
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV
#

ECCV
#

SKDCGN: Source-free Knowledge Distillation of
Counterfactual Generative Networks using cGANs

- Supplementary Material

Anonymous ECCV submission

Appendix

A Details of the different models

A.1 Original CGN architecture

This section contains a diagram of the original CGN architecture, as presented
in [1].

Published as a conference paper at ICLR 2021

cGAN

CGN

BigGAN

BigGAN

BigGAN

BigGAN U2-Net

U2-Net

Figure 2: Counterfactual Generative Network (CGN). Here, we illustrate the architecture used for
the ImageNet experiments. The CGN is split into four mechanisms, the shape mechanism fshape, the
texture mechanism ftext, the background mechanism fbg , and the composer C. Components with
trainable parameters are blue, components with fixed parameters are green. The primary supervision
is provided by an unconstrained conditional GAN (cGAN) via the reconstruction loss Lrec. The
cGAN is only used for training, as indicated by the dotted lines. Each mechanism takes as input the
noise vector u (sampled from a spherical Gaussian) and the label y (drawn uniformly from the set
of possible labels Y) and minimizes its respective loss (Lshape, Ltext, and Lbg). To generate a set
of counterfactual images, we sample u and then independently sample y for each mechanism.

there is generally one principal object in the image. Hence, we assume three IMs for this specific
task: object shape, object texture, and background. Our goal is to train the generator consisting of
these mechanisms in an end-to-end manner. The inherent structure of the model allows us to generate
meaningful counterfactuals by construction. In the following, we describe the inductive biases we
use (network architectures, losses, pre-trained models) and how to train the invariant classifier. We
refer to the entire generative model using IMs as a Counterfactual Generative Network (CGN).

3.1 INDEPENDENT MECHANISMS

We assume the causal structure to be known, and consider three learned IMs for generating shape,
texture, and background, respectively. The only difference between the MNIST variants and Ima-
geNet is the background mechanism. For the MNIST variants, we can simplify the SCM to include
a second texture mechanism instead of a dedicated background mechanism. There is no need for a
globally coherent background in the MNIST setting. An explicit formulation of both SCM is shown
in Appendix B. In both cases, the learned IMs feed into another, fixed, IM: the composer. An
overview of our CGN is shown in Figure 2. All IM-specific losses are optimized jointly end-to-end.
For the experiments on ImageNet, we initialize each IM backbone with weights from a pre-trained
BigGAN-deep-256 (Brock et al., 2018), the current state-of-the-art for conditional image genera-
tion. BigGAN has been trained as a single monolithic function; hence, it cannot generate images of
only texture or only background, since these would be outside of the training domain.

Composition Mechanism. The function of the composer is not learned but defined analytically. For
this work, we build on common assumptions from compositional image synthesis (Yang et al., 2017)
and deploy a simple image formation model. Given the generated masks, textures and backgrounds,
we composite the image xgen using alpha blending, denoted as C:

xgen = C(m, f ,b) = m � f + (1 � m) � b (2)

where m is the mask (or alpha map), f is the foreground, and b is the background. The operator
� denotes elementwise multiplication. While, in general, IMs may be stochastic (Eq. 1), we did
not find this to be necessary for the composer; therefore, we leave this mechanism deterministic.
This fixed composition is a strong inductive bias in itself – the generator needs to generate realistic
images through this bottleneck. To optimize the composite image, we could use an adversarial loss
between real and composite images. While applicable to simple datasets such as MNIST, we found
that an adversarial approach does not scale well to more complex datasets like ImageNet. To get a
stronger and more stable supervisory signal, we, therefore, use an unconstrained, conditional GAN

4

Fig. 1: CGN architecture diagram. Retrieved from [1].

Figure 1 illustrates the CGN architecture. The network is split into four
mechanisms, the shape mechanism fshape, the texture mechanism ftext, the
background mechanism fbg, and the composer C. Components with trainable
parameters are blue, components with fixed parameters are green. The primary
supervision is provided by an unconstrained conditional GAN (cGAN) via the
reconstruction loss Lrec. The cGAN is only used for training, as indicated by the
dotted lines. Each mechanism takes as input the noise vector u (sampled from a
spherical Gaussian) and the label y (drawn uniformly from the set of possible
labels Y) and minimizes its respective loss (Lshape, Ltext, and Lbg). To generate
a set of counterfactual images, we sample u and then independently sample y for
each mechanism.
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(a) Student Generator S [2] (b) A Residual Block in S [2]

Fig. 2: Architecture of the TinyGAN (student) generator

A.2 TinyGAN architecture

This section provides an brief overview of the TinyGAN architecture. For more
details, refer to [2].

Generator. As shown in Figure 2, TinyGAN comprises a ResNet [3]-based
generator with class-conditional BatchNorm [4] [5]. To keep a tight computation
budget, it does not adopt attention-based [6] or progressive-growing mechanisms
[7]. To substantially reduce the model size compared to BigGAN, it:

– Relies on using fewer channels;
– Replaces standard convolution by depthwise separable convolution;
– Adopts a simpler way to introduce class conditions.

Overall, TinyGAN’s generator has 16× less parameters than BigGAN’s generator.

