1
6: Compute reward rt and termination dt and add transition (st, at, rt, st+1, dt) to Dmodel

7: Return Dmodel

162

Approximate Maximum Likelihood Estimation: To train our ensemble of probabilistic dynam-163

ics models, we maximize the joint-likelihood of state predictions along these synthetic rollouts,164

resulting in a multi-step loss approach demonstrated to enhance performance in MBRL [31, 32].165

Due to the Markov assumption (Section 2), the joint distribution of the next H states, starting at166

state st is ps(st+1:t+1+H | st, at:t+H , et:t+H) =
∏H
j=0 ps(st+1+j | st+j , at+j , et+j). Approx-167

imating the robot transition dynamics with our probabilistic dynamics models and expressing the168

joint-likelihood as the negative-log-likelihood, we arrive at our loss function for the i-th model:169

L(ψi) =
1

HNe

Ne−H∑
t=h

H∑
j=0

[
s̄it+1+j − st+1+j

]T (
Σit+j

)−1 [
s̄it+1+j − st+1+j

]
+ log detΣit+j . (6)

Here, Ne is the size of a buffer of real-world transitions Denv, mean state predictions are propa-170

gated deterministically according to s̄it+1 = Si(s̄it, at, ht), and each prediction s̄it is used to update171

the state history ht. For each state st in the buffer, (6) generates a synthetic rollout H steps long172

and computes a loss related to how much the propagated states differ from the experienced states.173

Optimizing the joint-likelihood across multiple steps leads to improved reinforcement learning (RL)174

performance compared to a single-step loss approach (Section 4.2) because (i) model updates are en-175

riched as upstream predictions influence downstream predictions, and (ii) predictions are smoothed176

over the synthetic rollout horizon, effectively filtering out noise between transitions.177

5

3.2 Policy Optimization178

Our approach (Algorithm 2) to policy optimization is based on the well-known MBPO [6] algorithm,179

but with two key differences: (i) the robot acts deterministically in the real world, and (ii) multiple180

steps are performed in the real world before updating the policy. As we demonstrate in Section 4,181

these changes lead to substantial improvements in sample-efficiency and ultimate performance.182

Deterministic policy. Steps in the real environment are taken using deterministic policy µθ which183

simply outputs the mean action from the stochastic policy. Using a deterministic policy in the real184

world helps to prevent damage to the robot and its actuators; however, poses an immediate question185

regarding exploration. We employ a stochastic policy during hallucination per Algorithm 1 in order186

to ensure adequate exploration during the learning process; the stochasticity of our ensemble of187

predictive models also aids in exploration, but they also embed sufficient structure to accurately188

extrapolate during random exploration. Policy parameters θ are trained with soft-actor critic (SAC)189

[33], using a mixture of transitions from real-world and hallucination buffers Denv and Dmodel.190

Enabling real-world training. In the original model-based policy optimization (MBPO) implemen-191

tation [6], hallucination and policy updates are performed after every environment step, which is not192

computationally feasible for real-world training. Crucially, we add Line 5 to Algorithm 2 which193

allows rollouts of length NE to be collected in the real world before hallucinating and updating the194

policy. This addition also creates a loop where hallucination is performed, the policy is updated, and195

hallucination is repeated with the updated policy. This iterative process results in multiple policies196

being used to generate hallucinations, leading to more diverse hallucinated experiences, and boosts197

the update-to-data (UTD) ratio in this scenario where longer rollouts are collected in the real world.198

Algorithm 2 Policy Optimization with Semi-structured Dynamics Models

1: Initialize models p̂ψi , policy πθ, critics Qϕi

2: for Nepochs epochs do
3: Train models p̂ψi

on Denv using loss (6)
4: Take NE steps in the environment deterministically with µθ and add transitions to Denv

5: for K hallucination updates do
6: for M model rollouts do
7: Sample state s0 uniformly from Denv and hallucinate with Algorithm 1
8: Perform G updates of policy πθ using mixture of Denv and Dmodel at ratio rD

4 Experimental Results199

4.1 Real-world Results200

We demonstrate our approach through two real-world experiments where a Unitree Go1 quadruped201

is trained from scratch to achieve maximum speed on both hard ground and memory foam.202

Experimental setup. Training is performed from scratch in the real-world according to Algorithm 2203

over Nepochs = 18 epochs with NE = 1000 environment steps per epoch, resulting in 18, 000204

environment steps or only 3.0min of interaction with the real-world. We perform up to K =205

