
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#

ECCV
#

SKDCGN: Source-free Knowledge Distillation of
Counterfactual Generative Networks using cGANs

- Supplementary Material

Anonymous ECCV submission

Appendix

A Details of the different models

A.1 Original CGN architecture

This section contains a diagram of the original CGN architecture, as presented
in [1].

Published as a conference paper at ICLR 2021

cGAN

CGN

BigGAN

BigGAN

BigGAN

BigGAN U2-Net

U2-Net

Figure 2: Counterfactual Generative Network (CGN). Here, we illustrate the architecture used for
the ImageNet experiments. The CGN is split into four mechanisms, the shape mechanism fshape, the
texture mechanism ftext, the background mechanism fbg , and the composer C. Components with
trainable parameters are blue, components with fixed parameters are green. The primary supervision
is provided by an unconstrained conditional GAN (cGAN) via the reconstruction loss Lrec. The
cGAN is only used for training, as indicated by the dotted lines. Each mechanism takes as input the
noise vector u (sampled from a spherical Gaussian) and the label y (drawn uniformly from the set
of possible labels Y) and minimizes its respective loss (Lshape, Ltext, and Lbg). To generate a set
of counterfactual images, we sample u and then independently sample y for each mechanism.

there is generally one principal object in the image. Hence, we assume three IMs for this specific
task: object shape, object texture, and background. Our goal is to train the generator consisting of
these mechanisms in an end-to-end manner. The inherent structure of the model allows us to generate
meaningful counterfactuals by construction. In the following, we describe the inductive biases we
use (network architectures, losses, pre-trained models) and how to train the invariant classifier. We
refer to the entire generative model using IMs as a Counterfactual Generative Network (CGN).

3.1 INDEPENDENT MECHANISMS

We assume the causal structure to be known, and consider three learned IMs for generating shape,
texture, and background, respectively. The only difference between the MNIST variants and Ima-
geNet is the background mechanism. For the MNIST variants, we can simplify the SCM to include
a second texture mechanism instead of a dedicated background mechanism. There is no need for a
globally coherent background in the MNIST setting. An explicit formulation of both SCM is shown
in Appendix B. In both cases, the learned IMs feed into another, fixed, IM: the composer. An
overview of our CGN is shown in Figure 2. All IM-specific losses are optimized jointly end-to-end.
For the experiments on ImageNet, we initialize each IM backbone with weights from a pre-trained
BigGAN-deep-256 (Brock et al., 2018), the current state-of-the-art for conditional image genera-
tion. BigGAN has been trained as a single monolithic function; hence, it cannot generate images of
only texture or only background, since these would be outside of the training domain.

Composition Mechanism. The function of the composer is not learned but defined analytically. For
this work, we build on common assumptions from compositional image synthesis (Yang et al., 2017)
and deploy a simple image formation model. Given the generated masks, textures and backgrounds,
we composite the image xgen using alpha blending, denoted as C:

xgen = C(m, f ,b) = m � f + (1 � m) � b (2)

where m is the mask (or alpha map), f is the foreground, and b is the background. The operator
� denotes elementwise multiplication. While, in general, IMs may be stochastic (Eq. 1), we did
not find this to be necessary for the composer; therefore, we leave this mechanism deterministic.
This fixed composition is a strong inductive bias in itself – the generator needs to generate realistic
images through this bottleneck. To optimize the composite image, we could use an adversarial loss
between real and composite images. While applicable to simple datasets such as MNIST, we found
that an adversarial approach does not scale well to more complex datasets like ImageNet. To get a
stronger and more stable supervisory signal, we, therefore, use an unconstrained, conditional GAN

4

Fig. 1: CGN architecture diagram. Retrieved from [1].

Figure 1 illustrates the CGN architecture. The network is split into four
mechanisms, the shape mechanism fshape, the texture mechanism ftext, the
background mechanism fbg, and the composer C. Components with trainable
parameters are blue, components with fixed parameters are green. The primary
supervision is provided by an unconstrained conditional GAN (cGAN) via the
reconstruction loss Lrec. The cGAN is only used for training, as indicated by the
dotted lines. Each mechanism takes as input the noise vector u (sampled from a
spherical Gaussian) and the label y (drawn uniformly from the set of possible
labels Y) and minimizes its respective loss (Lshape, Ltext, and Lbg). To generate
a set of counterfactual images, we sample u and then independently sample y for
each mechanism.