Discriminator. Following [8] [9], [2] opt for spectral normalized discriminator and
introduce the class condition via projection. But instead of utilizing complicated
residual blocks, they simply stack multiple convolutional layers with stride as
used in DCGAN [10], which greatly reduces the number of parameters.

Overall, TinyGAN’s discriminator has 10× less parameters than BigGAN’s
discriminator.

A.3 Baseline model

The baseline is a standard CGN architecture whose BigGANs have been replaced
with TinyGANs. Due to the need of a pre-trained model that (i) supervises the
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CGN training using a reconstruction loss and (ii) serves as the initialization of the
IM GANs, a TinyGAN was trained from scratch using the KD strategy described
in [2]. In this section we present qualitative results of both the newly-trained
TinyGAN and of baseline model.

B SKDCGN

B.1 TinyGAN training data for SKDCGN

Implementing the architecture of the SKDCGN in Figure 1 in the main paper
requires training a TinyGAN for each Independent Mechanism of the CGN. To
this end, we extract each IM backbone (BigGAN + U2-Net for shape, BigGAN
for texture, BigGAN for background) from the CGN architecture, then use each
of them as a black-box teacher for our student. The KD training procedure,
however, requires training data. Hence prior to training, 1000 images per class
(totalling 1 million samples) were generated using each IM backbone extracted
from the pre-trained CGN provided by [1].

B.2 Generated Counterfactuals

Here we compare the counterfactuals generated from the SKDCGN model with
the ones produced from CGN. Refer to Figure 3 for visualization.

Fig. 3: Images generated by SKDCGN with three independently trained Tiny-
GANs (top), and the original CGN architecture (bottom)

B.3 Results obtained on MNIST dataset on SKDCGN model

In this section, we present the results obtained on MNIST dataset on the proposed
architecture (SKDCGN) using default parameters. For visualization refer to 4.
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(a) A comparison of images generated by the CGN shape backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row).

(b) A comparison of images generated by the CGN texture backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row).

(c) A comparison of images generated by the background backbone (top row) and
those generated by the corresponding TinyGAN given the same input (bottom row).

Fig. 4: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) for each
independent mechanism.

C Baseline Model

C.1 Training Details

The training procedure of a CGN requires a pre-trained GAN to provide primary
supervision via the reconstruction loss. However, the original TinyGAN was only
trained on only animal classes, hence the publicly-available model could not be
used for our baseline. In order to consistently use the same dataset for all the
experiments, we re-trained a TinyGAN from scratch (as described in [2]) on all
classes of ImageNet-1k. The images generated by TinyGAN are visualized in
Appendix C.1. The images generated for each Independent Mechanism using our
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baseline model can be seen in C.1. Apart from this, we additionally generated
the counterfactuals using the baseline model which are shown in Appendix C.1.

Generated outputs of TinyGAN trained on ImageNet-1k A TinyGAN
was trained using all 1000 classes of the ImageNet-1k dataset. Training details
are provided by [2]. Although the original paper trains the model for 1.2 million
epochs, we are forced to restrict the amount of iterations due to computational
constraints. After distilling the knowledge of a BigGAN for 18 epochs, our
TinyGAN generates reasonable images, as seen in Figure 5b. To compare the
image generation we have also presented images generated after the first epoch
as well 5a. It can be observed that if we further train the model, it could produce
images better in quality. Note that animal classes are better captured by the
model: this is inline with the findings of [2].

(a) A comparison of images generated by BigGAN and the TinyGAN. Images in top
row are produced by BigGAN, while those in bottom row are by SKDCGN given the
same input after 1st epoch.

(b) A comparison of images generated by BigGAN and the TinyGAN. Images in top
row are produced by BigGAN, while those in bottom row are by SKDCGN given the
same input after 18th epoch.

Fig. 5: A comparison of images generated by BigGAN and the TinyGAN. Images
in top row are produced by BigGAN, while those in bottom row are by SKDCGN
given the same input
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Generated outputs of the baseline trained on ImageNet-1k Figure 6
illustrates the individual outputs of each IMs at the starting, after epoch 300kth,
epoch 600kth, epoch 900kth, and epoch 1.2millionth (from left to right). In
each figure, we show from top to bottom : pre-masks m̃, masks m, texture f ,
background b, and composite images xgen.

m̃

m

f

b

xgen

Fig. 6: Individual IM Outputs after training for baseline. From top to bottom:
m, m̃, f , b, xgen. From left to right: at the start of training, after epoch 300kth,
epoch 600kth, epoch 900kth, and epoch 1.2millionth
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Generated Counterfactual Images of Baseline trained on ImageNet-1k
Finally, we show counterfactual images generated by the baseline model in Figure
7.

Fig. 7: Counterfactuals generated by baseline on test data for ImageNet-1k
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D Improving the SKDCGN process

As mentioned in section improvement, we observed that the outputs from CGN
are noisy in nature , and a teacher can only be as good as student. Fig 8 evidently
describes how noisy the MNIST digits are. This is the reason we observe several
artefacts in our architecture as well. However in this section we try to improve
our architecture by several methods.