1, 000 hallucination updates per epoch and G = 40 gradient updates per hallucination update—206

resulting in a UTD of 40—and 20, 000 actor and critic updates between rollouts in the real world.207

We use an observation history length of h = 5, a multi-step loss horizon of H = 4 to train the208

model, and hallucinate synthetic rollouts up to k = 20 steps long; the full listing of hyperparameters209

is found in the supplementary material. We reset the model, actor, and critic at 10, 000 steps to210

improve plasticity [34]. Joint positions and velocities are measured from joint-level encoders, body211

orientation and angular velocity are obtained from the onboard IMU, and body linear velocity is212

acquired through a Vicon motion capture system. Neural networks are trained using JAX [35] and213

low-level joint angle commands are sent to the Go1 via Unitree’s ROS interface [36]. We compute214

the mass matrix, Coriolis terms, and gravity vector in (3) with the differentiable simulator Brax215

6

[37]. Training the probabilistic dynamics models with (6) requires taking gradients though these216

computations, which is facilitated by the simulator’s differentiability.217

Results. Fig. 1 shows a time-lapse of rollouts generated by intermediate poli-218

cies as training progresses. As shown in Fig. 4 (right), after only 3.0min219

0 1 2 3
Minutes of Data

0

200

400

600

R
ew

ar
d

0 1 2 3
Minutes of Data

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ve
lo

ci
ty

 (m
/s

)

Ground Foam

Figure 4: Real-world results. With our approach,
the quadruped steadily learns to walk faster.

of real-world training data, the quadruped220

achieves an average velocity of 0.98m s−1 on221

hard ground and 0.53m s−1 on memory foam.222

Figure 4 (left) plots the reward accumulated in223

each episode up to the first termination (i.e.,224

at which dt = 1). Early in training, the225

quadruped is prone to falling over and this leads226

to low reward, but after roughly 1.5min of227

training the learned policy is robust enough to228

avoid falling, and subsequent rewards increase229

steadily. When walking on memory foam, the230

robot’s feet sink deeply, which makes training231

more difficult. Nonetheless, forward velocity232

steadily improves in both scenarios despite their significantly different contact dynamics, demon-233

strating the adaptability of our approach.234

4.2 Simulated Experiments235

In addition to the results presented here, we provide extensive ablations on standard RL benchmarks236

in the supplementary. Here, we investigate the following hypotheses:237

Hypothesis 1. Utilizing semi-structured dynamics models improves performance and sample effi-238

ciency for MBRL in contact-rich environments.239

Hypothesis 2. Training semi-structured dynamics models with a multi-step loss enhances perfor-240

mance compared to using a single-step loss.241

Hypothesis 3. Uncertainty-aware predictions from semi-structured dynamics models are robust242

against errors in a priori knowledge of the robot’s inertial properties.243

Experimental setup. The setup for experiments performed in simulation is similar to the the real-244

world setup (Section 4.1), except environment rollouts are simulated in Brax [37]; exact parameters245

used during training may be found in the supplementary material. To study the importance of using246

semi-structured dynamics models per Hypothesis 1, we compare our semi-structured state predic-247

tions (4) to black-box predictions of the form: s̄it+1 = st + Biψi
(st, at, zt), where {Biψi

} are an248

ensemble of networks. Learned additive Gaussian noise is also applied to the black-box model,249

resulting in the same probabilistic ensemble model found in MBPO [6], except this model receives250

the latent encoding and does not predict rewards since the reward function is provided. We perform251

runs with both a single-step loss (H = 1) and multi-step loss (H = 4) to test Hypothesis 2. We252

also benchmark against SAC [33], allowing the agent to act stochastically in the environment for253

this algorithm only. Finally, to simulate the modeling errors of Hypothesis 3, we randomly vary254

each link’s mass by ±25% and each joint’s damping by ±50% for the Go1 environment used for255

simulated data collection. All runs are repeated for 4 random seeds.256

Results. The results of our simulated experiments are presented in Fig. 5. In Fig. 5 (left), we ob-257

serve that our semi-structured dynamics models lead to significantly improved performance when258

compared with black-box models, supporting Hypothesis 1. By incorporating physics-based knowl-259

edge, our models produce hallucinated rollouts that generalize beyond the available training data,260

providing richer synthetic data. We also observe in Fig. 5 (left) that, while black-box models show261

similar performance for both single- and multi-step losses, our semi-structured dynamics models262

exhibit significantly improved performance when using a multi-step loss, confirming Hypothesis 2.263

