
Self-Data Distillation for Recovering Quality in Pruned Large Language Models

A EXPERIMENTAL SETUP DETAILS

A.1 Baseline Model

In our ablation studies in Section 3, we used Llama3.1-8B
Instruct1(Dubey et al., 2024) as the baseline model for all
experiments. This model comprises a total of 32 decoder
layers, pretrained on a diverse array of instruction-following
datasets. This model was chosen for its strong generaliza-
tion performance across a wide range of natural language
processing (NLP) tasks, making it an ideal candidate for
studying the impact of structured pruning and fine-tuning.
The 8B model size strikes a balance between computational
efficiency and model quality, providing a robust founda-
tion for the experiments in this study. Hence, served as the
starting point for our structured layer pruning ablations and
experiments in Sections 3 and 4, respectively.

In Section 4, to further understand the efficacy of our
methodology on other LLMs, we also applied it to Mistral-
7B Instruct v0.3 2, an instruct fine-tuned version of Mistral-
7B-v0.3. This most recent version of Mistral-7B (Jiang et al.,
2023), compared to Mistral-7B-v0.2, includes an extended
vocabulary of 32,768 tokens, supports a v3 tokenizer, and
enables function calling.

A.2 Structured Layer Pruning

In this study, we focus on structured layer pruning of de-
coder layers to reduce the computational footprint of the
LLM while maintaining its quality. Specifically, we prune in
block sizes of {2, 4, 6, 8, 10} layers, corresponding to {30,
28, 26, 24, 22} decoder layers, respectively. Each block size
reduction effectively removes a group of layers from the
original architecture, creating progressively smaller models.
These pruned models allow us to systematically evaluate the
trade-offs between computational efficiency (fewer layers)
and the accuracy on various downstream tasks. By examin-
ing multiple block sizes, we analyze how varying degrees of
pruning impact model quality, especially in the context of
self-data distilled fine-tuning, our proposed methodology.

A.3 Calibration Dataset for Structured Layer Pruning

In structured pruning, selecting a suitable calibration dataset
is critical for effectively identifying and removing redun-
dant layers without sacrificing model quality. This study
examines the impact of different calibration datasets: C4,
RedPajama, and SlimPajama on computing the angular co-
sine distance block importance metric for Llama3.1-8B In-
struct, as shown in Table 7. We found that all three datasets
produced similar results across various prune block sizes,

1https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct

2https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

Table 7. Ablation study on the choice of calibration dataset for
computing the angular cosine distance block importance metric
on Llama3.1-8B Instruct. For calibration, we use a subset of 128
samples at a maximum sequence length (MSL) of 4096 from each
dataset. The datasets C4, Redpajama, and Slimpajama produced
similar pruning results across various block sizes, with comparable
layers removed. Based on these results, the Redpajama dataset
was selected for further evaluations due to its representative per-
formance.

Block Size Removed
Layers Dataset Score

(avg dist)

2
24-25 C4 0.145
23-24 Redpajama 0.168
24-25 Slimpajama 0.153

4
24-27 C4 0.197
23-26 Redpajama 0.222
23-26 Slimpajama 0.205

6
22-27 C4 0.241
22-27 Redpajama 0.270
23-28 Slimpajama 0.249

8
20-27 C4 0.282
20-27 Redpajama 0.293
20-27 Slimpajama 0.289

with comparable layers identified for removal. Given the
consistency of results, we opted to use Redpajama as the
calibration dataset in subsequent experiments due to its rep-
resentative performance and alignment with our goals for
efficient model pruning. Recent studies around the time
of this submission have explored the nuanced role of cal-
ibration data in pruning large language models (Ji et al.,
2024). While our analysis focuses on the practical selection
of calibration datasets, a deeper investigation into calibra-
tion dataset characteristics and their influence on pruning
decisions remains an open question for future work.

A.4 Fine-tuning Datasets

The following datasets were used for ablation studies and
fine-tuning experiments, representing a range of open-
domain conversation, instruction-following, reasoning, and
mathematical tasks:

• Dolly 15k (Conover et al., 2023) The Dolly
dataset is an open-source collection of 15,000
instruction-following records generated by thousands
of Databricks employees. It covers a wide range of be-
havioral categories, as outlined in InstructGPT(Ouyang
et al., 2022), including brainstorming, classification,
closed question answering (QA), generation, informa-
tion extraction, open QA, and summarization. Dolly is
designed to provide a benchmark for general-purpose

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
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instruction-following models, emphasizing diverse task
types and behavioral categories.

