
A APPENDIX: SWEETDREAMER: ALIGNING GEOMETRIC PRIORS IN 2D
DIFFUSION FOR CONSISTENT TEXT-TO-3D

A.1 ABLATION STUDY

We also validate the effectiveness of key algorithmic design choices using the NeRF-based pipeline.
Regarding the geometric representation, we have also derived variants of our method using two
types of geometric representations, namely depth and normal maps, and show that, while these two
geometric representations can also be incorporated into our pipeline for aligning the geometric priors
in 2D diffusion, they indeed fail in producing 3D results as high-quality as CCM.

On one hand, a depth map is a single-channel map storing the per-pixel distance between the sur-
face to the camera. Compared to CCM, the depth map alone does not contain essential information
about the relative orientation of the 3D object and the camera, so the network can solely rely on the
camera information for learning 3D-aware priors, consequently leading to degraded robustness of
the learned 3D priors. In stark contrast, the CCM alone has actually encoded the information of the
orientation to some extent. This is manifested by the distinct color coding results of CCMs from dif-
ferent viewpoints. As a result, the variant using depth maps is more prone to multi-view inconsistent
issues, compared to our method using CCM. On the other hand, a normal map stores the local direc-
tions of fragments on the 3D surface, we use normal maps obtained from the canonical coordinate
space for fair comparisons. Our experimental results show that the text-to-3D optimization process
has difficulty in generating a 3D world of which the derivative follows faithfully generated normal
maps, and may fail to generate meaningful 3D results. Those successfully generated 3D results tend
to be slightly smoother regarding the geometric and appearance details of the surface.

Last, we have also conducted a study where the camera information injection is removed from
our method. The results demonstrate that removing camera parameters leads to a decrease of the
consistency in the generated results, due to the lack of critical camera information. Please see
Figure 5 for the visual results and refer to Section A.6 for more.

Normal Guided w/o Camera EmbeddingDepth GuidedOurs CCM Guided

A DSLR photo of a dog made out of salad

Figure 5: Ablation study. Replacing CCM with depth maps results in inconsistent geometry and
the use of normal maps as guidance produces smooth geometry. Additionally, removing the camera
embeddings led to noisy and inconsistent results.

A.2 MORE IMPLEMENTATION DETAILS

Dataset Notably, while there is no explicit specification of the coordinate system in Objaverse,
most 3D objects in Objaverse are uploaded by artists who usually adhere to a convention regarding
the orientation when creating 3D assets. Furthermore, for some special categories, such as char-
acters, we filter out misoriented data simply by the ratio of its axis-aligned bounding box. After
these filterings, we found that approximately 80% (based on statistical random samplings) of the
remaining data are orientated canonically, which is sufficient for our purpose as evidenced by exten-
sive results in our paper (please also refer to the appendix for more discussions on the noise in the
dataset).

Fine-tuning We use Diffusers (von Platen et al., 2022) to finetune the Stable Diffusion v2.1 us-
ing our rendered CCMs at a resolution of 64 x 64. During the fine-tuning process, we remove the
encoder of the VAE and directly concatenate the CCM with corresponding alpha channels as the

13



latent to the UNet, with the background color of the CCM set to random. We use the default param-
eters as in Diffusers, including setting the learning rate to 1e-5 with the constant scheduler, and a
batch size of 96 per GPU with 4 gradient accumulation steps. The entire fine-tuning process takes
approximately 2 days using 8 V100 GPUs for 100k steps.

Ours (DMTet-based) We integrate our Aligned Geometric Priors in the official repository of Fan-
tasica3D (Chen et al., 2023) as described in Section 3.2. We follow the same parameters as in the
original paper. We also disentangle the learning of geometry and appearance. It takes about 12
and 8 minutes to generate a fine geometry and its corresponding Physically-Based Rendering (PBR)
materials, respectively, for each object. For the time step range of SDS loss, We adopt a uniform
sampling strategy of annealing from [0.5, 0.98] to [0.05, 0.5]. The whole process takes about 0.5
hours to generate each object using 4 V100 GPUs.