Finally, in Fig. 5 (right), training is similar in performance when there are errors in the a priori264

knowledge of the robot’s inertial properties, supporting Hypothesis 3.265

7

0 10000 20000 30000 40000
Steps

0

500

1000

1500

2000

R
ew

ar
d

Ours, 4-step loss
Ours 1-step loss
Black-box, 4-step loss
Black-box, 1-step loss
SAC

0 10000 20000 30000 40000
Steps

0

500

1000

1500

2000

R
ew

ar
d

No errors
Modeling errors

Figure 5: Simulated results. Left—using our semi-structed dynamics models and multi-step loss for
training results in better performance. Right—our approach is robust to errors in a priori knowledge
of the robot’s inertial properties. Plots show the mean and standard deviation for episodic rewards.

5 Related Work266

Due to space constraints, we provide an abridged discussion of related work here and leave a fuller267

discussion to the supplementary material.268

Model-Based Reinforcement Learning: Our works builds on a wealth of prior works that use gen-269

eral function approximators and probabilistic modelling to account for uncertainty when identifying270

dynamics that are impractical model by hand [38, 6, 26]. Model-based reinforcement learning al-271

gorithms either learn a model that is used for online planning [39, 26, 40] or Dyna-style algorithms272

which hallucinate imagined rollouts for direct policy optimization [6, 3, 4]. While we leverage the273

latter for the purposes of this work, we believe that our general modelling strategies can be use gain-274

fully with online planning algorithms. We build on the insights of these works by integrating their275

insights with structured system identification techniques.276

Learning External Contact Forces: As we have emphasize throughout the this work, inferring the277

information needed to fully localize and estimate contact forces acting on a robot may be impractical278

in the real-world, given limitations of on-board sensing modalities. Prior work [41, 15] leverages279

complementary formulations to predict contact forces, but relies on the availability of a signed-280

distance function to represent constraints, which may be impractical to construct and evaluate in the281

real-world. In [42] contacts are inferred from proprioception, but the method assumes the availability282

of onboard contact force sensor measurements.283

Learning Locomotion Strategies in the Real World: Learning locomotion behaviors from scratch284

directly in the real-world has primarily been studied in the context of model-free reinforcement285

learning [43, 44, 45, 46], with a few works using black-box models in the context of model-based286

reinforcement learning [47, 48]. Several other works investigate fine-tuning locomotion controllers287

trained in simulation to reduce the burden on real world data [49, 50]. Compared to these works, our288

semi-strucured modelling approach enable the robot to achieve dynamic locomotion strategies than289

these previous approaches, with just a fraction of the real-world samples.290

6 Limitations291

This paper presents a novel framework for model-based reinforcement learning, which leverages292

physics-informed, semi-structured dynamics models to enable highly sample-efficient policy learn-293

ing in the real world. However there are several key limitations. First, our method requires ob-294

servability of enough proprioceptive states to propagate the Lagrangian dynamics of the robot. Ad-295

ditionally, relying solely on proprioception restricts the model’s ability to predict changes to the296

environment such as the appearance of an obstacle or transitions between different ground surfaces.297

In the future we plan to extend the current framework to include additional perceptual modalities298

which can infer more about the state of the environment around the robot.299

8

References300

[1] T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker, et al. Model-based reinforcement learn-301

ing: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118, 2023.302

[2] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent303

imagination. arXiv preprint arXiv:1912.01603, 2019.304

[3] R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart305

Bulletin, 2(4):160–163, 1991.306

[4] R. S. Sutton, C. Szepesvári, A. Geramifard, and M. P. Bowling. Dyna-style planning with linear307

function approximation and prioritized sweeping. arXiv preprint arXiv:1206.3285, 2012.308

[5] H. Yao, S. Bhatnagar, D. Diao, R. S. Sutton, and C. Szepesvári. Multi-step dyna planning for309

policy evaluation and control. Advances in neural information processing systems, 22, 2009.310

[6] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy311

optimization. Advances in neural information processing systems, 32, 2019.312

[7] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-313

based offline policy optimization. Advances in Neural Information Processing Systems, 33:314

14129–14142, 2020.315

[8] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn. Combo: Conservative316

offline model-based policy optimization. Advances in neural information processing systems,317

34:28954–28967, 2021.318

[9] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double q-learning: Learning319

fast without a model. arXiv preprint arXiv:2101.05982, 2021.320

[10] T. Hiraoka, T. Imagawa, T. Hashimoto, T. Onishi, and Y. Tsuruoka. Dropout q-functions for321

doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034, 2021.322

[11] J.-J. E. Slotine and W. Li. On the adaptive control of robot manipulators. The international323

journal of robotics research, 6(3):49–59, 1987.324

[12] S. Sastry and M. Bodson. Adaptive control: stability, convergence and robustness. Courier325

