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This supplemental material provides the proofs for the Theorems and Lemmas presented in our paper.
In Sections 7 and 8, we give more details on the proposed methods, datasets, experimental settings,
and experimental results. To further demonstrate the applicability of our approach, we present a
method for knowledge graph completion in Section 9. Please see the paper for references.

7 Human Activity Understanding

7.1 Datasets and Experimental Settings

HDM05 dataset This dataset has 2337 sequences of 3D skeleton data classified into 130 classes.
Each frame contains the 3D coordinates of 31 body joints. We use all the action classes and follow
the experimental protocol [15] in which 2 subjects are used for training and the remaining 3 subjects
are used for testing.

FPHA dataset This dataset has 1175 sequences of 3D skeleton data classified into 45 classes. Each
frame contains the 3D coordinates of 21 hand joints. We follow the experimental protocol [13] in
which 600 sequences are used for training and 575 sequences are used for testing.

NTU60 dataset This dataset has 56880 sequences of 3D skeleton data classified into 60 classes.
Each frame contains the 3D coordinates of 25 or 50 body joints. We use the mutual actions and follow
the cross-subject experimental protocol [38] in which data from 20 subjects are used for training, and
those from the other 20 subjects are used for testing.

For all the datasets, we use interpolation to create sequences of the same length.

Comparison against SPD Neural Networks For SPDNet and SPDNetBN, we compute a covari-
ance matrix to represent an input sequence as in [20]. The sizes of the covariance matrices are
respectively 93× 93, 60× 60, and 150× 150 for HDM05, FPHA, and NTU60 datasets. The sizes of
the transformation matrices for the experiments on FPHA dataset are set to 60× 50, 50× 40, 40× 30,
respectively. The sizes of the transformation matrices for the experiments on NTU60 dataset are set
to 150× 100, 100× 60, 60× 30, respectively.

Our networks are implemented with Tensorflow framework. They are trained using cross-entropy loss
and Adadelta optimizer for 500 epochs. We use a batch size of 32 for HDM05 and FPHA datasets,
and a batch size of 256 for NTU60 dataset. The number of frames in each sequence is set to 100. The
learning rate and parameter ε for the pointwise nonlinearity are set respectively to 10−3 and 10−4.
The positive real number r is set to 1. The constant c is set to 10. The ReLU function is used for the
pointwise nonlinearity. All experiments are conducted on a machine with Intel Core i7-6700 CPU
3.40 GHz 24GB RAM.

7.2 More Results

Comparison against Euclidean RNNs, transformers, and HNNs Our networks are compared
against LSTM, ST-TR [62], and HypGRU [55]. Results of LSTM are obtained using its implemen-
tation provided by the Tensorflow framework. Those of ST-TR and HypGRU are obtained using
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Table 3: Accuracy comparison (%) of our networks against LSTM, ST-TR, and HypGRU.

Dataset
LSTM ST-TR HypGRU GyroAI-HAUNet GyroLE-HAUNet

M = 1 M = 3 M = 1 M = 3 M = 1 M = 3 M = 1 M = 3 M = 1 M = 3

HDM05 49.42 72.82 69.75 76.12 51.35 58.50 61.50 78.14 57.01 74.53
#HDM05 0.09 MB 0.54 MB 4.62 MB 27.73 MB 0.10 MB 0.61 MB 0.05 MB 0.31 MB 0.05 MB 0.31 MB

FPHA 66.43 81.22 86.32 91.34 56.70 61.42 89.73 96.00 83.03 89.94
#FPHA 0.07 MB 0.41 MB 4.59 MB 27.55 MB 0.08 MB 0.47 MB 0.02 MB 0.11 MB 0.02 MB 0.11 MB
NTU60 85.39 87.27 92.18 93.78 86.51 88.03 83.12 94.72 77.25 89.44

#NTU60 0.006 MB 0.035 MB 4.58 MB 27.50 MB 0.006 MB 0.039 MB 0.004 MB 0.026 MB 0.004 MB 0.026 MB

Table 4: Accuracy comparison (%) of our networks against state-of-the-art graph neural networks.

Dataset
ST-GCN Shift-GCN-light Shift-GCN GyroAI-HAUNet GyroLE-HAUNet

M = 1 M = 3 M = 1 M = 3 M = 1 M = 3 M = 1 M = 3 M = 1 M = 3

HDM05 70.02 76.58 67.25 76.18 73.57 80.28 61.50 78.14 57.01 74.53
#HDM05 2.96 MB 17.73 MB 0.22 MB 1.33 MB 0.70 MB 4.20 MB 0.05 MB 0.31 MB 0.05 MB 0.31 MB

FPHA 75.19 78.78 86.65 89.81 87.52 91.08 89.73 96.00 83.03 89.94
#FPHA 2.93 MB 17.60 MB 0.19 MB 1.15 MB 0.64 MB 3.84 MB 0.02 MB 0.11 MB 0.02 MB 0.11 MB
NTU60 87.62 91.75 89.56 92.37 92.84 95.01 83.12 94.72 77.25 89.44

#NTU60 2.94 MB 17.66 MB 0.19 MB 1.15 MB 0.65 MB 3.90 MB 0.004 MB 0.026 MB 0.004 MB 0.026 MB

their official code.1,2 In all cases, HypGRU achieves the best results when the data are projected
to hyperbolic spaces before they are fed to the network, and all its layers are based on hyperbolic
geometry. To concatenate the outputs of HypGRU for temporal pyramid representations, we employ
the concatenation operation proposed in the recent work [33]. The dimensions of input data at a frame
are respectively 93, 60, and 150 for HDM05, FPHA, and NTU60 datasets. The hidden dimension is
set to 100. Other parameters are set to their default values. Results for M = 1 and M = 3 are shown
in Tab. 3. We can observe that our models outperform the competing models by large margins in most
cases. Furthermore, our models are more advantageous than these models in terms of model size.

Comparison against GNNs Our networks are compared against some state-of-the-art GNNs for
3D skeleton-based action recognition, i.e., ST-GCN [68] and Shift-GCN [51]. Results of these
networks are obtained using their official code.3,4 We also evaluate a light version of Shift-GCN
referred to as Shift-GCN-light, where the numbers of input and output channels for the input and
residual blocks are reduced by a factor of 2 (the number of input channels for the input block is 3).
Results forM = 1 andM = 3 are shown in Tab. 4. As can be seen, ST-GCN does not perform well on
FPHA dataset, which indicates that it is not able to capture hand joint movements on this dataset. This
might be due to the fact that the underlying structure and movement of hand skeletons are different
from those of body skeletons. This is confirmed by observing that Shift-GCN performs worse than
GyroAI-HAUNet on FPHA. We can also see that when M = 3, GyroAI-HAUNet outperforms
Shift-GCN-light on all the datasets. Overall, when M = 3, GyroAI-HAUNet is competitive to
the best GNN model with far fewer parameters. Tab. 5 reports the mean accuracies and standard
deviations of some representative methods from five runs. We note that GyroAI-HAUNet is the best
method in terms of standard deviation.

Ablation Study We show the impact of Eq. (13) by comparing GyroAI-HAUNet and GyroLE-
HAUNet against their variant GyroNet-Baseline based only on Eq. (12). Results for M = 3 are
given in Tab. 6. We can observe that both GyroAI-HAUNet and GyroLE-HAUNet outperform
GyroNet-Baseline, demonstrating the effectiveness of Eq. (13).

Results of GyroAI-HAUNet with different settings of r are given in Tab. 7. Results show that r can
have an important impact on our network performance. For example, on HDM05, the performance
gap between the two settings r = 1.0 and r = 2.0 is 4.79%.

1https://github.com/Chiaraplizz/ST-TR
2https://github.com/dalab/hyperbolic_nn
3https://github.com/yysijie/st-gcn
4https://github.com/kchengiva/Shift-GCN
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Table 5: Results (mean ± standard deviation) of some representative methods (computed over 5
runs).

Dataset SPDNet SPDNetBN Shift-GCN GyroAI-HAUNet
HDM05 70.78 ± 1.61 74.37 ± 1.54 78.02 ± 1.94 77.05 ± 1.35
FPHA 87.53 ± 0.39 91.55 ± 0.27 90.19 ± 0.56 95.65 ± 0.23
NTU60 75.94 ± 1.45 78.16 ± 1.36 93.92 ± 1.78 93.27 ± 1.29

Table 6: Ablation study for the update equations of our networks.

Dataset HDM05 FPHA NTU60
GyroNet-Baseline 72.41 88.27 86.73
GyroLE-HAUNet 74.53 89.94 89.44
GyroAI-HAUNet 78.14 96.00 94.72

8 Question Answering

8.1 Proposed Method

Here we give details on how to compute the scoring function for our models based on product
manifolds Grn1,p×Sym+

n2
. The embedding of answer a is the summation of those of its tokens

using operation ⊕grai defined as
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, i = 1, . . . , l are embeddings of the tokens in question q,

S ∈ Mp,n1−p, Bgr ∈ Grn1,p, and Bspd ∈ Sym+
n2

are parameters of the model, T (.) is a feature
transformation which can be a scaling, rotation or reflection [27]. The scaling transformation (matrix
scaling) ⊗mspd is defined as

T (P) = A⊗mspd P = exp(A ∗ log(P)),

where A ∈ Symn is a parameter of the model, and P ∈ Sym+
n . The rotation and reflection

transformations are defined as following. For any θ ∈ [0, 2π) and choice of sign {+,−}, let R±(θ)
be the following matrix

R±(θ) =

(
cos θ ∓ sin θ

sin θ ± cos θ

)
.