Ours (NeRF-based full) We implement it in the threestudio (Guo et al., 2023), which imple-
mented a diverse set of state-of-the-art text-to-3D generation pipelines. Specifically, we use Instant-
NGP (Müller et al., 2022) as the 3D representation to optimize, which uses a multi-resolution hash-
grid to predict the RGB and the density of the sampled ray points. The sampled camera views follow
the same protocol as the render dataset to fine-tune the UNet. We use DeepFolyd at the coarse stage
with 64 x 64 resolution and then switch to Stable Diffusion with 512 x 512 for detailed optimiza-
tion. In addition, we also use time annealing, negative prompts, and CFG rescaling tricks from open
source implementation for improved performance. For SDS, the maximum time step is decreased
from 0.98 to 0.5 linearly and the maximum time step is kept to 0.02. We use a rescale factor of 0.7
for the CFG rescale. The whole process takes about 1 hour to generate each object with 10, 000
steps using 2 V100 GPUs.

A.3 MORE COMPARISON RESULTS USING PROMPTS FROM MVDREAM

Note that, since MVDream’s official implementation is unavailable by the time of our submission,
we use the same prompts as listed on their website for side-by-side comparisons. We present the
visual comparisons in Figure 6. Although the concurrent work, MVDream, can also resolve the
multi-view inconsistency problem, we observe that it is prone to overfit the limited 3D data, con-
sequently resulting in a compromise of the generalizability in the original powerful 2D diffusion
model. Specifically, as shown in the results, MVDream misses the “backpack” in its generated re-
sult presented with the prompt “an image of a pig carrying a backpack”. Additionally, since they use
synthetic multi-view renderings for fine-tuning their multi-view diffusion model, the appearance of
the generated results lacks the desired level of photorealism.

A.4 GENERALIZABILITY

Our method can effectively address the notorious multi-view inconsistency problem, and equally im-
portantly, retains to the maximum extent the generalizability of the foundation text-to-image model
in terms of the highly varied appearance and geometric details. We would like to highlight that the
pre-trained text-to-image diffusion model is powerful, and this preservation of its generalizability is
particularly attractive, as it can lead to more diverse and highly realistic 3D generation results. We
have achieved this by only aligning the geometric priors in 2D diffusion using the coarse geometric
information (CCM) of well-defined geometries, without compromising the original diffusion priors
in the text-to-3D pipeline regarding detailed appearances and geometries. This is in contrast to other
models that hinge on all appearance and geometric details in the 3D dataset for fine-tuning the diffu-
sion priors, which is at the risk of compromising the integrity of the original geometric priors learned
in the pre-trained text-to-image foundation model, leading to the degradation of the generalizability
in terms of highly diverse and photo-realistic 3D objects. While we have validated this through the
comparison results against MVDream (Figure 6), we have also prepared more extensive qualitative
results to further showcase such ability of our method to generalize smoothly to 3D worlds with
highly realistic and varied appearance and geometric details, that are unseen in the 3D dataset. See
Figure 7 for more visual results.

More specifically, the generalization encompasses both geometric and appearance detils. In our
work, we only perform fine-tuning using the coarse geometric structures, which enables us to pre-
serve the highly realistic appearance details of the original image priors learned from a large real-
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Dreamfusion-IF Magic3D-IF TextMesh-IF ProlificDreamer MVDream Ours(DMTet-based ) Ours(NeRF-based)

Corgi riding a rocket

A DSLR photo of a peacock on a surfboard

A pig wearing a back pack

A DSLR photo of a squirrel playing guitar

Figure 6: Side-by-side visual comparisons using prompts from MVDream. Note that some key
concepts in the prompts are missing in MVDream results, such as the rocket, backpack, and squirrel
missing in their results.

Terracotta warriors sitting on the sofa

A futuristic city filled with high-tech …A dragon-cat hybrid

A DLSK photo of the head of Steve Jobs, 4K

Figure 7: Our method can produce a wide range of 3D results spanning from weird characters to
fancy architectural models. It is worth noting that none of these 3D models exists in the training
data. Our approach can generalize very well to these highly diverse and high-quality results.

world dataset. Interestingly, we found that in our result of using the prompt ”corgi riding on a
rocket”, the rough geometry obtained with only AGP priors is not yet completely accurate. How-
ever, after optimizing with SDS of image priors, we are able to fix the slightly incorrect geometry
and obtain more detailed geometric and appearance details, as shown in Figure 8.

A.5 THE EFFECT OF DIFFERENT SETTINGS OF DATASET

We used a set of rules to filter the original dataset and obtained approximately 270k objects, of which
approximately 80% have a consistent orientation (estimated based on statistical random samplings).
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AGP SDS only AGP + DeepFloyd IF SDS

wrong geometry

AGP + DeepFloyd IF SDS -> SD2.1 SDS

Figure 8: Visualization of each stage of our NeRF-based method of prompt ”Corgi riding a rocket”.
Using only AGP SDS as supervision may result in incorrect geometry. However, the image priors
can help eliminate these errors in the later stages, thereby improving the generalization performance.