• GSM8k (Cobbe et al., 2021) The GSM8k dataset is
a collection of 8,000 high-quality grade-school-level
math word problems, developed by OpenAI. Each prob-
lem is designed to assess a model’s ability to perform
multi-step reasoning and problem-solving, making it
an essential benchmark for evaluating arithmetic, alge-
braic, and logical reasoning abilities in large models.
Fine-tuning on GSM8k highlights the model’s capacity
for mathematical reasoning, a key focus of our ablation
studies.

• Alpaca Cleaned3 (Taori et al., 2023) The Alpaca
Cleaned dataset is a cleaned version of the original
Stanford Alpaca dataset, containing 51,760 instruction-
following examples. It addresses several issues present
in the original release, such as hallucinations, incorrect
instructions, and output inconsistencies. This dataset
provides high-quality general instruction-following
tasks, spanning text generation, summarization, reason-
ing, and more. The cleaned version offers improved
consistency and accuracy, making it ideal for fine-
tuning large models in real-world instruction-following
tasks.

• OpenMathInstruct (Toshniwal et al., 2024) The
OpenMathInstruct-1 dataset is specifically designed for
fine-tuning language models on mathematical instruc-
tion tasks. It contains 1.8 million problem-solution
pairs, generated using Mixtral-8x7B (Jiang et al., 2024).
The problem sets are drawn from well-established
mathematical benchmarks, including the GSM8K and
MATH (Hendrycks et al., 2021b) datasets, ensuring
a diverse and challenging range of mathematical rea-
soning tasks. Solutions are generated synthetically
by allowing the Mixtral model to leverage a combi-
nation of natural language reasoning and executable
Python code, which allows for both symbolic compu-
tation and procedural solutions. This combination of
text and code execution makes the dataset particularly
suited for training models to handle complex reasoning,
problem-solving, and algebraic tasks.

A.4.1 Data Sampling and Experimental Consistency

To maintain consistency across ablation studies, we fixed
the dataset size at 8,000 samples for GSM8k, Alpaca, and
OpenMathInstruct, aligning them with the standard GSM8k
dataset size. However, the Dolly dataset retained its de-
fault size of 15,000 samples to preserve the integrity of
this benchmark. To evaluate the impact of dataset size on

3https://huggingface.co/datasets/yahma/
alpaca-cleaned

self-data distillation, we extended the sample sizes for some
experiments, using the full 50,000 samples from Alpaca
Cleaned and randomly sampling 50,000 training samples
from OpenMathInstruct. This allowed us to control for the
effects of larger datasets, providing insights into how dataset
size influences generalization and model retention following
pruning.

A.5 Fine-tuning Pruned Models

For fine-tuning, we employed Low-Rank Adaptation
(LoRA) (Hu et al., 2022), as it provides an efficient ap-
proach to training while preserving the pretrained model’s
capacity. Although full fine-tuning is feasible, we focused
on LoRA fine-tuning in this study, leaving full parameter
fine-tuning for future work. We conducted a comprehensive
grid search on an 8k-sample version of the OpenMathIn-
struct dataset to identify the most effective hyperparameters
for LoRA-based fine-tuning. The search was performed
across a range of values to ensure optimal performance.
We explored different rank sizes 2 {4, 8, 16, 32}, aiming
to balance model capacity and parameter efficiency. For
the number of epochs, we tested values ranging 2 {3, 5, 7,
10}, ensuring that the models were fine-tuned enough to
converge without overfitting. The learning rate was swept
across five values {2⇥10�5, 4⇥10�5, 6⇥10�5, 8⇥10�5,
1⇥10�4}. Finally, we tested batch sizes 2 {8, 16, 32, 64,
128} to determine the optimal balance between training
stability and computational efficiency.

Through this grid search, the optimal configuration was
identified as a rank size = 8, epochs = 5, a batch size = 64,
and learning rate = 1⇥10�4. These hyperparameters were
used consistently across all fine-tuning experiments (i.e.,
both standard supervised fine-tuning and self-data distilled
fine-tuning) in this study to ensure a fair comparison of
the models and their quality post-pruning. We conduct our
model training using LLaMA-Factory v0.8.34, a ver-
satile framework designed for large-scale language model
training and fine-tuning. This version offers extensive sup-
port for efficient parallelism, optimized memory usage, and
integration with popular datasets, making it ideal for large
model fine-tuning tasks such as those performed in this
study.