For any pair i < j, i, j = 1, . . . , n, let R±ij(θ) be the matrix obtained by replacing the entries at
positions (i, i), (i, j), (j, i), (j, j) of In with the corresponding values of R±(θ). Given a vector of
angles ~θ = (θ12, . . . , θn−1n) ∈ R

n(n−1)
2 , the rotation and reflection matrices corresponding to ~θ are

defined as
Rot(~θ) =

∏
i<j

R+
ij(θij), Ref(~θ) =

∏
i<j

R−ij(θij).

The rotation (reflection) transformation T (.) is then obtained as

T (P) = MPMT ,

where M is the rotation (reflection) matrix defined above. The vector of angles ~θ is a parameter of
the model.
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Table 7: Ablation study for the impact of r on the performance of GyroAI-HAUNet.

Dataset HDM05 FPHA NTU60
r = 0.8 77.08 93.56 95.14
r = 1.0 78.14 96.00 94.72
r = 1.2 82.52 95.64 93.68
r = 2.0 82.93 94.61 94.32

Table 8: Statistics of TrecQA and WikiQA datasets.

Dataset Split #Questions #Pairs

TrecQA
TRAIN 94 4718
DEV 65 1117
TEST 68 1442

WikiQA
TRAIN 873 8672
DEV 126 1130
TEST 243 2351

8.2 Datasets and Experimental Settings

Statistics of TrecQA and WikiQA datasets are given in Tab. 8. The networks are implemented
with Pytorch framework. They are trained using binary cross-entropy loss and SGD optimizer for
300 epochs. The learning rate is set to 10−3 with weight decay of 10−5. The batch size is set
to 64. The number of negative samples is set to 8. The constant τ is set to 2. We test with the
number of negative samples from {2, 4, 6, 8, 10, 12} where random sampling is used [64], and the
batch size from {32, 64, 128, 256, 512}. For the SPD models of [27], we test with SPD matrices of
dimensions n × n where n ∈ {8, 10, 12, 14}.5 For our Grassman model GyroGR-QANet, we test
with embeddings in Grn,p where (n, p) ∈ {(2k, k)}, k = 5, 6, . . . , 12. For our models based on
product manifolds, we test with τ from {0.5, 1, 1.5, 2, 2.5, 3}. Early stopping is used when the MRR
score of the model on the development set does not improve after 20 epochs. We use the trecval tool6
to compute MAP and MRR scores [64]. In all experiments, the models that obtain the best MRR
scores on the development set are used for testing [64]. All experiments are conducted on a machine
with Intel Core i7-9700 CPU 3.0 GHz 15GB RAM.

8.3 More Results

Tabs. 9, 10, and 11 present results obtained with different embedding dimensions. In each table,
we compare the performance of the embeddings in Gr14,7×Sym+

n against that of the embeddings
in Gr14,7 and Sym+

n , where n = 8, 10, and 12. In most cases, the embeddings in Gr14,7×Sym+
n

compare favorably against the embeddings in Sym+
n . In some cases, the embeddings in product

manifolds outperform the SPD embeddings by a large margin. For example, on TrecQA dataset,
when n = 12, SPDF1

Sca, SPDF1

Rot, and SPDF1

Ref give the mean MAP scores of 47.75%, 47.39%, and
48.80%, respectively. When these networks are combined with the Grassmann embeddings, they
achieve the mean MAP scores of 50.09%, 49.27%, and 50.07%, respectively. Tab. 12 presents a
comparison of our models (only the one with 49 DOF and those with 85 DOF are shown) against
the Euclidean model where a linear layer is used as feature transformation. The results indicate that
embeddings in Grassmann manifolds and product spaces of Grassmann and SPD manifolds are more
effective than those in Euclidean spaces on the two datasets.

9 Knowledge Graph Completion

In this section, we consider learning entity and relation embeddings in product manifolds
Grn1,p×Sym+

n2
for knowledge graph completion.

5We did not observe better results when n > 14.
6https://trec.nist.gov/
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Table 9: Effectiveness of embeddings in product manifolds. The SPD models learn embeddings
in Sym+

8 . Our model with 49 DOF learns embeddings in Gr14,7. Our models with 85 DOF learn
embeddings in Gr14,7× Sym+

8 .

DOF Model
TrecQA WikiQA

MAP MRR MAP MRR
36 SPDRSca 49.68 ± 1.37 58.81 ± 1.47 59.26 ± 0.45 60.08 ± 0.42
36 SPDF1

Sca 49.96 ± 0.72 57.84 ± 1.78 60.21 ± 0.78 61.66 ± 0.75
36 SPDRRot 49.51 ± 1.56 58.50 ± 1.97 60.19 ± 1.32 61.31 ± 1.69
36 SPDF1

Rot 50.03 ± 0.95 57.81 ± 1.44 58.95 ± 1.42 60.76 ± 1.60
36 SPDRRef 48.74 ± 1.62 57.01 ± 3.17 58.43 ± 0.50 59.57 ± 0.67
36 SPDF1

Ref 48.67 ± 1.96 57.64 ± 2.24 59.32 ± 1.20 61.08 ± 1.36
49 GyroGR-QANet 50.18 ± 1.29 58.19 ± 2.59 56.69 ± 1.45 58.26 ± 1.45
85 GyroGR-SPDF1

Sca-QANet 50.10 ± 0.30 57.70 ± 0.93 60.62 ± 0.25 62.42 ± 0.16
85 GyroGR-SPDF1

Rot-QANet 50.27 ± 0.56 58.62 ± 1.35 59.78 ± 0.15 61.66 ± 0.23
85 GyroGR-SPDF1

Ref -QANet 48.83 ± 1.89 58.11 ± 0.87 60.41 ± 0.39 61.86 ± 0.35

Table 10: Effectiveness of embeddings in product manifolds. The SPD models learn embeddings
in Sym+

10. Our model with 49 DOF learns embeddings in Gr14,7. Our models with 104 DOF learn
embeddings in Gr14,7× Sym+

10.

DOF Model
TrecQA WikiQA

MAP MRR MAP MRR
55 SPDRSca 48.46 ± 0.51 56.89 ± 0.85 59.88 ± 0.02 61.11 ± 0.02
55 SPDF1

Sca 47.91 ± 2.09 56.96 ± 1.88 59.42 ± 0.44 60.68 ± 0.57
55 SPDRRot 48.41 ± 0.41 56.13 ± 0.67 59.62 ± 0.71 60.80 ± 0.69
55 SPDF1

Rot 48.33 ± 0.95 54.49 ± 0.85 60.51 ± 0.98 62.20 ± 1.20
55 SPDRRef 49.11 ± 0.68 57.53 ± 2.02 59.40 ± 0.79 60.86 ± 0.80
55 SPDF1

Ref 50.34 ± 1.08 57.09 ± 1.31 61.54 ± 1.09 62.46 ± 1.04
49 GyroGR-QANet 50.18 ± 1.29 58.19 ± 2.59 56.69 ± 1.45 58.26 ± 1.45
104 GyroGR-SPDF1

Sca-QANet 47.99 ± 0.75 57.04 ± 0.46 59.64 ± 0.19 60.95 ± 0.36
104 GyroGR-SPDF1

Rot-QANet 48.65 ± 1.17 56.63 ± 0.37 60.84 ± 0.70 62.64 ± 0.85
104 GyroGR-SPDF1

Ref -QANet 50.48 ± 0.87 57.70 ± 1.12 61.60 ± 0.45 62.71 ± 0.40

9.1 Problem Formulation

A knowledge graph is a multi-relational graph representation of a collection F of facts in triple form
(es, r, eo) ∈ E × R × E , where E is the set of entities (nodes) and R is the set of binary relations
between them [47]. If (es, r, eo) ∈ F , then subject entity es is related to object entity eo by relation
r. Knowledge graphs are often incomplete, so the aim is to infer other true facts. A typical approach
is to learn a scoring function φ : E × R × E → R, that assigns a score φ(es, r, eo) to each triple,
indicating the likelihood that a particular triple corresponds to a true fact [47].

9.2 Proposed Method

Our model learns a scoring function given as

φkgc(es, r, eo) = −d((A⊗ S)⊕R,O)2 + bs + bo, (14)

where S and O are embeddings of the subject and object entities, respectively, R and A are matrices
associated with relation r, bs, bo ∈ R are scalar biases for the subject and object entities, respectively.
The operation ⊕ is defined as

(Pgr,Pspd)⊕ (Rgr,Rspd) = (Pgr ⊕gr Rgr,Pspd ⊕le Rspd),

where Pgr,Rgr ∈ Grn1,p, Pspd,Rspd ∈ Sym+
n2

, ⊕le , ⊕1
le, and operation ⊗ is defined as

(Agr,Aspd)⊗ (Sgr,Sspd) = (Agr ⊗mgr Sgr,Aspd ⊗mspd Sspd),
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Table 11: Effectiveness of embeddings in product manifolds. The SPD models learn embeddings
in Sym+

12. Our model with 49 DOF learns embeddings in Gr14,7. Our models with 127 DOF learn
embeddings in Gr14,7× Sym+

12.

