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1 Supplementary Information

1.1 The DLCA Algorithm

The Diffusion limited cluster cluster aggregation (DLCA) algorithm simulates the formation
of particle clusters through a random walk in spherical coordinates. Particles diffuse with
a step size s at each iteration, with their movement governed by changes in the radial (r),
polar (θ), and azimuthal (ϕ) components. The critical distance for clustering, ϵ, is defined
as ϵ = 2.15×r, where r is the characteristic particle radius. If two particles come within this
critical distance, they are considered aggregated, and their positions become fixed relative
to one another. It is important to highlight that the simulation is performed using periodic
boundary conditions to mimic the material’s bulk properties.

Once particles aggregate into clusters, these clusters themselves begin to move as single
entities, following the same diffusion mechanism. When two clusters approach each other
within the critical distance ϵ, they merge to form a larger cluster. This hierarchical aggrega-
tion process continues, with progressively larger clusters forming as the simulation evolves.
The random walk in spherical coordinates ensures isotropic diffusion, accurately modeling
the stochastic motion and clustering behavior of particles.

1.2 The CNN Model and Architecture

Table 1: Optimal hyperparameters for the CNN.

Hyperparameter Value

Batch Size 128
Learning Rate 0.0001
Adam Optimizer Beta1 0.5
Step LR Scheduler Step 5

Table 1 presents the final hyperparameters of the trained CNN model, while Table 2 outlines
the CNN architecture. Although three separate CNNs with this architecture and hyperpa-
rameters were trained independently for the 3D microstructural features, they could be
consolidated into a single model. However, for this study, the CNNs were trained individ-
ually to maintain modularity and facilitate reconstruction based on a single feature due to
ease of computation and training.

∗Equal contribution.

1



Table 2: CNN architecture for predicting the structural properties of aerogels. H and W
denote the height and width of the 2D input image, respectively.

Layer Details Output Shape

Input – 1×H ×W
Conv Layer 1 3× 3 kernels, 32 channels, stride=1, padding=1 32×H ×W
Activation 1 ReLU 32×H ×W
Max Pool 1 2× 2 pooling 32× H

2 × W
2

Conv Layer 2 3× 3 kernels, 64 channels, stride=1, padding=1 64× H
2 × W

2
Activation 2 ReLU 64× H

2 × W
2

Max Pool 2 2× 2 pooling 64× H
4 × W

4
Conv Layer 3 3× 3 kernels, 128 channels, stride=1, padding=1 128× H

4 × W
4

Activation 3 ReLU 128× H
4 × W

4
Max Pool 3 2× 2 pooling 128× H

8 × W
8

Flatten Reshape to vector 128× H
8 × W

8
Linear Layer 1 256 units 256
Activation 4 ReLU 256
Linear Layer 2 1 unit 1

1.3 cGAN Model and Architecture

Table 3 presents the seleted hyperparameters for the trained cWGAN after hyperparam-
eter optimisation to achieve the best results. Moreover, the generator and discriminator
architecture are presented in Table 4 and Table 5 respectively.

Table 3: Hyperparameters used for training the cGAN.

Hyperparameter Value

Generator Learning Rate 0.001
Discriminator Learning Rate 0.0005
β1 (Adam optimizer) 0.5
Batch Size 64
Gradient Penalty (λ) 15

Table 4: Generator architecture for the cGAN with a maximum convolutional width of 128.
The generator applies BatchNorm3D and ReLU activation after each ConvTranspose3D
layer, except the final output layer, which uses a sigmoid activation.

Layer Details Padding

Input z, labels –
Label Transformation Embedding = Linear(label dim = 11, latent dim = 200) –
Concatenation Concatenate z and Embedding –
Reshape z reshaped to (batch size, latent dim+ latent dim, 1, 1, 1) –
ConvTranspose3D Layer 1 4× 4× 4, stride=1, 128 out channels 0
ConvTranspose3D Layer 2 4× 4× 4, stride=2, 64 out channels 1
ConvTranspose3D Layer 3 4× 4× 4, stride=2, 32 out channels 1
ConvTranspose3D Layer 4 4× 4× 4, stride=2, 16 out channels 1
ConvTranspose3D Layer 5 4× 4× 4, stride=2, 8 out channels 1
ConvTranspose3D Layer 6 4× 4× 4, stride=2, output dim out channels 1
Sigmoid Activation Applied to final output layer –
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Table 5: Discriminator architecture for the cGAN with a maximum convolutional width
of 128. The discriminator applies InstanceNorm3D and LeakyReLU activation after each
Conv3D layer, except the final layer.

Layer Details Padding

Input x ∈ Binary Image128×128×128, labels ∈ one hot labels11 –
Label Transformation Embedding = Linear(label dim = 11, 1× 128× 128× 128) –
Reshape Embedding reshaped to (batch size, 1, 128, 128, 128) –
Element-wise Multiplication x multiplied with Embedding –
Conv3D Layer 1 4× 4× 4, stride=2, 8 out channels 1
Conv3D Layer 2 4× 4× 4, stride=2, 16 out channels 1
Conv3D Layer 3 4× 4× 4, stride=2, 32 out channels 1
Conv3D Layer 4 4× 4× 4, stride=2, 64 out channels 1
Conv3D Layer 5 4× 4× 4, stride=2, 128 out channels 1
Conv3D Layer 6 4× 4× 4, stride=1, 1 out channel 0

1.4 Qualitative Analysis of the Reconstructed Microstructures

The density of the 3D images generated by the cGAN is calculated by thresholding the
generator output into a 3D binary image and dividing the number of ‘1‘s (particles) by the
total number of elements (128× 128× 128):

Relative Density =
Number of ones in the 3D array

Total number of elements
(1)

The calculated densities and corresponding mean absolute percentage error (MAPE) are
shown in Table 6.

Table 6: Comparison of Conditional and Calculated Densities with MAPE.

Generator Output Conditional Density Calculated Density MAPE (%)

Figure 3b 0.03 0.03336 11.20
Figure 3d 0.06 0.06263 4.38
Figure 3f 0.09 0.09067 0.74

The results indicate that the generated outputs closely match the target densities, with
low MAPE values. The highest error (11.2%) occurs at 0.03 density due to the genera-
tor’s difficulty limiting particle generation for low-density structures, while higher densities
achieve significantly better accuracy (0.74% at 0.09). This demonstrates that the cWGAN
effectively generates density-specific 3D structures with high fidelity.
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