A.5.1 Computational Resources

Fine-tuning and evaluations were conducted on Nvidia
H100 GPUs. For experiments involving larger self-data
distillation datasets, we utilized Cerebras CS-3 Infer-
ence (Thangarasa et al., 2024b), which achieves output gen-
eration speeds exceeding 1800 tokens per second. The CS-3
system was particularly useful for generating large-scale

4https://github.com/hiyouga/
LLaMA-Factory/releases/tag/v0.8.3
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self-distilled datasets. However, for smaller datasets (e.g.,
up to 15k samples), the H100 GPUs were sufficient for both
fine-tuning and generation.

B EXTENDED RESULTS ON FINE-TUNING
ABLATIONS

In this section, we provide extended results from our fine-
tuning ablation study to further clarify the impact of dataset
choice on self-data distillation efficacy in pruned Llama3.1-
8B Instruct models. As detailed in the Section 3, we ob-
served that self-data distillation consistently outperformed
SFT across various datasets. Table 8 shows that the largest
gains were achieved using the 50k-sample OpenMathIn-
struct dataset, particularly at medium and large pruning
block sizes (e.g., block size 6). At this configuration, self-
data distillation was able to recover 95.96% of the baseline
model quality, which is a significant improvement compared
to other datasets and fine-tuning methods. This result high-
lights the robustness of the self-data distillation process,
especially in recovering quality post-pruning on reasoning-
heavy tasks like those in GSM8k, ARC-C, and MMLU.

Moreover, the recovery rates exhibited a clear trend where,
larger datasets such as the 50k OpenMathInstruct consis-
tently led to higher quality retention, especially when com-
bined with more aggressive pruning. This suggests that the
dataset’s ability to approximate the model’s original data
distribution is critical for maintaining generalization capabil-
ities after pruning. In contrast, smaller datasets like Alpaca
or Dolly showed comparatively lower recovery rates, which
further confirms the importance of dataset scale in the distil-
lation process. Our results suggest that larger datasets are
crucial for mitigating quality degradation in pruned models,
with the 50k OpenMathInstruct dataset emerging as the most
effective in retaining and enhancing model quality across
block sizes, particularly in challenging reasoning tasks.

C EXPERIMENTAL SETUP FOR
UNDERSTANDING CATASTROPHIC
FORGETTING

To understand the impact of distribution shift on catastrophic
forgetting, we conducted experiments using the baseline
model (i.e., Llama3.1-8B Instruct) and its pruned variants
fine-tuned with both supervised fine-tuning (SFT) and self-
data distilled fine-tuning (Self-Data FT). Specifically, we
pruned 6 decoder layers, reducing the model from 32 to
26 layers, and evaluated the models on the GSM8k dataset.
For these experiments, we generated model responses using
the baseline and pruned variants on the GSM8k dataset to
capture how the distribution shift affects reasoning tasks
post-pruning. Following Yang et al. (2024), to quantify the
distribution shift, we employed Sentence-BERT (Reimers

& Gurevych, 2019) to derive sentence embeddings from the
model-generated responses. Then, similar to the method
proposed by Zhang et al. (2023), we calculated the cosine
similarity between the sentence embeddings of the pruned
models and those generated by the original Llama3.1-8B
Instruct model.

A lower cosine similarity score indicates a greater distribu-
tion shift, suggesting a higher risk of catastrophic forgetting.
Conversely, higher similarity scores indicate better preser-
vation of the original model’s knowledge and a lower risk
of forgetting. These metrics allowed us to assess the ex-
tent to which SFT and Self-Data FT preserved the learned
distribution of the base model, with the latter showing supe-
rior performance in mitigating forgetting, as detailed in our
ablations in Section 3.

D MODEL MERGING SELF-DATA
DISTILLED MODELS

We employ the Spherical Linear Interpolation (SLERP)
method for merging pruned models, which ensures smooth,
geometrically consistent interpolation between two pruned
model parameter vectors. SLERP operates within the unit
sphere’s geometry, contrasting with traditional linear inter-
polation that may destabilize or yield suboptimal parameter
combinations by ignoring the geometric properties of the
high-dimensional parameter space. SLERP preserves model
integrity during interpolation, leading to more stable and
consistent outcomes.