Fig. 8: Noisy outputs generated by the CGN when we made use of pretrained
weights given by the authors.

In the direction towards improving the images that are being generated by
our architecture, we strongly believe the room of improvement lies in these
components:

– Improving the quality of images that are being generated by the GAN network
in our architecture. Usually loss functions like VGG based perception loss,
L1 reconstruction loss are added.

– Improving the existing knowledge distillation framework such that the student
learns better from the teacher’s guidance by adding new loss functions to the
Knowledge Distillation task.
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To improve the quality of images, we observe that our architecture already has
most of the loss functions integrated implicitly/explicitly. Hence, we add the
Cross entropy loss for the generator and discriminator for the mask IM of the
architecture and get the results as shown in 9a for second epoch. We observe
that digits like ’0’ are being reconstructed however for other digits the inputs
look noisy in nature. By the end of 10th epoch for test set in Fig. 9b we observe
that the digits are being reconstructed. We continue with the training since we
expected better results than what we have a;ready seen, however, contrary to
our beliefs we observe artefacts by the end of 30th epoch as shown in Fig. 9c.

(a) A comparison of images generated by the CGN shape backbone
(top row) and those generated by the corresponding SKDCGN given
the same input (bottom row) after 2 epochs on test data.

(b) A comparison of images generated by the CGN texture backbone
(top row) and those generated by the corresponding SKDCGN given
the same input (bottom row) after 10 epochs on test data.

(c) A comparison of images generated by the background backbone
(top row) and those generated by the corresponding SKDCGN given
the same input (bottom row) after 30 epochs on test data.

Fig. 9: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) mask IM with
cross entropy loss
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D.1 KL multiplied with layer instead of L1

Since the image generation process already has most of the components to ensure
that the reconstruction is in place, we tried to improve the Knowledge distillation
between teacher and student network by integrating the KL divergence and
multiply the loss with every layer of the network instead of L1 which is default.
Possibly, because L1 reconstruction loss is explicitly needed that is to multiplied
with the activation of every layer. We observe the results as shown in Fig. 10

(a) A comparison of images generated by the CGN shape backbone (top row)
and those generated by the corresponding SKDCGN given the same input
(bottom row) after 2 epochs on test data.

(b) A comparison of images generated by the CGN texture backbone (top
row) and those generated by the corresponding SKDCGN given the same input
(bottom row) after 10 epochs on test data.

(c) A comparison of images generated by the background backbone (top row)
and those generated by the corresponding SKDCGN given the same input
(bottom row) after 30 epochs on test data.

Fig. 10: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) mask IM with
KL divergence multiplied with the activation of every layer instead of L1
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D.2 KL divergence between teacher and student outputs

Since KL cant be a substitute for L1 loss to be multiplied with activations of every
layer, we now modify the Knowledge distillation loss to be: L1 loss multiplied
with the activation of every layer and computer KL divergence between the
teacher’s outputs and students outputs separately and do not multiply it with the
activation of the layers anymore. We observe that we get better results by doing
this for background and foreground however the results for mask IM lose shape
after few epochs. We use KL divergence because leads to entropy minimization
between the teacher and student and we obtain results as shown in 11.

(a) A comparison of images generated by the CGN shape
backbone (top row) and those generated by the corresponding
SKDCGN given the same input (bottom row) for Foreground
IM after 30 epochs on test data.

(b) A comparison of images generated by the CGN texture
backbone (top row) and those generated by the corresponding
SKDCGN given the same input (bottom row) for background
IM after 30 epochs on test data.

(c) A comparison of images generated by the background
backbone (top row) and those generated by the corresponding
SKDCGN given the same input (bottom row) for mask IM
after 30 epochs on test data.

Fig. 11: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) mask IM with
KL divergence between teacher and student and L1 multiplied with the activation
of every layer.
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Since this approach gave us better results for several IMs we use the same
approach to generate results for ImageNet-1k dataset, and obtain better results.
From Fig. 12 we observe that with KL divergence we are able to converge faster
than without it.

Fig. 12: Left: Mask outputs obtained after 1st epoch of Imagenet1k dataset by
SKDCGN and Right: mask outputs obtained after 23rd epoch of Imagenet1k
dataset by SKDCGN. Evidently, we observe that by adding KL Divergence we
get better results right after 1st epoch, whereas we do not get similar outputs
even after 23rd epoch without it.

D.3 MSE instead of L1

In addition, We also tried L2 loss instead of L1 loss but it lead to noisy outputs
than previously generated and obtain results as shown in 13. Since, L2 assumes
that the influence of noise is independent of the image’s local characteristic the
images are noisy in nature.
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(a) A comparison of images generated by the CGN shape backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row) for
mask IM after 2 epochs on test data.

(b) A comparison of images generated by the CGN texture backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row) for
mask IM after 10 epochs on test data.

(c) A comparison of images generated by the background backbone (top row) and
those generated by the corresponding SKDCGN given the same input (bottom row) for
mask IM after 30 epochs on test data.

Fig. 13: A comparison of images generated by the CGN backbones and those
generated by the corresponding SKDCGN (given the same input) mask IM with
L2 multiplied with the activation of every layer instead of L1.
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