
A Datasets

We use 2 simulated (Sines, MuJoCo) and 2 real-world (Stocks, Energy) datasets. Table. 7 shows the
statistics of the datasets. All datasets are available online via the link. We note that in some of our
datasets, the time series length N can be varied from one time series sample to another. However, our
framework has no problems in dealing with those varying lengths.

Table 7: Dataset Statistics

Dataset # of Samples dim(x) Average of N Link License
Sines 10,000 5 24 time-points - -

Stocks 3,773 6 24 days Link -
Energy 19,711 28 24 hours Link CC BY 4.0

MuJoCo 4,620 14 24 time-points Link Apache License 2.0

B ODE/CDE functions in GT-GAN

B.1 Encoder

Our encoder based on NCDEs has the following CDE function f .2

Table 8: The architecture of the network f in the encoder

Layer Design Input Size Output Size
1 ReLU(Linear) N × dim(x) N × 4 dim(x)
2 ReLU(Linear) N × 4 dim(x) N × 4 dim(x)
3 ReLU(Linear) N × 4 dim(x) N × 4 dim(x)
4 Tanh(Linear) N × 4 dim(x) N × dim(x)

B.2 Decoder, Discriminator

Our decoder and discriminator based on GRU-ODEs have the following ODE functions.3 They have
the same architecture but their parameters are separated.

Table 9: The architecture of the network g in the decoder

Layer Design Input Size Output Size

1

rt =Sigmoid(Linear) N × dim(h) N × dim(h)
zt =Sigmoid(Linear) N × dim(h) N × dim(h)
ut =Tanh(Linear) N × dim(h) N × dim(h)

dh = (1− zt) ∗ (ut − ht) N × dim(h) N × dim(h)

Table 10: The architecture of the network q in the discriminator

Layer Design Input Size Output Size

1

rt =Sigmoid(Linear) N × dim(x) N × dim(x)
zt =Sigmoid(Linear) N × dim(x) N × dim(x)
ut =Tanh(Linear) N × dim(x) N × dim(x)

dh = (1− zt) ∗ (ut − ht) N × dim(x) N × dim(x)

2CDE: https://github.com/patrick-kidger/NeuralCDE (Apache-2.0 license)
3ODE: https://github.com/rtqichen/torchdiffeq (MIT license)

13

https://finance.yahoo.com/quote/GOOG/history?p=GOOG
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://github.com/deepmind/dm_control
https://github.com/patrick-kidger/NeuralCDE
https://github.com/rtqichen/torchdiffeq

B.3 Generator

Our generator has the following ODE function f in Table 11.
Table 11: The architecture of the network r in the generator

Layer Design Input Size Output Size
1 Softplus(Linear) N × dim(h + 1) N × dim(h)
2 Softplus(Linear) N × dim(h + 1) N × dim(h)
3 Softplus(Linear) N × dim(h + 1) N × dim(h)

......

Figure 7: An example of our
generation

C Baselines

For the regular time series baseline models, i.e., TimeGAN, RCGAN, C-RNN-GAN, T-forcing, and
P-forcing, we use the 3-layer GRU-based neural network architecture with a hidden size that is 4
times larger than the input size. We use or modify the following accessible source codes to run.

• TimeGAN : https://github.com/jsyoon0823/TimeGAN
• RCGAN : https://github.com/3778/Ward2ICU
• C-RNN-GAN : https://github.com/olofmogren/c-rnn-gan
• T-forcing, P-forcing : https://github.com/mojesty/professor_forcing
• GRU-D : https://github.com/zhiyongc/GRU-D

Because ordinary GRUs can not be applied to irregular time series, we replace the first layer GRU to
GRU-4t and GRU-D in all those baselines so that the redesigned baseline models, i.e., TimeGAN-4t,
RCGAN-4t, C-RNN-GAN-4t, T-forcing-4t, P-forcing-4t, TimeGAN-D, RCGAN-D, C-RNN-
GAN-D, T-forcing-D and P-forcing-D, can process irregular time series data.

D Evaluation metrics

(a) How to calculate the predictive
score for the regular time series syn-
thesis in TimeGAN

(b) How to calculate the predictive
score for the irregular time series in this
paper

Figure 8: Predictive task according to the data type

For fair comparison, we reuse the experimental environments of TimeGAN for the discriminative
score. However, we found that TimeGAN’s predictive task is rather straightforward as shown in
Fig. 8 (a). It predicts only one element in yellow from other four past elements in blue. Since
only one element is used for evaluation, we found that the original predictive score of TimeGAN
can be biased. Instead, our predictive task predicts the entire vector, as shown in Fig. 8 (b), and
therefore, our predictive score is measured under much more challenging environments. We use
this more challenging predictive score definition for our irregular time series synthesis. We stick
to the TimeGAN’s definition for the regular time series experiment for fair comparison but use our
challenging predictive score metric for all other experiments.

E Additional ablation studies

In Tables 12 to 17, we report the missing ablation study tables in the main paper.

