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This supplementary material provides additional information for this research. First, we explain the
configuration employed across all experiments. Then, we present further experimental explanations,
including heatmaps generated from different depths and the visualization of Attention Output. Finally,
we give theoretical derivations and some details related to the dictionary learning problem.

0.1 Experiments Configures

Table 1: Implementation Settings
Configuration Value

data_augmentation padding, crop, normalize,
random horizontal flip

image_size 32× 32
optimizer AdamW

learning_rate 1e-4
warm_up_epoch 5

batch_size 32
training_epoch 300

embedding_dimension 768
encoder_depth 7

patch_size 4

As Tab. 1 shows, we maintained a consistent set of configurations for the neural network in all image
classification experiments. This approach ensured the comparability and reproducibility of the results.
We applied specific data augmentation techniques, including padding, crop, normalize, and random
horizontal flip. All input images were resized to a 32×32 and with a fixed batch size 32 in CIFAR-10
and CIFAR-100. We employed a specific optimizer AdamW with a warm-up strategy. We performed
a fixed number of 300 of training iterations. All Vision Transformer backbones have the same encoder
depth, patch size, and embedding dimension.

0.2 Visualization of Attention Outputs

Attention maps (heatmaps) help understand how the model attends to different regions of the input
data and highlight the areas of focus. We generated attention maps to visualize the activation patterns
of the neural network at various depths. As the attention maps generated by our proposed Dic-Attn
module, shown in Fig. 1, it can be seen that the Dic-Attn modules of different layers in Vision
Transformer generate different attention maps that provide attention to different key parts of the
image.
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Figure 1: Attention maps (heatmaps) are generated by the Dic-Attn modules of different layers.

We learn the dictionary for obtaining visual attention. Here we visualize the sparse reconstruction
from a learned dictionary. We can see that reconstructed attention maps (Attention Outputs) capture
various information about images, including either major objects or irrelevant background regions.

Figure 2: Visualization of the Attention Outputs. We visualize the attention map of ViT(Dic-Attn).

0.3 More Visual Experiments

Image Classification.

We have conducted additional experiments on the ImageNet-1k dataset for image classification.
We use "Swin-T(WSA)" and "Swin-T(Dic-Attn)" to denote the Swin Transformer-Tiny model and
Swin Transformer-Tiny model using the Windows Self-Attention module the proposed dictionary
learning-based visual attention(Dic-Attn) module, respectively. Specifically, the added results of the
classification task on ImageNet-1K are shown as follows:

Denoising.

We have conducted experiments on the SIDD dataset for image denoising. The results of these
experiments show that the transformer augmented with our proposed module outperforms the baseline
in denoising performance.
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Table 2: Additional classification results on ImageNet-1K. Models are trained from scratch on
ImageNet-1K. The input images are all resized to 2242. Our proposed Dic-Attn module brings up
1.37% gains in Top-1 accuracy compared with backbone Swin-T(WSA) at the beginning of training
(50 epochs).

Methods Resolution Acc (50 Epochs) Acc

Swin-T(WSA) 224× 224 70.29 81.23
win-T(Dic-Attb) 224× 224 71.66 81.29

Table 3: Additional image denoising results on SIDD.
Methods PSNR SSIM

Restormer(SA) 39.53 0.960
Restormer(Dic-Attn) 39.54 0.958

0.4 Theoretical Derivation and Details Related to Dictionary Learning Problem

We assume and model the selective attention problem as solving a linear inverse problem frec in
which preprocessed visual features are mapped non-linearly to generate an attention map, i.e.,

x = Attention Output + ϵ

Attention Output = Dϕ
(1)

where ϵ denotes irrelevant features and noise, and Attention Output is the generated attention map,
which is reconstructed from a dictionary and the corresponding sparse codes. In this formulation,
determining ϕ from the measurements x is the famous linear inverse problem. In other word, the
dictionary D is the measurement system modeling the selection process. Visual attention can be
further obtained from this dictionary.

The sparse representation ϕ of x is formulated in sparse-constrained minimization problem

ϕ∗ := argmin
ϕ

g(ϕ),

s.t.D ∈ S(n, k), ||x−Dϕ| |2 ≤ ϵ, 0 ≤ p ≤ 1,
(2)

where g(ϕ) is the sparse regularization term, and D(m, k) is predefined admissible set of solutions for
D,such as wavelet bases or sphere manifold adopted in this work. Traditional, g(ϕ) = ∥ϕ∥0. When
p = 0, ∥ϕ∥0 counts the number of nonzero terms in ϕ and leads to sparse coding problem as a general
NP-hard. When p = 1, Eq. (2) can be relaxed to a convex optimization problem. Elastic net [2] now
is an outstanding and popular convex relaxation way. Hence in this work, g(ϕ) = β ∥ϕ∥1 +

λ
2 ∥ϕ∥2.

Hyper-parameters β and λ are introduced to control the sparsity or change the proportion of Laplace
distribution of mixed prior distributions of sparse codes.

Let us assume that the probability of (x,Attention Output) admits a continuous density with
compact support, and final object function Floss(x,Θ,Attention Output)) is twice differentiable,
the sparse coding problem is differentiable. Note that Θ denotes the set of parameters of neural
networks. Hence, the partial differential w.r.t. D can be expressed as Ex,Attention Output)[−Dϕ∗ϕ∗

Λ
T
+

(x−Dϕ∗
Λ)ϕ

∗)], and ϕ is a vector that depend on x,D,Θ. Let the derivative of the dictionary loss
w.r.t ϕ be zero,

∂Tr((x−Dϕ)T (x−Dϕ))

∂D
= 0, (3)

we have the closed-form solution of ϕ,

ϕ∗
i =

(
DT

ΛDΛ + λI
)−1 (

DT
Λxi + βsign(ϕ∗

i )
)
, (4)

where Λ := {i ∈ {1, ..., s}|ϕ∗
ij ̸= 0} denotes the set of indexes of the non-zero entries of the

solution ϕ∗
i = [ϕ∗

i1, ..,ϕ
∗
is]. DΛ is the subset of the dictionary in which the indexes of atoms fall

into Λ. sign(ϕ∗
i ) carries the signs of ϕ∗

i . More investigation of the differentiability of the sparse
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representation in the dictionary can be also found in [4]. So far, we can easily compute ϕ∗
i and update

dictionary D wtih mini-batches and stochastic gradient decent algorithm [1, 3, 4],

D∗ = Projorth(D− δ∇DFloss(x,Attention Output)), (5)

where Projorth denotes the orthogonal projector onto S(n, k). D∗ denotes the optimal dictionary
at the current iteration, In this paper, the dictionary D can be initialized in an unsupervised manner.
Also, the updated gradient of the dictionary is considered to be provided by the visual data and
downstream task, since the back-propagation gradient ∇DFvisTask consists of two parts, ∂Floss

∂ϕ and
∂frec
∂ϕ .

Finally, the output Attention Maps are obtained through the reconstruction of the re-weighted
dictionary and transformed sparse representations. The diagonal transformed matrix and transformed
matrix are specifically designed to re-weight the dictionary and transform its corresponding sparse
representations, respectively. WD operates in a vector-wise manner, where each element in the
diagonal serves as a weight for the dictionary columns, i.e., atoms. On the other hand, WΦ

implements the sparse encoding of individual elements. These two parameters are updated via the
backpropagation strategy and are thus driven by the task’s final objective function.
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