Corporation, 2011.326

[13] T. Westenbroek, D. Fridovich-Keil, E. Mazumdar, S. Arora, V. Prabhu, S. S. Sastry, and C. J.327

Tomlin. Feedback linearization for uncertain systems via reinforcement learning. In 2020328

IEEE International Conference on Robotics and Automation (ICRA), pages 1364–1371. IEEE,329

2020.330

[14] G. Tao. Adaptive control design and analysis, volume 37. John Wiley & Sons, 2003.331

[15] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu. Neural networks with physics-332

informed architectures and constraints for dynamical systems modeling. In Learning for Dy-333

namics and Control Conference, pages 263–277. PMLR, 2022.334

[16] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. Lagrangian neural335

networks. arXiv preprint arXiv:2003.04630, 2020.336

[17] M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks: Using physics as model prior337

for deep learning. In International Conference on Learning Representations, 2019. URL338

https://openreview.net/forum?id=BklHpjCqKm.339

[18] B. Acosta, W. Yang, and M. Posa. Validating robotics simulators on real-world impacts. IEEE340

Robotics and Automation Letters, 7(3):6471–6478, 2022.341

9

https://openreview.net/forum?id=BklHpjCqKm

[19] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,342

A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for343

robot learning. arXiv preprint arXiv:2108.10470, 2021.344

[20] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012345

IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,346

2012.347

[21] P. Fankhauser, M. Bloesch, and M. Hutter. Probabilistic terrain mapping for mobile robots348

with uncertain localization. IEEE Robotics and Automation Letters, 3(4):3019–3026, 2018.349

[22] R. Yang, G. Yang, and X. Wang. Neural volumetric memory for visual locomotion control. In350

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages351

1430–1440, 2023.352

[23] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis. Rloc: Terrain-aware353

legged locomotion using reinforcement learning and optimal control. IEEE Transactions on354

Robotics, 38(5):2908–2927, 2022.355

[24] L. Manuelli and R. Tedrake. Localizing external contact using proprioceptive sensors: The356

contact particle filter. In 2016 IEEE/RSJ International Conference on Intelligent Robots and357

Systems (IROS), pages 5062–5069. IEEE, 2016.358

[25] S. Haddadin, A. De Luca, and A. Albu-Schäffer. Robot collisions: A survey on detection,359

isolation, and identification. IEEE Transactions on Robotics, 33(6):1292–1312, 2017.360

[26] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful361

of trials using probabilistic dynamics models. Advances in neural information processing362

systems, 31, 2018.363

[27] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-364

tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.365

[28] G. Bellegarda and A. Ijspeert. Cpg-rl: Learning central pattern generators for quadruped loco-366

motion. IEEE Robotics and Automation Letters, 7(4):12547–12554, 2022.367

[29] T.-Y. Yang, T. Zhang, L. Luu, S. Ha, J. Tan, and W. Yu. Safe reinforcement learning for legged368

locomotion. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems369

(IROS), pages 2454–2461. IEEE, 2022.370

[30] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-371

able stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.372

[31] M. Lutter, L. Hasenclever, A. Byravan, G. Dulac-Arnold, P. Trochim, N. Heess, J. Merel,373

and Y. Tassa. Learning dynamics models for model predictive agents. arXiv preprint374

arXiv:2109.14311, 2021.375

[32] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent376

dynamics for planning from pixels. In International conference on machine learning, pages377

2555–2565. PMLR, 2019.378

[33] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy379

deep reinforcement learning with a stochastic actor. In International conference on machine380

learning, pages 1861–1870. PMLR, 2018.381

[34] E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and A. Courville. The primacy bias in deep382

reinforcement learning. In International conference on machine learning, pages 16828–16847.383

PMLR, 2022.384

10

[35] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,385

A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-386

mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.387

[36] U. Robotics. Unitree ros to real. https://github.com/unitreerobotics/unitree_ros_388

to_real, 2021.389

[37] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax–a differen-390

tiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,391

2021.392

[38] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to pol-393

icy search. In Proceedings of the 28th International Conference on machine learning (ICML-394