DOF Model
TrecQA WikiQA

MAP MRR MAP MRR
78 SPDRSca 46.02 ± 0.12 55.66 ± 0.13 58.94 ± 1.46 60.35 ± 1.62
78 SPDF1

Sca 47.75 ± 0.12 58.47 ± 0.12 59.84 ± 0.51 61.39 ± 0.60
78 SPDRRot 48.35 ± 1.21 56.35 ± 0.90 59.28 ± 0.67 60.50 ± 0.77
78 SPDF1

Rot 47.39 ± 1.29 56.21 ± 1.97 61.33 ± 0.90 62.81 ± 1.04
78 SPDRRef 48.53 ± 1.46 56.73 ± 1.22 58.75 ± 0.37 60.28 ± 0.44
78 SPDF1

Ref 48.80 ± 1.22 55.99 ± 2.55 61.32 ± 0.61 63.02 ± 0.97
49 GyroGR-QANet 50.18 ± 1.29 58.19 ± 2.59 56.69 ± 1.45 58.26 ± 1.45
127 GyroGR-SPDF1

Sca-QANet 50.09 ± 0.65 59.26 ± 0.43 60.48 ± 0.64 62.18 ± 1.07
127 GyroGR-SPDF1

Rot-QANet 49.27 ± 1.14 56.53 ± 1.87 61.36 ± 0.73 62.78 ± 0.76
127 GyroGR-SPDF1

Ref -QANet 50.07 ± 0.38 57.13 ± 1.14 61.44 ± 0.09 63.33 ± 0.61

Table 12: Comparison of our models against the Euclidean model.

DOF Model
TrecQA WikiQA

MAP MRR MAP MRR
105 Euclidean 46.81 ± 0.85 54.85 ± 1.41 54.60 ± 0.62 55.94 ± 0.75
49 GyroGR-QANet 50.18 ± 1.29 58.19 ± 2.59 56.69 ± 1.45 58.26 ± 1.45
85 GyroGR-SPDF1

Sca-QANet 50.10 ± 0.30 57.70 ± 0.93 60.62 ± 0.25 62.42 ± 0.16
85 GyroGR-SPDF1

Rot-QANet 50.27 ± 0.56 58.62 ± 1.35 59.78 ± 0.15 61.66 ± 0.23
85 GyroGR-SPDF1

Ref -QANet 48.83 ± 1.89 58.11 ± 0.87 60.41 ± 0.39 61.86 ± 0.35

where Sgr ∈ Grn1,p, Sspd ∈ Sym+
n2

, Agr ∈ Mp,n1−p and Aspd ∈ Symn2
are matrices associated

with relation r, and operation ⊗mspd is the matrix scaling defined in Section 8.1. The distance function
is computed in a similar way as in Section 4.2.1, i.e.,

d((Pgr,Pspd), (Rgr,Rspd)) = dgr(Pgr,Rgr) + τdLEspd(Pspd,Rspd),

where τ is a constant, and dLEspd(., .) is the Riemannian distance induced by the LE metric, i.e.,

dLEspd(P,R) = ‖ log(P)− log(R)‖F .

9.3 Datasets and Experimental Settings

We use the WN18RR [52] dataset. It is a subset of WordNet [59], a hierarchical collection of relations
between words, created from WN18 [50] by removing the inverse of many relations from validation
and test sets to make the dataset more challenging. It contains 93003 triples with 40943 entities and
11 relations. The networks are implemented with Pytorch framework. They are trained using binary
cross-entropy loss and SGD optimizer for 5000 epochs. The learning rate is set to 10−3 with weight
decay of 10−5. The batch size is set to 4096. The number of negative samples is set to 10. These
settings are taken from [29]. The constant τ is set to 2 based on our experiments in Section 8.2. Early
stopping is used when the MRR score of the model on the validation set does not improve after 500
epochs. In all experiments, the models that obtain the best MRR scores on the validation set are used
for testing. All experiments are conducted on a machine with Intel Core i7-9700 CPU 3.0 GHz 15GB
RAM.
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Table 13: Comparison of our model against the SPD models of [27] on the validation set of WN18RR
dataset. The SPD models learn embeddings in Sym+

6 . GyroGR-KGCNet learns embeddings in
Gr5,2. GyroLE-KGCNet learns embeddings in Sym+

5 . GyroGRLE-KGCNet learns embeddings in
Gr5,2×Sym+

5 .

DOF Model MRR H@1 H@3 H@10
Time (seconds)

Train/epoch Test

21

SPDRSca 43.7 39.7 47.2 52.5 2.4 192.6
SPDF1

Sca 43.1 38.7 46.4 52.8 2.4 196.1
SPDRRot 23.3 10.0 38.8 50.2 2.5 192.6
SPDF1

Rot 28.3 20.1 33.5 45.4 2.5 196.1
SPDRRef 43.9 40.5 46.5 51.3 2.5 192.6
SPDF1

Ref 42.8 38.9 45.6 50.9 2.5 196.1
GyroGRLE-KGCNet 44.1 38.8 48.2 54.9 1.1 4.5

15 GyroLE-KGCNet 41.4 37.3 44.9 50.6
6 GyroGR-KGCNet 12.7 7.4 13.8 27.5

Table 14: Comparison of our model against the SPD models of [27] on the test set of WN18RR
dataset. The SPD models learn embeddings in Sym+

6 . GyroGR-KGCNet learns embeddings in
Gr5,2. GyroLE-KGCNet learns embeddings in Sym+

5 . GyroGRLE-KGCNet learns embeddings in
Gr5,2×Sym+

5 .

DOF Model MRR H@1 H@3 H@10
Time (seconds)

Train/epoch Test

21

SPDRSca 41.7 36.5 44.5 51.1 2.4 192.6
SPDF1

Sca 40.8 36.3 42.9 49.5 2.4 196.1
SPDRRot 22.4 8.4 33.4 47.3 2.5 192.6
SPDF1

Rot 26.5 18.1 30.7 42.9 2.5 196.1
SPDRRef 41.0 37.1 42.7 47.6 2.5 192.6
SPDF1

Ref 39.7 35.9 41.5 46.3 2.5 196.1
GyroGRLE-KGCNet 41.5 35.3 44.9 52.1 1.1 4.5

15 GyroLE-KGCNet 37.8 33.4 39.9 45.2
6 GyroGR-KGCNet 11.5 5.9 11.1 25.0

9.4 Results

The MRR and hits at K (H@K, K = 1, 3, 10) are used as evaluation metrics [47]. Our model7 is
compared against the SPD models8 of [29].

We consider the case of low-dimensional embeddings where each model has 21 DOF. Results on
the validation and test sets are presented in Tabs. 13 and 14, respectively. We also report results of
GyroLE-KGCNet and GyroGR-KGCNet which learn embeddings in Sym+

5 and Gr5,2, respectively.
Both models learn a scoring function given in Eq. (14). The scoring function of GyroLE-KGCNet is
constructed from operations ⊗mspd and ⊕le. The scoring function of GyroGR-KGCNet is constructed
from operations ⊗mgr and ⊕gr. We can notice that GyroGRLE-KGCNet improves both GyroLE-
KGCNet and GyroGR-KGCNet in all the cases. The performance improvements are significant in
most of the cases. On the validation set, our model achieves better MRR, H@3, and H@10 scores
than the SPD models, while on the test set, our model achieves better H@3 and H@10 scores than
the SPD models. Our model has clear advantage in computation time.

7Code available at https://github.com/spratmnt/kgc
8https://github.com/fedelopez77/gyrospd
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10 Riemannian Geometry of SPD Manifolds

The space of SPD matrices is part of the vector space of square matrices. However, as mentioned
in [3], employing the Euclidean metric for computations in this space can be problematic from both
practical and theoretical points of view, i.e., the boundary problem or the tensor swelling effect. These
representative works provide effective solutions to address these problems.

Affine-Invariant Metrics Based on the general principle of designing Riemannian metrics [60],
Pennec et al. [61] proposed the AI metric that is invariant under the action of affine transformations
of the underlying space, i.e.,

< A1|A2 >P=< Q ?A1|Q ?A2 >Q?P,

where P ∈ Sym+
n , A1 and A2 ∈ Symn are tangent vectors at P, < .|. > is the dot product,

Q ? P = QPQT is the action of the linear group on Sym+
n , and Q ? A1 = QA1Q

T is the
action of the linear group on Symn

9. The dot product at the identity is defined as < A1|A2 >=
Trace(A1A2) + β Trace(A1) Trace(A2) with β > − 1

n .

The exponential map at a point can be obtained [61] as

ExpP(A) = P
1
2 exp

(
P−

1
2AP−

1
2

)
P

1
2 , (15)

where P ∈ Sym+
n , A ∈ TP Sym+

n . By inverting the exponential map, one obtains the logarithmic
map

LogP(Q) = P
1
2 log

(
P−

1
2QP−

1
2

)
P

1
2 , (16)

where P,Q ∈ Sym+
n . The parallel transport of a tangent vector A ∈ TP Sym+

n from P to Q along
geodesics joining P and Q is given [66] by

TP→Q(A) = (QP−1)
1
2A
(
(QP−1)

1
2

)T
. (17)

Log-Euclidean Metrics Arsigny et al. [3] shown that the space of SPD matrices can be given a
commutative Lie group structure by endowing it with the LE metric described as

< A1|A2 >P=< DP log(A1)|DP log(A2) >I,

where P ∈ Sym+
n , A1 and A2 ∈ Symn, DP log(A1) and DP log(A2) are respectively the differen-

tials of the matrix logarithm at P along tangent vectors A1 and A2, and < .|. >I is any metric at the
tangent space at I.