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV
#

ECCV
#

2 ECCV-22 submission ID

(a) Student Generator S [2] (b) A Residual Block in S [2]

Fig. 2: Architecture of the TinyGAN (student) generator

A.2 TinyGAN architecture

This section provides an brief overview of the TinyGAN architecture. For more
details, refer to [2].

Generator. As shown in Figure 2, TinyGAN comprises a ResNet [3]-based
generator with class-conditional BatchNorm [4] [5]. To keep a tight computation
budget, it does not adopt attention-based [6] or progressive-growing mechanisms
[7]. To substantially reduce the model size compared to BigGAN, it:

– Relies on using fewer channels;
– Replaces standard convolution by depthwise separable convolution;
– Adopts a simpler way to introduce class conditions.

Overall, TinyGAN’s generator has 16× less parameters than BigGAN’s generator.

Discriminator. Following [8] [9], [2] opt for spectral normalized discriminator and
introduce the class condition via projection. But instead of utilizing complicated
residual blocks, they simply stack multiple convolutional layers with stride as
used in DCGAN [10], which greatly reduces the number of parameters.

Overall, TinyGAN’s discriminator has 10× less parameters than BigGAN’s
discriminator.

A.3 Baseline model

The baseline is a standard CGN architecture whose BigGANs have been replaced
with TinyGANs. Due to the need of a pre-trained model that (i) supervises the

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV
#

ECCV
#

ECCV-22 submission ID 3

CGN training using a reconstruction loss and (ii) serves as the initialization of the
IM GANs, a TinyGAN was trained from scratch using the KD strategy described
in [2]. In this section we present qualitative results of both the newly-trained
TinyGAN and of baseline model.

B SKDCGN

B.1 TinyGAN training data for SKDCGN

Implementing the architecture of the SKDCGN in Figure 1 in the main paper
requires training a TinyGAN for each Independent Mechanism of the CGN. To
this end, we extract each IM backbone (BigGAN + U2-Net for shape, BigGAN
for texture, BigGAN for background) from the CGN architecture, then use each
of them as a black-box teacher for our student. The KD training procedure,
however, requires training data. Hence prior to training, 1000 images per class
(totalling 1 million samples) were generated using each IM backbone extracted
from the pre-trained CGN provided by [1].

B.2 Generated Counterfactuals

Here we compare the counterfactuals generated from the SKDCGN model with
the ones produced from CGN. Refer to Figure 3 for visualization.

Fig. 3: Images generated by SKDCGN with three independently trained Tiny-
GANs (top), and the original CGN architecture (bottom)

B.3 Results obtained on MNIST dataset on SKDCGN model

In this section, we present the results obtained on MNIST dataset on the proposed
architecture (SKDCGN) using default parameters. For visualization refer to 4.

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ECCV
#

ECCV
#

4 ECCV-22 submission ID

(a) A comparison of images generated by the CGN shape backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row).

(b) A comparison of images generated by the CGN texture backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row).

(c) A comparison of images generated by the background backbone (top row) and
those generated by the corresponding TinyGAN given the same input (bottom row).

Fig. 4: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) for each
independent mechanism.

C Baseline Model

C.1 Training Details

The training procedure of a CGN requires a pre-trained GAN to provide primary
supervision via the reconstruction loss. However, the original TinyGAN was only
trained on only animal classes, hence the publicly-available model could not be
used for our baseline. In order to consistently use the same dataset for all the
experiments, we re-trained a TinyGAN from scratch (as described in [2]) on all
classes of ImageNet-1k. The images generated by TinyGAN are visualized in
Appendix C.1. The images generated for each Independent Mechanism using our

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#

ECCV
#

ECCV-22 submission ID 5

baseline model can be seen in C.1. Apart from this, we additionally generated
the counterfactuals using the baseline model which are shown in Appendix C.1.

Generated outputs of TinyGAN trained on ImageNet-1k A TinyGAN
was trained using all 1000 classes of the ImageNet-1k dataset. Training details
are provided by [2]. Although the original paper trains the model for 1.2 million
epochs, we are forced to restrict the amount of iterations due to computational
constraints. After distilling the knowledge of a BigGAN for 18 epochs, our
TinyGAN generates reasonable images, as seen in Figure 5b. To compare the
image generation we have also presented images generated after the first epoch
as well 5a. It can be observed that if we further train the model, it could produce
images better in quality. Note that animal classes are better captured by the
model: this is inline with the findings of [2].