11), pages 465–472, 2011.395

[39] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel. Value iteration networks. Advances in396

neural information processing systems, 29, 2016.397

[40] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende, A. Puig-398

domènech Badia, O. Vinyals, N. Heess, Y. Li, et al. Imagination-augmented agents for deep399

reinforcement learning. Advances in neural information processing systems, 30, 2017.400

[41] S. Pfrommer, M. Halm, and M. Posa. Contactnets: Learning discontinuous contact dynamics401

with smooth, implicit representations. In Conference on Robot Learning, pages 2279–2291.402

PMLR, 2021.403

[42] D. Lim, M.-J. Kim, J. Cha, D. Kim, and J. Park. Proprioceptive external torque learning for404

floating base robot and its applications to humanoid locomotion. In 2023 IEEE/RSJ Interna-405

tional Conference on Intelligent Robots and Systems (IROS), pages 8510–8517. IEEE, 2023.406

[43] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.407

In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.408

2004, volume 3, pages 2619–2624. IEEE, 2004.409

[44] R. Tedrake, T. W. Zhang, and H. S. Seung. Stochastic policy gradient reinforcement learning410

on a simple 3d biped. In 2004 IEEE/RSJ International Conference on Intelligent Robots and411

Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2849–2854. IEEE, 2004.412

[45] L. Smith, I. Kostrikov, and S. Levine. A walk in the park: Learning to walk in 20 minutes with413

model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.414

[46] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng. Learning cpg sensory415

feedback with policy gradient for biped locomotion for a full-body humanoid. In AAAI, pages416

1267–1273, 2005.417

[47] S. Choi and J. Kim. Trajectory-based probabilistic policy gradient for learning locomotion418

behaviors. In 2019 International Conference on Robotics and Automation (ICRA), pages 1–7.419

IEEE, 2019.420

[48] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani. Data efficient rein-421

forcement learning for legged robots. In Conference on Robot Learning, pages 1–10. PMLR,422

2020.423

[49] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on424

learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference425

on Robotics and Automation (ICRA), pages 1593–1599. IEEE, 2022.426

[50] T. Westenbroek, F. Castaneda, A. Agrawal, S. Sastry, and K. Sreenath. Lyapunov design for427

robust and efficient robotic reinforcement learning. arXiv preprint arXiv:2208.06721, 2022.428

11

http://github.com/google/jax
https://github.com/unitreerobotics/unitree_ros_to_real
https://github.com/unitreerobotics/unitree_ros_to_real
https://github.com/unitreerobotics/unitree_ros_to_real

[51] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.429

Journal of Machine Learning Research, 17(39):1–40, 2016.430

[52] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin. A431

general safety framework for learning-based control in uncertain robotic systems. IEEE Trans-432

actions on Automatic Control, 64(7):2737–2752, 2018.433

[53] R. Calandra, S. Ivaldi, M. P. Deisenroth, E. Rueckert, and J. Peters. Learning inverse dynamics434

models with contacts. In 2015 IEEE International Conference on Robotics and Automation435

(ICRA), pages 3186–3191. IEEE, 2015.436

[54] J. Hwangbo, C. D. Bellicoso, P. Fankhauser, and M. Hutter. Probabilistic foot contact esti-437

mation by fusing information from dynamics and differential/forward kinematics. In 2016438

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3872–439

3878. IEEE, 2016.440

[55] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.441

arXiv preprint arXiv:2107.04034, 2021.442

[56] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-443

ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,444

2022.445

[57] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforce-446

ment learning for robust parameterized locomotion control of bipedal robots. In 2021 IEEE447

International Conference on Robotics and Automation (ICRA), pages 2811–2817. IEEE, 2021.448

12

A Implementation Details449

In this appendix, we provide details of our implementation for the Unitree Go1 Quadruped, including450

the observation and action spaces, the reward function, the termination condition, and the control451

architecture.452

A.1 Observation and Action Spaces453

The observation space Ω ⊂ R36 consists of the elements in Table 1. The x-axis of the base is the454

forward direction, the y-axis is the leftward direction, and the z-axis is the upward direction. The455

phase variable ϕ ∈ [0, 2π) represents progression along the gait cycle and is defined as ϕt = 2πt/Tϕ456

mod (2π) where Tϕ = 0.5 sec is the gait cycle period.457

Observation Symbol Dimension
Quaternion orientation of the base φ 4
Joint angles qj 12
Base linear velocity (local frame) (vx, vy, vz) 3
Base angular velocity (local frame) (ωx, ωy, ωz) 3
Joint speeds q̇j 12
Cosine of phase cosϕ 1
Sine of phase sinϕ 1

Table 1: Observation space.