One can derive [3] the Riemannian exponential and logarithmic maps at any point as

ExpP(A) = exp(log(P) +DP log(A)), (18)

LogP(Q) = Dlog(P) exp(log(Q)− log(P)), (19)

where P,Q ∈ Sym+
n , A ∈ TP Sym+

n .

While the LE metric does not yield full affine-invariance, it shares very similar properties with the AI
metric. Moreover, it allows to turn Riemannian computations into Euclidean computations in the
logarithmic domain that is attractive in terms of computational efficiency.

11 Our Theoretical Results on Gyrovector Spaces of SPD Matrices

11.1 AI Gyrovector Spaces

We show a hidden analogy between AI gyrovector spaces and Euclidean spaces.

Lemma 11.1. Let P0,P1,Q0,Q1 ∈ Sym+
n such that LogaiPr

1
(Qr

1) is the AI parallel transport of
LogaiPr

0
(Qr

0) from Pr0 to Pr1 along geodesics connecting Pr0 and Pr1. Then

	raiP1 ⊕rai Q1 = gyrrai[P1,	raiP0](	raiP0 ⊕rai Q0).

9Indeed, the action of the linear group on Sym+
n is naturally extended to tangent vectors [61].
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Proof. By assumption that LogaiPr
1
Qr

1 is the AI parallel transport of LogaiPr
0
Qr

0 from Pr0 to Pr1 along
geodesics connecting Pr0 and Pr1, then from Eq. (17),

LogaiPr
1
(Qr

1) = RLogaiPr
0
(Qr

0)RT ,

where R = (Pr1P
−r
0 )

1
2 .

Thus

Qr
1 = ExpaiPr

1
(RLogaiPr

0
(Qr

0)RT )

= P
r
2
1 exp(P

− r
2

1 RLogaiPr
0
(Qr

0)RTP
− r

2
1 )P

r
2
1 .

(20)

Note that
LogaiPr

0
(Qr

0) = P
r
2
0 log(P

− r
2

0 Qr
0P
− r

2
0 )P

r
2
0 .

Hence from Eq. (20),

Qr
1 = P

r
2
1 exp(U log(P

− r
2

0 Qr
0P
− r

2
0 )UT )P

r
2
1

(1)
= P

r
2
1 U exp(log(P

− r
2

0 Qr
0P
− r

2
0 ))UTP

r
2
1

= P
r
2
1 UP

− r
2

0 Qr
0P
− r

2
0 UTP

r
2
1

= RQr
0R

T = (Pr1P
−r
0 )

1
2Qr

0((Pr1P
−r
0 )

1
2 )T ,

(21)

where U = P
− r

2
1 RP

r
2
0 , and (1) follows from the fact that UUT = In.

From Eq. (5),

gyrrai[P1,	raiP0](	raiP0 ⊕rai Q0) =
(
(P

r
2
1 P
−r
0 P

r
2
1 )−

1
2P

r
2
1 P
−r
0 Qr

0P
− r

2
1 (P

r
2
1 P
−r
0 P

r
2
1 )

1
2

) 1
r .

Let B = (P
r
2
1 P
−r
0 P

r
2
1 )−

1
2P

r
2
1 P
−r
0 , C = P

− r
2

1 (P
r
2
1 P
−r
0 P

r
2
1 )

1
2 . Then

gyrrai[P1,	raiP0](	raiP0 ⊕rai Q0) = (BQr
0C)

1
r .

Hence
P

r
2
1

(
gyrrai[P1,	raiP0](	raiP0 ⊕rai Q0)

)r
P

r
2
1 = P

r
2
1 BQr

0CP
r
2
1 . (22)

We remark that
(P

r
2
1 B)2 = P

r
2
1 BP

r
2
1 B = Pr1P

−r
0 ,

(CP
r
2
1 )2 = CP

r
2
1 CP

r
2
1 = (Pr1P

−r
0 )T .

Therefore
P

r
2
1 BQr

0CP
r
2
1 = (Pr1P

−r
0 )

1
2Qr

0((Pr1P
−r
0 )

1
2 )T . (23)

Combining Eqs. (21), (22), and (23), we obtain

Qr
1 = P

r
2
1

(
gyrrai[P1,	raiP0](	raiP0 ⊕rai Q0)

)r
P

r
2
1 ,

which leads to
	raiP1 ⊕rai Q1 = gyrrai[P1,	raiP0](	raiP0 ⊕rai Q0).

Lemma 11.1 reveals a strong link between the AI geometry of SPD manifolds and hyperbolic geome-
try, as the algebraic definition [44] of parallel transport in a gyrovector space agrees with the classical
parallel transport of differential geometry. In the gyrolanguage [44, 45, 46], Lemma 11.1 states that
the gyrovector 	raiP1 ⊕rai Q1 is the gyrovector 	raiP0 ⊕rai Q0 gyrated by a gyroautomorphism.
This gives a characterization of the AI parallel transport that is fully analogous to that of the parallel
transport in Euclidean spaces. Note that this characterization also agrees with the reinterpretation
of addition and subtraction in a Riemannian manifold using logarithmic and exponential maps [61].
Thus the gyrolanguage is a powerful tool for uncovering analogies that the AI geometry of SPD
manifolds shares with Euclidean geometry.
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11.2 LE Gyrovector Spaces

A corresponding result of Lemma 11.1 for LE gyrovector spaces can also be established.

Lemma 11.2. Let P0,P1,Q0,Q1 ∈ Sym+
n such that LoglePr

1
(Qr

1) is the LE parallel transport of
LoglePr

0
(Qr

0) from Pr0 to Pr1 along geodesics connecting Pr0 and Pr1. Then

	rleP1 ⊕rle Q1 = gyrrle[P1,	rleP0](	rleP0 ⊕rle Q0).

Proof. Notice that

Qr
0 = ExplePr

0
(LoglePr

0
(Qr

0))

(1)
= exp

(
log(Pr0) +DPr

0
log
(

LoglePr
0
(Qr

0)
))

(2)
= exp

(
log(Pr0) + TPr

0→In(LoglePr
0
(Qr

0))
)
,

where (1) and (2) follow respectively from Eqs. (18) and (30).

It is known [57] that a SPD matrix has a unique symmetric logarithm, and since log(Pr0) +

TPr
0→In(LoglePr

0
(Qr

0)) is symmetric, we have

log(Qr
0) = log(Pr0) + TPr

0→In(LoglePr
0
(Qr

0)).

We thus get
log(Qr

0)− log(Pr0) = TPr
0→In(LoglePr

0
(Qr

0)). (24)

Similarly, we have
log(Qr

1)− log(Pr1) = TPr
1→In(LoglePr

1
(Qr

1)). (25)

Since Syn+
n are complete, simply-connected and flat manifolds [3], the parallel transport is path

independent. By the assumption that LoglePr
1
(Qr

1) is the LE parallel transport of LoglePr
0
(Qr

0) from
Pr0 to Pr1 along geodesics connecting Pr0 and Pr1, we deduce that

TPr
0→In(LoglePr

0
(Qr

0)) = TPr
1→In(LoglePr

1
(Qr

1)). (26)

Combining Eqs. (24), (25), and (26) results in
log(Qr

0)− log(Pr0) = log(Qr
1)− log(Pr1),

which leads to
	rleP1 ⊕rle Q1 = 	rleP0 ⊕rle Q0.

Therefore
	rleP1 ⊕rle Q1 = gyrrle[P1,	rleP0](	rleP0 ⊕rle Q0).

Lemma 11.2 gives a characterization of the LE parallel transport that is fully analogous to that of the
parallel transport in Euclidean spaces. This result is not surprising and stems from the fact that the
space of SPD matrices with the LE geometry has a vector space structure. Lemmas 11.1 and 11.2
point out a strong link between the AI and LE geometries of SPD manifolds and hyperbolic geometry.

12 Proof of Lemma 3.3

Proof. Using Eqs. (15), (16), and (17) leads to the conclusion of the Lemma.

13 Proof of Lemma 3.4

Proof. Using Eqs. (15) and (16), it is straightforward to see that

t⊗ai P = ExpaiIn(tLogaiIn(P)) = exp(log(P))t = Pt.

10



14 Proof of Theorem 3.6

Proof. First, note that the binary operation ⊕rai verifies the Left Cancellation Law [44, 45, 46], i.e.,
	raiP⊕rai (P⊕rai Q) = Q,

for any P,Q ∈ Sym+
n .

The gyroautomorphism can be determined from the binary operation as in [44, 45, 46]. By axiom
(G3) and the Left Cancellation Law,

gyrrai[P,Q]R =
(
	rai (P⊕rai Q)

)
⊕rai

(
P⊕rai (Q⊕rai R)

)
. (27)

Using the expression of the binary operation ⊕rai given in Lemma 3.3, we can deduce that

gyrrai[P,Q]R =
(
(P

r
2QrP

r
2 )−

1
2P

r
2Q

r
2RrQ

r
2P

r
2 (P

r
2QrP

r
2 )−

1
2

) 1
r .