Given two pruned model parameter vectors, ✓0
0 and ✓0

1, cor-
responding to pruned models M 0

0 (fine-tuned on OpenMath-
Instruct) and M 0

1 (fine-tuned on Alpaca), SLERP generates
an interpolated parameter vector ✓0

t for any interpolation
factor t 2 [0, 1]. When t = 0, the parameters of the Open-
MathInstruct fine-tuned model ✓0

0 are retrieved, and when
t = 1, the parameters of the Alpaca fine-tuned model ✓0

1 are
retrieved.

Normalization to Unit Sphere The first step in SLERP
is to normalize both pruned model parameter vectors to lie
on the unit sphere,

✓̂
0
0 =

✓0
0

k✓0
0k

, ✓̂
0
1 =

✓0
1

k✓0
1k

.

This normalization ensures that both parameter vectors
have unit norms, placing them on the surface of the unit
sphere in the parameter space. Next, we compute the an-
gle ✓angle between the normalized pruned model vectors
✓̂
0
0 and ✓̂

0
1. This angle is computed using the dot prod-

uct, cos(✓angle) = ✓̂
0
0 · ✓̂

0
1, and the actual angle is given by

✓angle = arccos(cos(✓angle)). This angle represents the an-
gular separation between the two pruned models’ parameter
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vectors on the unit sphere.

Spherical Interpolation With the angle ✓angle determined,
SLERP performs spherical interpolation along the great
circle connecting ✓̂

0
0 and ✓̂

0
1. The interpolated parameter

vector ✓0
t is computed as,

✓0
t =

sin((1� t)✓angle)

sin(✓angle)
· ✓̂

0
0 +

sin(t✓angle)

sin(✓angle)
· ✓̂

0
1.

This formula ensures that the interpolation remains on the
surface of the unit sphere, respecting the geometric structure
of the parameter space. The interpolation factor t controls
the contribution from each pruned model, when t = 0,
✓0
t = ✓̂

0
0 (i.e., OpenMathInstruct fine-tuned model), and

when t = 1, ✓0
t = ✓̂

0
1 (i.e., Alpaca fine-tuned model). The

intermediate values of t produce a smooth, spherical blend
of the two pruned models.

D.1 Geometric Consistency and Application

By operating within the unit sphere, SLERP respects the
Riemannian geometry of the high-dimensional parameter
space, ensuring a smooth transition between the two pruned
models. Traditional linear interpolation in such spaces can
distort the relationships between parameters, leading to sub-
optimal combinations and degraded model performance. In
contrast, SLERP maintains geometric consistency, ensur-
ing that the interpolation follows a natural path on the unit
sphere.

Merging the pruned OpenMathInstruct and Alpaca models
using SLERP combines the unique strengths of both models.
For instance, OpenMathInstruct’s emphasis on mathemati-
cal reasoning and logical structure complements Alpaca’s
broader instruction-following capabilities. By adjusting the
interpolation factor t, the merged model can balance these
capabilities, resulting in a versatile and robust model for a
range of downstream tasks. We use Arcee.ai’s mergekit5

for efficiently merging model checkpoints.

5https://github.com/arcee-ai/mergekit

https://github.com/arcee-ai/mergekit
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Table 8. Model quality results for pruned Llama3.1-8B Instruct models across various pruning block sizes and fine-tuning
strategies. This table reports the quality of different fine-tuning methods (No Fine-tuning, Standard Fine-tuning (SFT), and Self-Data
Distillation) on various datasets, with average accuracy across ARC-C, GSM8k, and MMLU tasks. The ”Avg. Recovery” column shows
the percentage of model quality recovered relative to the unpruned baseline. The table highlights that the self-data distillation strategy
consistently yields superior recovery rates, particularly with the 50k-sample OpenMathInstruct dataset. For instance, at a pruning block
size of 6, the self-data distilled OpenMathInstruct model retains 95.96% of the original unpruned Llama3.1-8B Instruct (i.e., 32 layers)
model’s quality, the highest recovery observed among all datasets and fine-tuning methods.