(a) A comparison of images generated by BigGAN and the TinyGAN. Images in top
row are produced by BigGAN, while those in bottom row are by SKDCGN given the
same input after 1st epoch.

(b) A comparison of images generated by BigGAN and the TinyGAN. Images in top
row are produced by BigGAN, while those in bottom row are by SKDCGN given the
same input after 18th epoch.

Fig. 5: A comparison of images generated by BigGAN and the TinyGAN. Images
in top row are produced by BigGAN, while those in bottom row are by SKDCGN
given the same input

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV
#

ECCV
#

6 ECCV-22 submission ID

Generated outputs of the baseline trained on ImageNet-1k Figure 6
illustrates the individual outputs of each IMs at the starting, after epoch 300kth,
epoch 600kth, epoch 900kth, and epoch 1.2millionth (from left to right). In
each figure, we show from top to bottom : pre-masks m̃, masks m, texture f ,
background b, and composite images xgen.

m̃

m

f

b

xgen

Fig. 6: Individual IM Outputs after training for baseline. From top to bottom:
m, m̃, f , b, xgen. From left to right: at the start of training, after epoch 300kth,
epoch 600kth, epoch 900kth, and epoch 1.2millionth

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

ECCV
#

ECCV
#

ECCV-22 submission ID 7

Generated Counterfactual Images of Baseline trained on ImageNet-1k
Finally, we show counterfactual images generated by the baseline model in Figure
7.

Fig. 7: Counterfactuals generated by baseline on test data for ImageNet-1k

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ECCV
#

ECCV
#

8 ECCV-22 submission ID

D Improving the SKDCGN process

As mentioned in section improvement, we observed that the outputs from CGN
are noisy in nature , and a teacher can only be as good as student. Fig 8 evidently
describes how noisy the MNIST digits are. This is the reason we observe several
artefacts in our architecture as well. However in this section we try to improve
our architecture by several methods.

Fig. 8: Noisy outputs generated by the CGN when we made use of pretrained
weights given by the authors.

In the direction towards improving the images that are being generated by
our architecture, we strongly believe the room of improvement lies in these
components:

– Improving the quality of images that are being generated by the GAN network
in our architecture. Usually loss functions like VGG based perception loss,
L1 reconstruction loss are added.

– Improving the existing knowledge distillation framework such that the student
learns better from the teacher’s guidance by adding new loss functions to the
Knowledge Distillation task.

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#

ECCV
#

ECCV-22 submission ID 9

To improve the quality of images, we observe that our architecture already has
most of the loss functions integrated implicitly/explicitly. Hence, we add the
Cross entropy loss for the generator and discriminator for the mask IM of the
architecture and get the results as shown in 9a for second epoch. We observe
that digits like ’0’ are being reconstructed however for other digits the inputs
look noisy in nature. By the end of 10th epoch for test set in Fig. 9b we observe
that the digits are being reconstructed. We continue with the training since we
expected better results than what we have a;ready seen, however, contrary to
our beliefs we observe artefacts by the end of 30th epoch as shown in Fig. 9c.

(a) A comparison of images generated by the CGN shape backbone
(top row) and those generated by the corresponding SKDCGN given
the same input (bottom row) after 2 epochs on test data.

(b) A comparison of images generated by the CGN texture backbone
(top row) and those generated by the corresponding SKDCGN given
the same input (bottom row) after 10 epochs on test data.

(c) A comparison of images generated by the background backbone
(top row) and those generated by the corresponding SKDCGN given
the same input (bottom row) after 30 epochs on test data.

Fig. 9: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) mask IM with
cross entropy loss

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV
#

ECCV
#

10 ECCV-22 submission ID

D.1 KL multiplied with layer instead of L1

Since the image generation process already has most of the components to ensure
that the reconstruction is in place, we tried to improve the Knowledge distillation
between teacher and student network by integrating the KL divergence and
multiply the loss with every layer of the network instead of L1 which is default.
Possibly, because L1 reconstruction loss is explicitly needed that is to multiplied
with the activation of every layer. We observe the results as shown in Fig. 10

(a) A comparison of images generated by the CGN shape backbone (top row)
and those generated by the corresponding SKDCGN given the same input
(bottom row) after 2 epochs on test data.