In this section, we aim to investigate the impact of a different-sized dataset on the performance of
our proposed method.

We calculated the distance between the front-view images and their corresponding captions’ blip
feature and sorted them accordingly. We then manually screened the top 20k data, resulting in a
dataset of 18,488 instances with a uniform orientation and high correspondence with their descrip-
tions.

From the experimental results obtained by training on such a smaller dataset, we are surprised to
find that even with a smaller dataset of only 20k instances for fine-tuning, our text-to-3D pipeline
still exhibits strong generalization and is capable of generating diverse 3D objects. As shown in
Figure 9, the majority of the generated results are satisfactory, with some lacking intricate details.
We hypothesize that this may be attributed to the inadequate acquisition of 3D prior knowledge
from a rather limited dataset, which consequently leads to the occurrence of coarse geometries. This
observation necessitates the need for further exploration and a more thorough study of the impact of
the 3D dataset.

A.6 MORE DETAILS OF ABLATION STUDY

We conducted ablation experiments using a manually curated small dataset ( 20k data) for each
object. We rendered CCM, normal, and depth maps for each object and used the same parameters
to fine-tune the Stable Diffusion model. We then tested using the same prompt and seed. Extensive
visual results are presented in Figure 10.

A.7 QUANTITATIVE EVALUATION OF THE APPEARANCE OF GENERATED OBJECTS

We also present quantitative results using appearance-related metrics. However, it is worth noting
that the image diffusion models used in Dreamfusion and Magic3D are not open-sourced, and the
performance of the versions used here may differ from the original papers. For fairness, we used
the same image generation model, DeepFloyd IF (IF, 2023) for all methods, and NeRF as the 3D
representation.

To assess the appearance quality, we rely on DreamFusion’s R-Precision metric. When provided
with rendered images, R-Precision gauges the top-N accuracy in retrieving the correct caption from
a pool of distractions, utilizing CLIP scores derived from averaging the similarity between each of
four distinct rendered images and a caption. We employ the CLIP ViT-B/32 and ViT-B/16 models
to respectively compute the top-1 and top-5 R-Precision, using the identical set of 80 prompts for
evaluation as presented in the paper. Please note that since other methods may not have access to
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Finetuned using 270k data Finetuned using 20k data

A 3D model of mini China town, highly detailed, 8K, HD, blender 3d

Steampunk Clockwork Dragon, mechanical marvel, cogs and gears, …

Albert Einstein with grey suit is riding a bicycle

Figure 9: Comparison of finetuning results with different amounts of data. Despite reducing the
training data to 1/10 of the original amount, the finetuned models still exhibit strong generalization
capabilities (right). Note that, the model fine-tuned on fewer data tends to produce results of slightly
fewer details and probably a bit more bulky geometries.

CLIP R-Precision(%)

Method CLIP B/32 CLIP B/16
R@1 R@5 R@1 R@5

Magic3D 60.1 71.5 62.7 77.7
TextMesh 51.7 65.1 55.1 78.4

SJC 40.2 51.2 52.5 62.5
DreamFusion 59.7 70.2 61.6 74.3

Ours (NeRF-based) 77.5 84.9 88.7 92.3

Table 2: Quantitative results demonstrating the coherence of visual appearance with their corre-
sponding prompts, as assessed by CLIP retrieval models.

the original image diffusion model, the performance of reproduced code may vary. Therefore, the
specific numerical results can only serve as a reference.

The results highlighted in Table 2 underscore the significant advantages of our proposed approach in
terms of appearance. This superiority primarily stems from the fine-tuning process which only learns
from coarse geometries and leaves the appearance model of the text-to-3D pipeline untouched.

A.8 MORE DETAILS ABOUT THE USER STUDY

In contrast to the quantitative evaluation above, the human users involved in this study are from
various loosely related backgrounds in CS and EE. The interactive interface used in the user study
can be found in Figure 11.