Let F rai(P,Q) = (P
r
2QrP

r
2 )−

1
2P

r
2Q

r
2 . Then

F rai(P,Q)Q
r
2P

r
2 (P

r
2QrP

r
2 )−

1
2 = (P

r
2QrP

r
2 )−

1
2P

r
2QrP

r
2 (P

r
2QrP

r
2 )−

1
2 = In.

Therefore
gyrrai[P,Q]R =

(
F rai(P,Q)Rr(F rai(P,Q))−1

) 1
r .

It is then easy to verify axioms G1,G2,G4,V1,V2,V3,V4,V5 for AI gyrovector spaces.

15 Proof of Lemma 3.7

Proof. Let L be the left translation defined as
LP(Q) = exp(log(P) + log(Q)).

Since the LE metric is a bi-invariant metric, the Levi-Civita connection coincides with the Cartan
connection and the parallel transport of a tangent vector V ∈ TP Sym+

n is induced by the left
translation [54, 58, 63], i.e.,

T leP→Q(V) = DPLQP−1(V).

Thus, when Q = In,
T leP→In(V) = DPLP−1(V). (28)

Note that
(log ◦LP−1)(R) = log(P−1) + log(R).

Hence
Dexp(log(P−1)+log(R)) log ◦DRLP−1 = DR log .

When R = P, we get
DPLP−1 = DP log . (29)

Combining Eqs. (28) and (29) leads to
T leP→In(V) = DP log(V). (30)

Let T leIn→P(LogleIn(Q)) = V. Then T leP→In
(V) = LogleIn(Q) = log(Q). From Eq. (30), we get

DP log(V) = log(Q).

Then, from Eq. (18),
ExpleP(V) = exp(log(P) +DP log(V)),

which results in
ExpleP(V) = exp(log(P) + log(Q)).

We thus have
ExpleP(T leIn→P(LogleIn(Q))) = exp(log(P) + log(Q)).

Therefore
P⊕rle Q =

(
exp(log(Pr) + log(Qr))

) 1
r .

11



16 Proof of Theorem 3.10

Proof. First, note that the binary operation ⊕rle verifies the Left Cancellation Law. From Eq. (27),

gyrrle[P,Q]R =
(
	rle (P⊕rle Q)

)
⊕rle

(
P⊕rle (Q⊕rle R)

)
(1)
=
(
	rle (P⊕rle Q)

)
⊕rle

(
(P⊕rle Q)⊕rle R

)
(2)
= R.

(31)

The derivation of Eq. (31) follows.

(1) follows from the associativity of the binary operation ⊕rle.
(2) follows from the Left Cancellation Law.

It is then easy to verify axioms G1,G2,G4,V1,V2,V3,V4,V5 for LE gyrovector spaces.

17 Riemannian Geometry of Grassmann Manifolds

The Grassmann manifold Grn,p (also called Grassmannian) [48, 49, 53] is defined as the set of all
p-dimensional subspaces of the Euclidean space Rn, i.e.,

Grn,p = {U ∈ Rn|U is a subspace,dim(U) = p}.

This set can be identified with the set of orthogonal rank-p projectors

Grn,p = {P ∈Mn,n|P = PT ,P2 = P, rank(P) = p}.

Let P ∈ Grn,p and ∆ ∈ TP Grn,p, the exponential map is given by

ExpgrP (∆) = exp([∆,P])P exp(−[∆,P]). (32)

To define the logarithmic map on Grn,p, we need to define the cut locus of a point on Grn,p. Let
γ∆ : t→ ExpgrP (t∆). The cut time of (P,∆) is defined as

tcut(P,∆) := sup{b > 0|the restriction of γ∆ to [0, b] is minimizing}.

The cut point of P along γ∆ is given by γ∆(tcut(P,∆)), and the cut locus of P is defined as

CutP := {F ∈ Grn,p |F = γ∆(tcut(P,∆)) for some ∆ ∈ TP Grn,p}.

The cut locus of P = UUT ∈ Grn,p is the set of all subspaces with at least one direction orthogonal
to all directions in the subspace onto which P projects [67], i.e.,

CutP = {F = YYT ∈ Grn,p | rank(UTY) < p}.

The injectivity domain of P is defined as

IDP := {∆ ∈ TP Grn,p |‖∆‖ < tcut(P,∆/‖∆‖)}.

It has been shown [65] that two points are in each other’s cut locus if there is more than one shortest
geodesic joining them. When restricting ExpgrP to the injectivity domain IDP, there is a unique
tangent vector ∆ ∈ IDP ⊂ TP Grn,p such that ExpgrP (∆) = F, for any F ∈ Grn,p \CutP. For
such a point F, the logarithmic map is given as

LoggrP (F) = [Ω,P], (33)

where [Ω,P] = ∆ ∈ IDP, and Ω is computed by

Ω = [∆,P] =
1

2
log
(
(In − 2F)(In − 2P)

)
. (34)
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Let Γ ∈ TP Grn,p, the parallel transport of ∆ along the geodesic
ExpgrP (tΓ) = exp(t[Γ,P])P exp(−t[Γ,P])

is given by
T grP→Q = exp(t[Γ,P])∆ exp(−t[Γ,P]), (35)

where Q = ExpgrP (tΓ) ∈ Grn,p.

The following identities, obtained respectively from Eqs. (32) and (34), will be used extensively in
our proofs:

P = exp([P, In,p])In,p exp(−[P, In,p]). (36)

[P, In,p] =
1

2
log
(
(In − 2P)(In − 2In,p)

)
. (37)

18 Proof of Lemma 3.11

Proof. Let Q̃ = TIn,p→P(LoggrIn,p
(Q)). From Eq. (35),

Q̃ = exp([P, In,p])Q exp(−[P, In,p]).

Hence
P⊕gr Q = ExpgrP (Q̃)

(1)
= exp([Q̃,P])P exp(−[Q̃,P])

(2)
= exp([Q̃,P]) exp([P, In,p])In,p exp(−[P, In,p]) exp(−[Q̃,P]),

(38)

where (1) and (2) follow respectively from Eqs. (32) and (36).

Note that

[Q̃,P]
(1)
= [exp([P, In,p])Q exp(−[P, In,p]), exp([P, In,p])In,p exp(−[P, In,p])]

= exp([P, In,p])QIn,p exp(−[P, In,p])− exp([P, In,p])In,pQ exp(−[P, In,p])

= exp([P, In,p])[Q, In,p] exp(−[P, In,p]),

where (1) follows from Eq. (36).

Thus
exp([Q̃,P]) = exp

(
exp([P, In,p])[Q, In,p] exp(−[P, In,p])

)
(1)
= exp([P, In,p]) exp([Q, In,p]) exp(−[P, In,p]),

(39)

where (1) follows from the fact that exp([P, In,p]) exp(−[P, In,p]) = In.

Combining Eqs. (38) and (39), we get
P⊕gr Q = exp([P, In,p]) exp([Q, In,p])In,p exp(−[Q, In,p]) exp(−[P, In,p])

(1)
= exp([P, In,p])Q exp(−[P, In,p]),

where (1) follows from Eq. (36).

19 Proof of Lemma 3.12

Proof. We have

P⊕gr Q
(1)
= exp([P, In,p])Q exp(−[P, In,p])

(2)
= exp

(1

2
log
(
(In − 2P)(In − 2In,p)

))
Q exp

(
− 1

2
log
(
(In − 2P)(In − 2In,p)

))
,

where (1) and (2) follow respectively from Eqs. (8) and (37).
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20 Proof of Lemma 3.13

Proof. We have
t⊗P = ExpgrIn,p

(tLoggrIn,p
(P))

= ExpgrIn,p
(tP)

(1)
= exp([tP, In,p])In,p exp(−[tP, In,p]),

where (1) follows from Eq. (32).

21 Proof of Lemma 3.14

Proof. We have

t⊗P
(1)
= exp([tP, In,p])In,p exp(−[tP, In,p])

= exp(t[P, In,p])In,p exp(−t[P, In,p])
(2)
= exp

( t
2

log
(
(In − 2P)(In − 2In,p)

))
In,p exp

(
− t

2
log
(
(In − 2P)(In − 2In,p)

))
,

where (1) and (2) follow respectively from Eqs. (9) and (37).

22 Proof of Lemma 3.19

Proof. For the first identity, we have (see Section 17)

LoggrF (P) = [ΩΩΩ1,F],ΩΩΩ1 =
1

2
log
(
(In − 2P)(In − 2F)

)
,

Loggr
OFOT (OPOT ) = [ΩΩΩ2,OFOT ],ΩΩΩ2 =

1

2
log
(
(In − 2OPOT )(In − 2OFOT )

)
.

Notice that

ΩΩΩ2 =
1

2
log
(
(In − 2OPOT )(In − 2OFOT )

)
=

1

2
log
(
(OInO

T − 2OPOT )(In − 2OFOT )
)

=
1

2
log
(
O(In − 2P)OT (In − 2OFOT )

)
=

1

2
log
(
O(In − 2P)(OT In − 2FOT )

)
=

1

2
log
(
O(In − 2P)(InO

T − 2FOT )
)

=
1

2
log
(
O(In − 2P)(In − 2F)OT

)
(1)
=

1

2
O log

(
(In − 2P)(In − 2F)

)
OT

= OΩΩΩ1O
T ,

where (1) follows from the fact that matrix O is orthogonal and log
(
(In− 2P)(In− 2F)

)
is defined.