The action space A ⊂ R9 outputs the change in nominal height for the gait generator and offsets to458

nominal foot positions from the gait generator, as defined in Table 2.459

Action Symbol Dimension Min. Max.
x-foot position changes ∆px 4 −0.15m 0.15m
y-foot position changes ∆py 4 −0.075m 0.075m
Change in gait generator nominal height ∆hGait 1 −0.1m 0.0m

Table 2: Action space.

A.2 Reward Function and Termination Condition460

Reward Function. The reward function is a weighted sum of the terms in Table 3. We set the461

weights and use exponentials in most of the terms to normalize the reward such that a forward462

velocity of 1.0m s−1 with maximal values for all other terms will result in a reward of approximately463

1.0 for a single time step. The roll φx, pitch φy , and yaw φz of the base are obtained from the base464

quaternion φ. We define a⊙ b as the element-wise multiplication of vectors a and b. Actual torques465

output from the joint-level PD controllers are not available; we estimate the torque applied at the466

joint with (12). We define the following LinearLimit function which linearly penalizes the torque467

applied at the j-th joint τ j when exceeding torque limits; within torque limits, the function is a468

decaying exponential:469

LinearLimit(τ j , τ jmin, τ
j
max) =


τ j − τ jmin − 1 if τ < τ jmin

− exp
[
−τ j + τ jmin

]
if τ jmin ≤ τ j < 0

− exp
[
τ j − τ jmax

]
if 0 ≤ τ j < τ jmax

−τ j + τ jmax − 1 if τ j ≥ τ jmax.

(7)

Termination Condition. The termination flag dt stops the accumulation of reward after the470

quadruped falls and is defined by:471

dt =

{
1 if |φxt | > π/4 or |φyt | > π/4

0 otherwise.
(8)

13

Reward Term Expression Weight
Maximize forward velocity vxt+1 0.42
Limit base yaw rate exp

[
−(ωzt+1)

2/0.2
]

0.11
Limit base roll exp

[
−(φxt+1)

2/0.25
]

0.05
Limit base pitch exp

[
−(φyt+1)

2/0.25
]

0.05
Limit base yaw exp

[
−(φzt+1)

2/0.07
]

0.11
Limit base side velocity exp

[
−(vyt+1)

2/0.01
]

0.11
Limit vertical acceleration exp

[
−(vzt+1 − vzt)2/0.02

]
0.03

Limit base roll rate exp
[
−(φxt+1 − φxt)2/0.001

]
0.03

Limit base pitch rate exp
[
−(φyt+1 − φ

y
t)

2/0.005
]

0.03

Limit energy exp

[
−
∥∥∥q̇jt+1 ⊙ τt+1

∥∥∥2
1
/450

]
0.05

Penalize excessive torques
∑
j LinearLimit(τ

j
t , τ

j
min, τ

j
max)/12 0.02

Table 3: Reward function terms. The reward at each time step is a weighted sum of these terms.

A.3 Control Architecture472

Here, we give detailed specification of the control architecture introduced in Section 2. Referring473

to the action space definition Table 2, the policy takes in the current observation and a history474

of observations and outputs offsets to foot positions and a nominal height for the gait generator:475

(∆pxt ,∆p
y
t ,∆h

Gait
t) ∼ πθ(· | st, ht). The gait generator Gait : [0, 1)× R→ R3 is open-loop and476

generates for each leg, walking-in-place foot positions for the quadruped by computing vertical foot477

position offsets from nominal standing foot positions:478

Gait(ϕ̄lt; ∆h
Gait
t) =

{
plstand +

[
0, 0, hSwing

(
1− cos

[
2π

ϕ̄l
t−r

Gait

1−rGait

])
−∆hGaitt

]
if ϕ̄l ≥ rGait

plstand + [0, 0,∆hGaitt] otherwise
(9)

where plstand ∈ R3 is the nominal standing foot position of the l-th leg, expressed in the local base479

frame, hSwing = 0.09m is the gait peak swing height, and rGait = 0.5 is that fraction of the time feet480

should remain in contact with the ground. The normalized phase ϕ̄l ∈ [0, 1) specifies the progress481

of the l-th leg along its gait cycle and is calculated with:482

ϕ̄lt =

(
ϕt
2π

+ 0.5 + bl
)

mod 1, (10)

where bl is the phase bias for the l-th leg; we use a value of 0 for the front-right and rear-left legs,483

and a value of 0.5 for the front-left and rear-right legs. The desired positions of the l-th foot in the484