(b) A comparison of images generated by the CGN texture backbone (top
row) and those generated by the corresponding SKDCGN given the same input
(bottom row) after 10 epochs on test data.

(c) A comparison of images generated by the background backbone (top row)
and those generated by the corresponding SKDCGN given the same input
(bottom row) after 30 epochs on test data.

Fig. 10: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) mask IM with
KL divergence multiplied with the activation of every layer instead of L1

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

ECCV
#

ECCV
#

ECCV-22 submission ID 11

D.2 KL divergence between teacher and student outputs

Since KL cant be a substitute for L1 loss to be multiplied with activations of every
layer, we now modify the Knowledge distillation loss to be: L1 loss multiplied
with the activation of every layer and computer KL divergence between the
teacher’s outputs and students outputs separately and do not multiply it with the
activation of the layers anymore. We observe that we get better results by doing
this for background and foreground however the results for mask IM lose shape
after few epochs. We use KL divergence because leads to entropy minimization
between the teacher and student and we obtain results as shown in 11.

(a) A comparison of images generated by the CGN shape
backbone (top row) and those generated by the corresponding
SKDCGN given the same input (bottom row) for Foreground
IM after 30 epochs on test data.

(b) A comparison of images generated by the CGN texture
backbone (top row) and those generated by the corresponding
SKDCGN given the same input (bottom row) for background
IM after 30 epochs on test data.

(c) A comparison of images generated by the background
backbone (top row) and those generated by the corresponding
SKDCGN given the same input (bottom row) for mask IM
after 30 epochs on test data.

Fig. 11: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) mask IM with
KL divergence between teacher and student and L1 multiplied with the activation
of every layer.

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV
#

ECCV
#

12 ECCV-22 submission ID

Since this approach gave us better results for several IMs we use the same
approach to generate results for ImageNet-1k dataset, and obtain better results.
From Fig. 12 we observe that with KL divergence we are able to converge faster
than without it.

Fig. 12: Left: Mask outputs obtained after 1st epoch of Imagenet1k dataset by
SKDCGN and Right: mask outputs obtained after 23rd epoch of Imagenet1k
dataset by SKDCGN. Evidently, we observe that by adding KL Divergence we
get better results right after 1st epoch, whereas we do not get similar outputs
even after 23rd epoch without it.

D.3 MSE instead of L1

In addition, We also tried L2 loss instead of L1 loss but it lead to noisy outputs
than previously generated and obtain results as shown in 13. Since, L2 assumes
that the influence of noise is independent of the image’s local characteristic the
images are noisy in nature.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV
#

ECCV
#

ECCV-22 submission ID 13

(a) A comparison of images generated by the CGN shape backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row) for
mask IM after 2 epochs on test data.

(b) A comparison of images generated by the CGN texture backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row) for
mask IM after 10 epochs on test data.

(c) A comparison of images generated by the background backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row) for
mask IM after 30 epochs on test data.

Fig. 13: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) mask IM with
L2 multiplied with the activation of every layer instead of L1.

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV
#

ECCV
#

14 ECCV-22 submission ID

References

1. Axel Sauer and Andreas Geiger. Counterfactual generative networks. CoRR,
abs/2101.06046, 2021.

2. Ting-Yun Chang and Chi-Jen Lu. Tinygan: Distilling biggan for conditional image
generation. CoRR, abs/2009.13829, 2020.

3. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling,
editors, Computer Vision – ECCV 2016, pages 630–645, Cham, 2016. Springer
International Publishing.

4. Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned represen-
tation for artistic style, 2016.

5. Harm de Vries, Florian Strub, Jérémie Mary, H. Larochelle, Olivier Pietquin, and
Aaron C. Courville. Modulating early visual processing by language. In NIPS,
2017.

6. Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention
generative adversarial networks, 2018.

7. Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing
of gans for improved quality, stability, and variation, 2017.

8. Takeru Miyato and Masanori Koyama. cgans with projection discriminator, 2018.
9. Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral

normalization for generative adversarial networks. CoRR, abs/1802.05957, 2018.
10. Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks, 2015.

	SKDCGN: Source-free Knowledge Distillation of Counterfactual Generative Networks using cGANs - Supplementary Material