Therefore
Loggr

OFOT (OPOT ) = [ΩΩΩ2,OFOT ]

= [OΩΩΩ1O
T ,OFOT ]

= OΩΩΩ1FO
T −OFΩΩΩ1O

T

= O[ΩΩΩ1,F]OT

= OLoggrF (P)OT .
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For the second identity, note that

Expgr
OPOT (O∆OT )

(1)
= exp([O∆OT ,OPOT ])OPOT exp(−[O∆OT ,OPOT ])

= exp(O∆POT −OP∆OT )OPOT exp
(
− (O∆POT −OP∆OT )

)
= exp(O[∆,P]OT )OPOT exp(−O[∆,P]OT )

(2)
= O exp([∆,P])OTOPOTO exp(−[∆,P])OT

= O exp([∆,P])P exp(−[∆,P])OT

(3)
= OExpgrP (∆)OT .

(40)

The derivation of Eq. (40) follows.

(1) follows from Eq. (32).

(2) follows from the fact that O is orthogonal.

(3) follows from Eq. (32).

The third identity can be proved by induction on m. First, it is easy to see that the identity holds for
m = 0. Assuming that it holds for m = k, i.e.,

[∆,P]m = (In − 2P)(−[∆,P])m(In − 2P). (41)

Then we have

[∆,P]m+1 = (In − 2P)(−[∆,P])m(In − 2P)[∆,P]

= (In − 2P)(−[∆,P])m(In∆P− InP∆− 2P∆P + 2P2∆)

(1)
= (In − 2P)(−[∆,P])m(∆P + P∆− 2P∆P)

(2)
= (In − 2P)(−[∆,P])m(P∆In − 2P∆P−∆PIn + 2∆P2)

= (In − 2P)(−[∆,P])m(−[∆,P])(In − 2P)

= (In − 2P)(−[∆,P])m+1(In − 2P),

where (1) and (2) follow from the fact that P2 = P.

For the fourth identity, from Eq. (41) with m = 1,

s[∆,P] = (In − 2P)(−s[∆,P])(In − 2P),

for any s ∈ R. Therefore

exp(s[∆,P]) = exp
(
(In − 2P)(−s[∆,P])(In − 2P)

)
(1)
= (In − 2P) exp(−s[∆,P])(In − 2P),

where (1) follows from the fact that (In − 2P)(In − 2P) = In.

23 Proof of Theorem 3.20

Proof. We need to show that spaces (Grn,p,⊕gr,⊗gr) satisfy axioms (G1), (G2), (G3), V(1), V(2),
V(3), V(4), and V(5) (under certain conditions of the theorem).

Axiom (G1)

Proof. The verification of axiom (G1) follows directly from Eq. (8). It is also easy to see that In,p is
a right identity of any P ∈ Grn,p.
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Axiom (G2)

Proof. We first recall a property of the matrix logarithm.

Lemma 23.1 ([56]). Let A be a square matrix that has no negative real eigenvalues. Then

log(A−1) = − log(A).

Let LoggrIn,p
(P) = [Ω, In,p]. Then from Eq. (33) we have

Ω =
1

2
log
(
(In − 2P)(In − 2In,p)

)
=

1

2
log
(
(In − 2 ExpgrIn,p

(LoggrIn,p
(P)))(In − 2In,p)

)
(1)
=

1

2
log
(
(In − 2 exp([P, In,p])In,p exp(−[P, In,p]))(In − 2In,p)

)
=

1

2
log
(

exp([P, In,p])(In − 2In,p) exp(−[P, In,p])(In − 2In,p)
)

(2)
=

1

2
log
(

exp(2[P, In,p])
)
,

(42)

where (1) follows from Eq. (32), and (2) follows from the fourth identity of Lemma 3.19.

Since P and In,p are not in each other’s cut locus, they can be joined by a unique geodesic. There-
fore, there is an implicit condition on P, i.e., matrix (In − 2P)(In − 2In,p) has no negative real
eigenvalues [48]. From the above chain of equations we have

(In − 2P)(In − 2In,p) = exp(2[P, In,p]),

which means that exp(2[P, In,p]) has no negative real eigenvalues.

Let LoggrIn,p
(	grP) = [Ω′, In,p]. Then from Eq. (33) we have

Ω′ =
1

2
log
(
(In − 2	gr P)(In − 2In,p)

)
=

1

2
log
(
(In − 2 ExpgrIn,p

(−LoggrIn,p
(P)))(In − 2In,p)

)
(1)
=

1

2
log
(
(In − 2 exp([−P, In,p])In,p exp(−[−P, In,p]))(In − 2In,p)

)
=

1

2
log
(
(In − 2 exp(−[P, In,p])In,p exp([P, In,p]))(In − 2In,p)

)
=

1

2
log
(

exp(−[P, In,p])(In − 2In,p) exp([P, In,p])(In − 2In,p)
)

(2)
=

1

2
log
(

exp(−2[P, In,p])
)

=
1

2
log
(

exp(2[P, In,p])
−1
)

(3)
= −1

2
log
(

exp(2[P, In,p])
)
.

(43)

The derivation of Eq. (43) follows.

(1) follows from Eq. (32),

(2) follows from the fourth identity of Lemma 3.19.

(3) follows from the fact that exp(2[P, In,p]) has no negative real eigenvalues and Lemma 23.1.
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We thus obtain

	grP = LoggrIn,p
(	grP)

= [Ω′, In,p]

= [−Ω, In,p]

= −[Ω, In,p]

= −LoggrIn,p
(P)

= −P.

(44)

Therefore

	grP⊕gr P
(1)
= exp([	grP, In,p])P exp(−[	grP, In,p])
(2)
= exp([−P, In,p])P exp(−[−P, In,p])
= exp(−[P, In,p])P exp([P, In,p])

(3)
= exp(−[P, In,p]) exp([P, In,p])In,p exp(−[P, In,p]) exp([P, In,p])

= In,p,

where (1), (2), and (3) follow respectively from Eqs. (8), (44), and (36).

Remark. It is easy to show that 	grP is a right inverse of P. Indeed, we have

P⊕gr (	grP)
(1)
= exp([P, In,p])(	grP) exp(−[P, In,p])

= exp([P, In,p]) ExpgrIn,p
(−LoggrIn,p

(P)) exp(−[P, In,p])

(2)
= exp([P, In,p]) exp([−P, In,p])In,p exp(−[−P, In,p]) exp(−[P, In,p])

= In,p,

where (1) and (2) follow respectively from Eqs. (8) and (32).

Axiom (G3)

Proof. From Eq. (8),

(P⊕gr Q)⊕gr gyrgr[P,Q]R = exp([P⊕gr Q, In,p]) gyrgr[P,Q]R exp(−[P⊕gr Q, In,p]).
(45)

Replacing gyrgr[P,Q]R in the right-hand side of Eq. (45) with its expression in Eq. (10), we obtain

(P⊕gr Q)⊕gr gyrgr[P,Q]R = exp([P, In,p]) exp([Q, In,p])R exp(−[Q, In,p]) exp(−[P, In,p])

(1)
= exp([P, In,p])(Q⊕gr R) exp(−[P, In,p])

(2)
= P⊕gr (Q⊕gr R),

where (1) and (2) follow from Eq. (8).

Gyrocommutative Law

Proof. First, we need to prove the two following lemmas.

Lemma 23.2. Let A = exp([P, In,p]) where P ∈ Grn,p. Then A is orthogonal and has the
following form:

A =

[
A11 A12

−AT
12 A22

]
,

where A11 ∈ Symp, A12 ∈ Mp,n−p, and A22 ∈ Symn−p.
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Proof. Let Ω = [P, In,p]. Since TIn,p Grn,p contains a subset of symmetric matrices [48], P is
symmetric, Ω is skew-symmetric, and thus

exp([P, In,p]) = exp(Ω)

is orthogonal.

To prove the second part, note that [P, In,p] has the following form:

[P, In,p] =

[
0 K
−KT 0

]
,

where K ∈ Mp,n−p. By induction on n, it is easy to show that for n ≥ 0 and n is even, [P, In,p]
n

and [P, In,p]
n+1 have the following forms

[P, In,p]
n =

[
K1 0
0 K2

]
, [P, In,p]

n+1 =

[
0 K3

−KT
3 0

]
,

where K1 ∈ Symp, K2 ∈ Symn−p, and K3 ∈ Mp,n−p. Therefore

exp([P, In,p]) =

∞∑
k=0

1

k!
[P, In,p]

k =

[
A11 A12

−AT
12 A22

]
,

where A11 ∈ Symp, A12 ∈ Mp,n−p, and A22 ∈ Symn−p.

Lemma 23.3. Let A,B,C ∈ On such that

A =

[
A11 A12

−AT
12 A22

]
,B =

[
B11 B12

−BT
12 B22

]
,C =

[
C11 C12

−CT
12 C22

]
,

where A11 ∈ Symp, A12 ∈ Mp,n−p, A22 ∈ Symn−p, B11 ∈ Symp, B12 ∈ Mp,n−p, B22 ∈
Symn−p, C11 ∈ Symp, C12 ∈ Mp,n−p, and C22 ∈ Symn−p. Let O ∈ On such that OIn,pO

−1 =
In,p and C = ABO. Then

C−1ABBAIn,pA
−1B−1B−1A−1C = CIn,pC

−1.