local base frame are given by:485

pt(∆p
x,l
t ,∆py,lt ,∆hGaitt , ϕ̄lt) =

[
∆px,lt ,∆py,lt , 0

]
+ Gait(ϕ̄lt; ∆h

Gait
t), (11)

where ∆px,lt and ∆py,lt are the x- and y-foot positions offsets for the l-th foot from the policy. For486

each foot, the desired foot positions (11) are computed and sent to an inverse kinematics solver to487

produce desired joint angles qdes ∈ R12. The desired joint angles are sent to the joint level PD488

controllers, where the desired torque outputs are:489

τt = Kp(q
des − qj)−Kpq̇

j , (12)

and we use proportional gain Kp = 112Nmrad−1 and derivative gain Kp = 3.5Nms rad−1.490

B Simulated Benchmark Experiments491

To demonstrate the versatility of our approach, we perform additional simulated experiments using492

standard, contact-rich, benchmark environments [20] commonly used to evaluate RL algorithms.493

14

Experimental setup. We use the standard MuJoCo [20] environments Hopper, Walker2d, and Ant,494

which have been implemented as part of Brax [37]. Similar to the quadruped, each of these envi-495

ronments feature a floating-base robot with articulated limbs which make and break contact with496

the ground to produce motion. However, unlike the Go1 environment, these environments lack497

structured controllers. Instead, the outputs from the policy are only scaled linearly before being498

directly applied as torques on the joints. To test Hypothesis 1 and Hypothesis 2, we compare our499

semi-structured approach trained with a multi-step loss (H = 4) to the black-box approach from500

Section 4.2 trained with the single-step loss (H = 1). In both of these cases, the agent acts determin-501

istically within the environment per Algorithm 2. We also benchmark against SAC [33], allowing502

the agent to act stochastically in the environment for this algorithm only. The hyperparameters used503

for training are found in Appendix C and all runs are repeated for 4 random seeds.504

Results. The results of these experiments are presented in Fig. 6. We observe a significant per-505

formance improvement when utilizing our semi-structured models trained with a multi-step loss,506

compared to the black-box approach trained with a single-step loss, confirming Hypothesis 1 and507

Hypothesis 2. These results demonstrate that our approach works not only with the Go1 environ-508

ment, but also with other contact-rich environments with unstructured controllers.509

0 20000 40000 60000 80000
Steps

0

1000

2000

3000

R
ew

ar
d

Hopper

0 20000 40000 60000 80000
Steps

0

200

400

600

R
ew

ar
d

Walker2d

0 20000 40000 60000 80000
Steps

0

1000

2000

3000

4000

R
ew

ar
d

Ant

Ours, 4-step loss Black-box, 1-step loss SAC

Figure 6: Simulated benchmark results. Better performance is achieved when using our semi-
structured dynamics models and a multi-step loss. Plots show the mean and standard deviation
for episodic rewards.

C Experiment Hyperparameters510

Table 4 contains the hyperparameters used with our approach; these hyperparameters were also used511

with the approach that incorporated black-box models. Table 5 contains the SAC hyperparameters512

used for our approach, the black-box approach, and standard SAC.513

D Expanded Related Work514

Here we provide an extended related work beyond, expanding on the context provided in the main515

submission.516

Reinforcement Learning: Reinforcement learning algorithms are attractive because they enable517

robots to learn general control policies through repeated interactions with the world [49, 51, 50].518

However, when learning to control a system from scratch, the sample complexity, safety, and relia-519

bility [52] of these algorithms remains a significant concern.520

Our works builds on a wealth of prior works that use general function approximators and probabilis-521

tic modelling to account for uncertainty when identifying dynamics that are impractical to model by522

hand [38, 6, 26]. Model-based reinforcement learning algorithms either learn a model that is used523

for online planning [39, 26, 40] or Dyna-style algorithms which hallucinate imagined rollouts for524

direct policy optimization [6, 3, 4]. While we leverage the latter for the purposes of this work, we525

15

Hyperparameter Go1 (real world) Go1 (simulated) Benchmarks
Epochs, Nepochs 18 40 80
Environment steps per epoch, NE 1000
Hallucination updates per epoch, K 10→ 1, 000 over epochs 0→ 4
Model rollouts per hallucination update, M 400

Synthetic rollout length, k
1→ 20

over epochs
0→ 10

1→ 45
over epochs
0→ 15

Real to synthetic data ratio, rD 0.06
Gradient updates per hallucination update, G 40 60 20
State history length, h 5 1
Multi-step loss horizon, H 4 1 or 4
Model learning rate 1× 10−3

Model training batch size 200
Table 4: Hyperparameters for our approach and the baseline approach with black-box models. x→
y over epochs a → b denotes a clipped linear function, i.e. at epoch i, f(i) = clip(x + i−a

b−a (y −
x), x, y).