A.9 MORE TEXT-TO-3D RESULTS

We present more text-to-3D synthesis results obtained with our methods (Figure 12, Figure 13,
Figure 14, and Figure 15).
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Normal GuidedDepth Guided w/o Camera EmbeddingOurs CCM Guided (20k data)

Gandalf wearing a grey cloth wizard hat, white_hair, head

Albert Einstein with grey suit is riding a bicycle

Fire-breathing Phoenix, mythical bird, engulfed in flames

A pig wearing a back pack, 4K, HD'

Figure 10: Comparing ablate settings with different guidance methods. Our proposed CCM proves
superior to depth and normal guidance, delivering consistent and convincing geometry. Substituting
CCM with depth maps leads to round (e.g. the pig) and inconsistent objects (e.g. the Gandalf
and phoenix), while normal maps as guidance make the optimization unstable (e.g. the Gandalf,
Einstein, and pig), leads to smoother (e.g. the phoenix) or noisy (e.g. the chihuahua) geometry. It is
essential to note that removing the camera embedding may result in inconsistent results, particularly
on complex structures (e.g. the Einstein).
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Figure 11: User study interface. We have designed two survey forms separately for the NeRF-based
method and the DMTet-based method and provide users with multiple rendered videos of generated
results. The user needs to select the one they consider to be of the best quality from all results.
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A beautiful rainbow fish

Mystical Crystal Garden, enchanted flora, radiant and magical, secret botanical wonders, 3D asset

Interstellar Fortress, space citadel, advanced technology, defensive weaponry, highly detailed, 3D model

A classic Packard car

A statue of angel, blender

Army Jacket, 3D scan

Aerial view of a ruined castle

Ancient Mayan Calendar, intricate glyphs, astronomical precision, historical artifact, 3D model

A delicious chocolate brownie dessert with ice cream on the side

Steampunk Clockwork Dragon, mechanical marvel, cogs and gears, industrial fantasy, 3D model

Figure 12: More generated results using our proposed DMTet-based model.
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Ancient Roman Colosseum, historic arena, architectural wonder, gladiators and spectacles, 3D render

mini China town, highly detailed, blender 3d

Enchanted Elven Citadel, ethereal fortress, magical spires, elven stronghold, 3D asset

A 3D model of A Darth Vader helmet, highly detailed

A bulldoga wearing a black pirate hat

A 3D model of Flying Dragon, highly detailed, breathing fire

Space Explorer's Exosuit, advanced astronaut armor, HUD visor, interstellar adventure, 3D asset

Mystical Elven Bow, ethereal craftsmanship, enchanted arrows, forest protector, 3D asset

A crab, low poly

A bear dressed in medieval armor

Figure 13: More generated results using our proposed DMTet-based model.
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Albert Einstein with grey suit is riding a bicycle

Chibi Deadpool, pixar style, modern Disney style, 8K, studio light, cinematic, hyperrealistic, octane render

Portrait of Harley Quinn, capturing geometric shapes of her colorful hair, makeup, and playful expression

Close-up rendering of Woody from Toy Story, capturing geometric shapes of his cowboy hat and vest

A 3D model of Simba, the lion cub from The Lion King, standing majestically on Pride Rock, character

Photorealistic full-body representation of Captain Jack Sparrow, complete with geometric details

A 3D model of mini China town, highly detailed, 8K, HD, blender 3d

A 3D model of Doctor Strange, the Sorcerer Supreme, wearing his iconic Cloak of Levitation and holding 
the Eye of Agamotto amulet

Picture of the Leaning Tower of Pisa, featuring its tilted structure and marble facade

A charming chibi-style rendering of Elsa and Anna from Frozen, featuring geometric shapes and their 
heartwarming sisterly bond, in 8K resolution.

Figure 14: More generated results using our proposed NeRF-based model.
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The Hulk smashing through a wall, showcasing his muscular physique and powerful pose in photorealistic 
4K detail

Fisherman House, cute, cartoon, blender, stylized

Mini Paris, highly detailed, 8K, HD

Image of Michael Jackson, showcasing his signature dance moves, fedora hat, and stylish wardrobe

Scene of the Temple of Heaven in Beijing, displaying its circular architecture and ornate details

Fire-breathing Phoenix, mythical bird, engulfed in flames, rebirth and renewal, 3D render, 8K, HD

View of Sydney Opera House, showcasing its unique sail-like design and waterfront location

Detailed headshot of Thor, the God of Thunder, emphasizing geometric shapes of his majestic beard and 
intense gaze

Higly detailed, majestic royal tall ship, realistic painting

Floating Steampunk City, gears and balloons, Victorian-era airship metropolis, 3D render, 4K, HD

Figure 15: More generated results using our proposed NeRF-based model.
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