Proof. Let oij , i, j = 1, . . . , n be the entry at the ith row and jth column of O. The equality
OIn,pO

−1 = In,p implies that OIn,p = In,pO. We thus have oij = oji = 0, i = p+ 1, . . . , n, j =
1, . . . , p. Therefore, O has the following form:

O =

[
O1 0
0 O2

]
,

where O1 ∈ Mp,p and O2 ∈ Mn−p,n−p. Some simple computations show that OTBTAT and
OTBA have the following forms:

OTBTAT =

[
L11 L12

L21 L22

]
,

OTBA =

[
L11 −L12

−L21 L22

]
,

where L11 ∈ Mp,p, L12 ∈ Mp,n−p, L21 ∈ Mn−p,p, and L22 ∈ Mn−p,n−p. Now the equality
CT = OTBTAT implies that

C11 = L11,−C12 = L12,C
T
12 = L21,C22 = L22,

which leads to C = OTBA, and therefore

C−1ABBAIn,pA
−1B−1B−1A−1C = O−1B−1A−1ABBAIn,pA

−1B−1B−1A−1ABO

= O−1BAIn,pA
−1B−1O

= CIn,pC
−1.
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Let C = exp([P⊕gr Q, In,p]), A = exp([P, In,p]), B = exp([Q, In,p]). Using Eqs. (10) and (11),
we have

gyrgr[P,Q](Q⊕gr P) = C−1AB(Q⊕gr P)B−1A−1C

(1)
= C−1AB exp([Q, In,p])P exp(−[Q, In,p])B

−1A−1C

(2)
= C−1AB exp([Q, In,p]) exp([P, In,p])In,p exp(−[P, In,p]) exp(−[Q, In,p])B

−1A−1C

= C−1ABBAIn,pA
−1B−1B−1A−1C,

(46)

where (1) and (2) follow respectively from Eqs. (8) and (36).

Notice that

exp([P⊕gr Q, In,p])In,p exp(−[P⊕gr Q, In,p])
(1)
= P⊕gr Q
(2)
= exp([P, In,p])Q exp(−[P, In,p])

(3)
= exp([P, In,p]) exp([Q, In,p])In,p exp(−[Q, In,p]) exp(−[P, In,p]),

(47)

where (1), (2), and (3) follow respectively from Eqs. (36), (8), and (36).

Therefore
CIn,pC

−1 = ABIn,pB
−1A−1. (48)

Let O = (AB)−1C. Then C = ABO and from Eq. (48) we deduce that

ABOIn,pO
−1B−1A−1 = ABIn,pB

−1A−1,

which leads to OIn,pO
−1 = In,p. Based on Lemma 23.3, we get

C−1ABBAIn,pA
−1B−1B−1A−1C = CIn,pC

−1. (49)

Combining Eqs. (46), (47), (48) and (49) leads to

gyrgr[P,Q](Q⊕gr P) = P⊕gr Q. (50)

Nonreductive Gyrogroups

Proof. We need to show that groupoids (Grn,p,⊕gr) do not satisfy the Left Reduction Property. We
will prove this by contradiction. Assuming that for all P,Q, and R ∈ Grn,p,

gyrgr[P,Q]R = gyrgr[P⊕gr Q,Q]R.

In particular, for P = In,p,

gyrgr[In,p,Q]R = gyrgr[In,p ⊕gr Q,Q]R

= gyrgr[Q,Q]R

(1)
= Fgr[Q,Q]R(Fgr[Q,Q])−1,

(51)

where (1) follows from Eq. (10).

From Eq. (11),

Fgr(In,p,Q) = exp(−[In,p ⊕gr Q, In,p]) exp([In,p, In,p]) exp([Q, In,p]) = exp(−[Q, In,p])In exp([Q, In,p]) = In.

Hence, from Eq. (10), we get
gyrgr[In,p,Q]R = R. (52)
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Combining Eqs. (51) and (52) leads to

Fgr[Q,Q]R(Fgr[Q,Q])−1 = R.

Therefore
Fgr[Q,Q]R = RFgr[Q,Q].

In other words, Fgr[Q,Q] commutes with all matrices in Grn,p. In particular, it commutes with
any diagonal matrix D with p diagonal entries equal to one and n − p diagonal entries equal
to zero. Let i1, . . . , ip ∈ {1, . . . , n} be the indices of the diagonal entries of D equal to one.
Then some simple computations of Fgr[Q,Q]D and DFgr[Q,Q] leads to fij = fji = 0, i ∈
{i1, . . . , ip}, j ∈ {1, . . . , n} \ {i1, . . . , ip}, where fij is the entry at the ith row and jth column of
Fgr[Q,Q]. Since p < n, there always exists a set of indices i1, . . . , ip such that i ∈ {i1, . . . , ip}, j ∈
{1, . . . , n} \ {i1, . . . , ip} for any given i, j = 1, . . . , n. We can thus conclude that fij = fji = 0 for
any i, j = 1, . . . , n, i 6= j, i.e., Fgr[Q,Q] is diagonal. However, for n = 3, k = 2, and Q is given by

Q =


1√
3

1√
2

1√
3

0
1√
3
− 1√

2

 ,
Fgr[Q,Q] is given by

Fgr[Q,Q] =

[
0.6 0.8 0
0.8 −0.6 0
0 0 −1

]
,

which is not a diagonal matrix.

Axiom (V1)

Proof. By the definition of the scalar multiplication, it is trivial to verify axiom (V1).

Axiom (V2)

Proof. We first recall a property of the matrix logarithm.

Lemma 23.4 ([56]). Let A be a square matrix such that | Im(λi)| < π for every eigenvalue λi of A.
Then

log(exp(A)) = A.

We have

s⊗gr P⊕gr t⊗gr P
(1)
= exp([s⊗gr P, In,p])(t⊗gr P) exp(−[s⊗gr P, In,p])
(2)
= exp

(1

2
log
(
(In − 2(s⊗gr P))(In − 2In,p)

))
(t⊗gr P)

exp
(
−1

2
log
(
(In − 2(s⊗gr P))(In − 2In,p)

))
,

where (1) and (2) follow respectively from Eqs. (8) and (37).

Note that

(In − 2(s⊗gr P))(In − 2In,p) = (In − 2 ExpgrIn,p
(sP))(In − 2In,p)

(1)
= (In − 2 exp([sP, In,p])In,p exp(−[sP, In,p]))(In − 2In,p)

= (In − 2 exp(s[P, In,p])In,p exp(−s[P, In,p]))(In − 2In,p)

= exp(s[P, In,p])(In − 2In,p) exp(−s[P, In,p])(In − 2In,p)

(2)
= exp(2s[P, In,p]),

(53)
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where (1) follows from Eq. (32), and (2) follows from the fourth identity of Lemma 3.19.

Hence

s⊗gr P⊕gr t⊗gr P = exp
(1

2
log
(

exp(2s[P, In,p])
))

(t⊗gr P) exp
(
−1

2
log
(

exp(2s[P, In,p])
))
.

The assumption on P and s implies that 2s[P, In,p] satisfies the condition of Lemma 23.4. Thus

s⊗gr P⊕gr t⊗gr P = exp(s[P, In,p])(t⊗gr P) exp(−s[P, In,p])
(1)
= exp(s[P, In,p]) exp([tP, In,p])In,p exp(−[tP, In,p]) exp(−s[P, In,p])
= exp(s[P, In,p]) exp(t[P, In,p])In,p exp(−t[P, In,p]) exp(−s[P, In,p])
(2)
= exp((s+ t)[P, In,p])In,p exp(−(s+ t)[P, In,p])

= exp([(s+ t)P, In,p])In,p exp(−[(s+ t)P, In,p])

(3)
= (s+ t)⊗gr P.

(54)

The derivation of Eq. (54) follows.

(1) follows from Eq. (9).

(2) follows from the fact that s[P, In,p] and t[P, In,p] commute.

(3) follows from Eq. (9).

Axiom (V3)

Proof. We have

s⊗gr (t⊗gr P)
(1)
= exp([st⊗gr P, In,p])In,p exp(−[st⊗gr P, In,p])
= exp(s[t⊗gr P, In,p])In,p exp(−s[t⊗gr P, In,p])
(2)
= exp

(s
2

log
(
(In − 2(t⊗gr P))(In − 2In,p)

))
In,p exp

(
− s

2
log
(
(In − 2(t⊗gr P))(In − 2In,p)

))
(3)
= exp

(s
2

log
(

exp(2t[P, In,p])
))

In,p exp
(
− s

2
log
(

exp(2t[P, In,p])
))
.

(55)

The derivation of Eq. (55) follows.

(1) follows from Eq. (9).

(2) follows from Eq. (37).

(3) follows from Eq. (53) where s is replaced with t.

The assumption on P and t implies that 2t[P, In,p] satisfies the condition of Lemma 23.4. Thus

s⊗gr (t⊗gr P) = exp(st[P, In,p])In,p exp(−st[P, In,p])
= exp([stP, In,p])In,p exp(−[stP, In,p])

(1)
= (st)⊗gr P,

where (1) follows from Eq. (9).

21



Axiom (V4)

Proof. We first need to prove the following lemma.