Hyperparameter Go1 (real world) Go1 (simulated) Benchmarks
Learning rate 2× 10−3 3× 10−3

Discount factor, γ 0.99
Batch size 256
Target smoothing coefficient, τ 1× 10−3 5× 10−3

Actor network (MLP) width × depth 512× 2 256× 2
Critic network (MLP) width × depth 512× 2 256× 2

Table 5: SAC hyperparameters used for our approach, the black-box approach, and standard SAC.

believe that our general modelling strategies can be use gainfully with online planning algorithms.526

We build on the insights of these works by integrating their insights with structured system identifi-527

cation techniques, substantially accelerating our ability to learn in the real-world for our quadrupedal528

case-study.529

While our work seeks to make model-based data-augmentations strategies more accurately reflect530

the true dynamics of the system, a parallel line of work [9, 10, 49] aims to make off-policy model-531

free algorithms (which form the back-bone for our policy optimization strategy) more stable and ef-532

ficient in low-data regimes. These approaches introduce regularization techniques which enable the533

use of higher update-to-data ratios without overfitting to the available data, matching the efficiency534

of model-free methods such as the MBPO [6] algorithm that we build upon. These algorithmic ad-535

vances are generally orthogonal to our contribution, and thus in the future we plan to incorporate536

them into our framework to further accelerate real-world learning.537

Learning External Contact Forces: As we have emphasized throughout the this work, inferring538

the information needed to fully localize and estimate contact forces acting on a robot may be im-539

practical in the real-world, given limitations of on-board sensing modalities. Prior work [41, 15]540

leverages complementary formulations to predict contact forces, but computing these forces relies541

on the availability of a signed-distance representation of surfaces the robot is making contact with,542

which may be impractical to construct and evaluate in the real-world with available on-board sen-543

sors. In [42] contacts are inferred from proprioception, but the method assumes the availability of544

onboard contact force sensor measurements. In [53], contact forces are learned directly from avail-545

able measurements, but these models are not history-conditioned and attempt to reconstruct multiple546

independent contacts which may be occurring at different locations on the robot. Altogether, while547

we build upon perspectives from many prior works, we introduce an semi-structured auto-regressive548

formulation for inferring contact which is compatible with standard MBRL algorithms, lightweight,549

and capable of learning from on-board observations in the real-world.550

16

Learning Locomotion Strategies in the Real World: Learning locomotion behaviors from scratch551

directly in the real-world has primarily been studied in the context of model-free reinforcement552

learning [43, 44, 45, 46], with a few works using black-box models in the context of model-based553

reinforcement learning [47, 48]. Compared to these works, our semi-strucured modelling approach554

enable the robot to achieve more dynamic locomotion strategies than these previous approaches,555

with just a fraction of the real-world samples. Specifically, our approach either achieves a signifi-556

cantly higher walking speed than each of these approaches, or improves on their sample complexity557

by approximately an order of magnitude. Several other works investigate fine-tuning locomotion558

controllers trained in simulation to reduce the burden on real world data [49, 50] – as we discuss559

below, we hope to investigate this direction in the near future.560

Direct Transfer From Simulation: There has also been recent and rapid progress directly transfer-561

ring locomotion controllers from simulation zero-shot [54, 55, 27, 56, 57], using techniques such as562

domain adaptation and domain randomization. In this paper we have focused on learning locomo-563

tion controllers from scratch, in an effort to demonstrate the ability of our framework to substantially564

adapt the behavior of the robot with small amounts of real-world data. However, in the future we565

plan to fine-tune policies that have been trained using extensive simulated experience, improving the566

performance of these policies in cases where they fail [49] but leveraging a better initialization for567

the policy for real-world learning.568

17

	Introduction
	Preliminaries and Problem Formulation
	Reinforcement Learning with Semi-structured Dynamics Models
	Training Proprioceptive Contact Models for Dynamics Prediction
	Policy Optimization

	Experimental Results
	Real-world Results
	Simulated Experiments

	Related Work
	Limitations
	Implementation Details
	Observation and Action Spaces
	Reward Function and Termination Condition
	Control Architecture

	Simulated Benchmark Experiments
	Experiment Hyperparameters
	Expanded Related Work