Prune
Block Size

Model
Savings

Fine-tuning
Method Dataset ARC-C

(25-shot)
GSM8k
(5-shot)

MMLU
(5-shot)

Avg.
Score

Avg.
Recovery

Baseline - No FT 58.70 63.15 67.40 63.08 100.00%

2 5.43%
(7.59B)

No FT 55.20 67.79 56.18 59.72 94.67%
SFT GSM8k 58.45 56.25 65.22 59.97 95.07%
Self-Data Distillation GSM8k 57.34 64.44 66.60 62.79 99.54%

SFT Dolly 55.67 61.64 65.71 61.01 96.71%
Self-Data Distillation Dolly 56.48 62.24 66.46 61.73 97.87%

SFT Alpaca (50k) 56.61 63.19 65.60 61.80 97.98%
Self-Data Distillation Alpaca (50k) 56.91 68.60 66.50 63.34 100.41%

SFT OpenMathInstruct (50k) 52.91 44.95 60.93 52.93 83.88%
Self-Data Distillation OpenMathInstruct (50k) 56.43 69.97 66.17 64.19 101.76%

4 10.86%
(7.16B)

No FT 55.20 56.18 67.79 59.72 94.67%
SFT GSM8k 54.27 43.47 65.40 54.38 86.22%
Self-Data Distillation GSM8k 55.20 62.55 66.68 61.48 97.49%

SFT Dolly 54.78 59.36 63.65 59.26 93.95%
Self-Data Distillation Dolly 51.71 55.96 65.40 57.69 91.44%

SFT Alpaca (50k) 56.05 54.40 65.34 58.60 92.89%
Self-Data Distillation Alpaca (50k) 57.27 66.20 66.24 63.24 100.26%
SFT OpenMathInstruct (50k) 51.62 44.35 61.65 52.54 83.30%
Self-Data Distillation OpenMathInstruct (50k) 53.93 69.44 65.34 62.24 98.66%

6 16.30%
(6.72B)

No FT 49.49 0.00 67.42 48.93 70.50%
SFT GSM8k 46.67 62.09 64.67 57.81 91.63%
Self-Data Distillation GSM8k 51.45 60.05 66.28 59.93 95.02%

SFT Dolly 47.18 33.89 65.33 48.13 76.31%
Self-Data Distillation Dolly 51.96 50.95 62.56 55.82 88.47%

SFT Alpaca (50k) 54.62 56.11 64.39 58.37 92.53%
Self-Data Distillation Alpaca (50k) 53.80 59.15 66.29 59.75 94.71%

SFT OpenMathInstruct (50k) 46.93 43.82 59.98 50.91 80.71%
Self-Data Distillation OpenMathInstruct (50k) 50.00 66.64 64.96 60.53 95.96%

8 21.73%
(6.29B)

No FT 44.71 0.00 65.57 36.76 58.27%
SFT GSM8k 44.79 50.86 64.38 53.34 84.56%
Self-Data Distillation GSM8k 46.16 50.11 65.53 53.93 85.50%

SFT Dolly 39.33 15.39 57.44 37.39 59.27%
Self-Data Distillation Dolly 46.50 28.73 62.93 46.05 73.00%

SFT Alpaca (50k) 49.15 39.59 64.81 51.85 82.19%
Self-Data Distillation Alpaca (50k) 48.09 42.77 65.20 52.69 83.51%

SFT OpenMathInstruct (50k) 42.15 29.64 60.65 44.81 71.05%
Self-Data Distillation OpenMathInstruct (50k) 46.67 57.70 64.87 56.41 89.44%

10 27.16%
(5.85B)

No FT 37.46 0.00 64.09 33.85 53.65%
SFT GSM8k 39.85 37.45 61.47 46.92 74.36%
Self-Data Distillation GSM8k 41.55 37.47 62.33 47.12 74.70%

SFT Dolly 38.40 0.76 46.94 28.70 45.51%
Self-Data Distillation Dolly 43.60 12.28 62.47 39.45 62.53%

SFT Alpaca (50k) 45.22 17.51 63.72 42.82 67.88%
Self-Data Distillation Alpaca (50k) 44.91 20.05 64.73 43.90 69.56%

SFT OpenMathInstruct (50k) 39.33 15.39 57.44 37.39 59.25%
Self-Data Distillation OpenMathInstruct (50k) 40.88 44.58 64.54 50.33 79.79%