Lemma 23.5. Let t ∈ R,P ∈ Grn,p, and O ∈ On such that OIn,pO
T = In,p. Then

t⊗gr (OPOT ) = O(t⊗gr P)OT .

Proof. We have

t⊗gr (OPOT )
(1)
= exp([tOPOT , In,p])In,p exp(−[tOPOT , In,p])

(2)
= exp([tOPOT , In,p])In,p exp(−[tOPOT , In,p])

= exp([tOPOT ,OIn,pO
T ])In,p exp(−[tOPOT ,OIn,pO

T ])

= exp(O[tP, In,p]O
T )In,p exp(−O[tP, In,p]O

T )

(3)
= O exp([tP, In,p])O

T In,pO exp(−[tP, In,p])O
T

= O exp([tP, In,p])In,p exp(−[tP, In,p])O
T

(4)
= O(t⊗gr P)OT .

(56)

The derivation of Eq. (56) follows.

(1) follows from Eq. (9).

(2) follows from the first identity of Lemma 3.19 and the fact that OIn,pO
T = In,p.

(3) follows from the fact that matrix O is orthogonal.

(4) follows from Eq. (9).

Let C = exp([P⊕gr Q, In,p]), A = exp([P, In,p]), B = exp([Q, In,p]). As shown in Eq. (48),

CIn,pC
T = ABIn,pB

TAT .

Hence
CTABIn,pB

TATC = In,p.

Let O = CTAB, then OIn,pO
T = In,p. Using the result in Lemma 23.5 for t ∈ R and R ∈ Grn,p,

we get
t⊗gr (CTABRBTATC) = CTAB(t⊗gr R)BTATC.

From Eq. (11),

Fgr(P,Q) = exp(−[P⊕gr Q, In,p]) exp([P, In,p]) exp([Q, In,p]) = CTAB.

Therefore
t⊗gr gyrgr[P,Q]R = gyrgr[P,Q](t⊗gr R).

Axiom (V5)

Proof. From Eq. (11),

Fgr(s⊗gr P, t⊗gr P) = exp(−[s⊗gr P⊕gr t⊗gr P, In,p]) exp([s⊗gr P, In,p]) exp([t⊗gr P, In,p])
(1)
= exp(−[(s+ t)⊗gr P, In,p]) exp([s⊗gr P, In,p]) exp([t⊗gr P, In,p]),

where (1) follows from the assumption on P and s, and axiom (V2).
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Using similar manipulations in the proof of axiom (V2), and by the assumption on P, s, and t, we
obtain

exp(−[(s+ t)⊗gr P, In,p]) = exp(−(s+ t)[P, In,p]).

exp([s⊗gr P, In,p]) = exp(s[P, In,p]).

exp([t⊗gr P, In,p]) = exp(t[P, In,p]).

Therefore

Fgr(s⊗gr P, t⊗gr P) = exp(−(s+ t)[P, In,p]) exp(s[P, In,p]) exp(t[P, In,p])

= In,

which leads to gyrgr[s⊗gr P, t⊗gr P] = Id.

24 Proof of Corollary 3.21

Proof. The fact that ‖[P, In,p]‖ ≥ maxλi
{| Im(λi)|} leads to the conclusion of the Corollary.

25 Proof of Corollary 3.22

Proof. By assumption that P and In,p are not in each other’s cut locus, they can be joined by a unique
geodesic. Therefore, there is an implicit condition on P, i.e., matrix (In − 2P)(In − 2In,p) has no
negative real eigenvalues [48]. Thus the eigenvalues of the principle logarithm of (In − 2P)(In −
2In,p) lie in the strip {z : −π < Im(z) < π}. From Eq. (34),

Ω = [P, In,p] =
1

2
log
(
(In − 2P)(In − 2In,p)

)
. (57)

We deduce that
| Im(λi)| <

π

2
.

If |s| ≤ 1, then |s| < π
2| Im(λi)| for any λi. By Theorem 3.20, we can conclude that gyrocommutative

and gyrononreductive gyrogroups (Grn,p,⊕gr) with the scalar multiplication⊗gr satisfy axiom (V2).
Similar arguments can be used to verify axioms (V3) and (V5).

26 Derivation of Our SPD Neural Networks

Definition 26.1 (Gyroderivative in AI and LE Gyrovector Spaces). Let (Sym+
n ,⊕,�) be a gy-

rovector space, and h : R→ Sym+
n be a map. If the limit

dh

dt
(t) = lim

δt→0

1

δt
� (	h(t)⊕ h(t+ δt))

exists for any t ∈ R, then the map h is said to be differentiable on R, and the gyroderivative of h(t)
is dh

dt (t).

Note that the gyroderivative considered here is different from the derivative used for computing
tangent vectors to a curve on manifolds [2], which is a map from a set of smooth real-valued functions
to R. From Definition 26.1, we can derive the chain rule in AI and LE gyrovector spaces similar to
the Gyro-chain-rule [12] in hyperbolic spaces.
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Lemma 26.2 (Gyro-chain-rule in AI and LE Gyrovector Spaces). Let g : R → R be a differen-
tiable map, and h : R→ Sym+

n be a map with a well-defined gyroderivative in a gyrovector space
(Sym+

n ,⊕,�). If f := h ◦ g, then we have
df

dt
(t) =

dg

dt
(t)� dh

dt
(g(t)),

where dg
dt (t) is the ordinary derivative.

Proof. The Lemma can be proved by applying the techniques in [12].
df

dt
(t) = lim

δt→0

1

δt
� (	f(t)⊕ f(t+ δt))

= lim
δt→0

1

δt
� (	h(g(t))⊕ h(g(t) + δt(g′(t) +O(δt)))).

Let l1 = g′(t)
δt(g′(t)+O(δt)) , l2 = O(δt)

δt(g′(t)+O(δt)) . Then 1
δt = l1 + l2 and we have

df

dt
(t) = lim

δt→0
(l1 + l2)� (	h(g(t))⊕ h(g(t) + δt(g′(t) +O(δt)))).

Let L1 = limδt→0 l1� (	h(g(t))⊕ h(g(t) + δt(g′(t) +O(δt)))), L2 = limδt→0 l2� (	h(g(t))⊕
h(g(t) + δt(g′(t) +O(δt)))). Then we get

df

dt
(t)

(1)
= L1 ⊕ L2

= L1 ⊕ 0� (	h(g(t))⊕ h(g(t) + δt(g′(t) +O(δt))))

(2)
= L1 ⊕ In
(3)
= L1,

where (1), (2), and (3) follow respectively from axioms (V2), (V1), and (G1).

Let u = δt(g′(t) +O(δt)). Then we have
df

dt
(t) = lim

u→0

g′(t)

u
� (	h(g(t))⊕ h(g(t) + u))

= lim
u→0

g′(t)
1

g(t) + u− g(t)
� (	h(g(t))⊕ h(g(t) + u))

(1)
=
dg

dt
(t)� dh

dt
(g(t)),

where (1) follows from axiom (V3).

We consider a class of models that are invariant to time rescaling. Following [12, 42], we first study
time transformations in the continuous-time setting and then translate continuous-time models back
to the discrete-time setting. In the following, we use indices ht for discrete time and brackets h(t) for
continuous time. From Definition 26.1, axiom (V3), and the Left Cancellation Law, we have

h(t+ δt) ≈ h(t)⊕ δt� dh

dt
(t) (58)

for small δt. Let T be a time variable and H(T ) = h(αT ), X(T ) = x(αT ). Using the chain rule in
AI and LE gyrovector spaces, we obtain

dH

dT
(T ) = α� dh

dT
(αT ). (59)

Let h(t+ 1) = φ(h(t), x(t)).10 Note that Eq. (58) is equivalent to

	h(t)⊕ h(t+ δt) ≈ δt� dh

dt
(t).

10We drop the model parameters to simplify notations.
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With discretization step δt = 1, we have

dh

dT
(αT ) = 	H(T )⊕ h(αT + 1)

= 	H(T )⊕ φ(H(T ), X(T )).

Eq. (59) now becomes

dH

dT
(T ) = α�

(
	H(T )⊕ φ(H(T ), X(T ))

)
.

By renaming H to h, X to x, and T to t, we obtain

dh

dt
(t) = α�

(
	 h(t)⊕ φ(h(t), x(t))

)
,

which results in
h(t)⊕ dh

dt
(t) = h(t)⊕ α�

(
	 h(t)⊕ φ(h(t), x(t))

)
.

From Eq. (58), we have h(t+ 1) = h(t)⊕ dh
dt (t). Then

h(t+ 1) = h(t)⊕ α�
(
	 h(t)⊕ φ(h(t), x(t))

)
. (60)

Now setting φ(h(t), x(t)) = ϕ⊗a(Wh ⊗vspd h(t) + Wx ⊗vspd x(t)) and translating Eq. (60) back to
discrete-time models, we obtain the following recurrent equations:

Pt = ϕ⊗a(Wh ⊗vspd Ht−1 + Wx ⊗vspd Xt),

Ht = Ht−1 ⊕ α� ((	Ht−1)⊕Pt),

where Xt,Pt,Ht−1,Ht ∈ Sym+
n , Wh,Wx ∈ Rn, and α ∈ R are learnable parameters.

Remark. Using the above technique, one can also derive a class of RNNs on nonreductive gyrovector
spaces that verify the Left Cancellation Law.
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