14

Table 12: Ablation study for training options with the irregular time series (30% dropped)

Metric Method Sines Stocks Energy MuJoCo
Discriminative

Score
(Lower the Better)

GT-GAN .363 .251 .333 .249
w/o Eq. (8) .498 .266 .392 .303

w/o pre-training .499 .305 .345 .241
Predictive

Score
(Lower the Better)

GT-GAN .099 .021 .066 .048
w/o Eq. (8) .241 .015 .064 .061

w/o pre-training .273 .022 .061 .049

Table 13: Ablation study for training options with the irregular time series (50% dropped)

Metric Method Sines Stocks Energy MuJoCo
Discriminative

Score
(Lower the Better)

GT-GAN .372 .265 .317 .270
w/o Eq. (8) .500 .323 .381 .274

w/o pre-training .500 .209 .325 .270
Predictive

Score
(Lower the Better)

GT-GAN .101 .018 .064 .056
w/o Eq. (8) .277 .018 .063 .051

w/o pre-training .103 .017 .071 .051

Table 14: Ablation study for training options with the irregular time series (70% dropped)

Metric Method Sines Stocks Energy MuJoCo
Discriminative

Score
(Lower the Better)

GT-GAN .278 .230 .325 .275
w/o Eq. (8) .319 .274 .382 .290

w/o pre-training .408 .311 .345 .249
Predictive

Score
(Lower the Better)

GT-GAN .088 .020 .076 .052
w/o Eq. (8) .082 .025 .066 .051

w/o pre-training .104 .020 .085 .049

Table 15: Ablation study for model architecture in Sines

Sines GT-GAN (w.o. AE) GT-GAN (Flow only) GT-GAN (AE only) GT-GAN (Full model)
Metric Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

30% dropped .472 .262 .500 .513 .477 .270 .363 .099
50% dropped .480 .254 .500 .610 .475 .253 .372 .101
70% dropped .481 .248 .499 .614 .477 .266 .278 .088

Table 16: Ablation study for model architecture in Stocks

Stocks GT-GAN (w.o. AE) GT-GAN (Flow only) GT-GAN (AE only) GT-GAN (Full model)
Metric Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

30% dropped .500 .088 .492 .140 .486 .088 .251 .021
50% dropped .500 .088 .491 .128 .492 .125 .265 .018
70% dropped .500 .088 .490 .128 .492 .122 .230 .020

Table 17: Ablation study for model architecture in Energy

Energy GT-GAN (w.o. AE) GT-GAN (Flow only) GT-GAN (AE only) GT-GAN (Full model)
Metric Disc. Pred. Disc. Pred. Disc. Pred. Disc. Pred.

30% dropped .500 .305 .498 .252 .495 .162 .333 .066
50% dropped .500 .365 .499 .160 .499 .135 .317 .064
70% dropped .499 .376 .499 .184 .499 .131 .325 .076

15

F Sensitivity analyses

We provide performance (discriminative score and predictive score) depending on hyperparameters
(i.e. atol (absolute tolerance)= {1e − 1, 1e − 2, 1e − 3}, rtol (relative tolerance)= {1e − 1, 1e −
2, 1e− 3} and PMLE = {1, 2, 3}) for each different datasets.

atol rtol PMLE
0.00
0.01
0.02
0.03
0.04
0.05 1e

-1
1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.05

0.10

0.15

0.20 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.12

0.24

0.36 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00
0.02
0.04
0.06
0.08
0.10 1e

-1
1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(a) Sines

atol rtol PMLE
0.00
0.01
0.02
0.03
0.04
0.05 1e

-1
1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(b) Stocks

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(c) Energy

atol rtol PMLE
0.00

0.02

0.04

0.06

0.08
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(d) MuJoCo

Figure 9: The sensitivity of the discriminative score (the 1st row) and predictive score (the 2nd row)
w.r.t. some key hyperparameters for regular data

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44

0.55 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.21

0.42

0.63

0.84
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(a) Sines

atol rtol PMLE
0.00

0.01

0.02

0.03

0.04

0.05 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(b) Stocks

atol rtol PMLE
0.00

0.02

0.04

0.06

0.08
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(c) Energy

atol rtol PMLE
0.00
0.01
0.02
0.03
0.04
0.05

1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(d) MuJoCo

Figure 10: The sensitivity of the discriminative score (the 1st row) and predictive score (the 2nd row)
w.r.t. some key hyperparameters for irregular data (dropped 30%)

16

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44

0.55 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.15

0.30

0.45

0.60

0.75 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(a) Sines

atol rtol PMLE
0.00

0.01

0.02

1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(b) Stocks

atol rtol PMLE
0.00

0.02

0.04

0.06

0.08
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(c) Energy

atol rtol PMLE
0.00
0.02
0.04
0.06
0.08
0.10

1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(d) MuJoCo

Figure 11: The sensitivity of the discriminative score (the 1st row) and predictive score (the 2nd row)
w.r.t. some key hyperparameters for irregular data (dropped 50%)

atol rtol PMLE
0.00

0.15

0.30

0.45 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.12

0.24

0.36 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33

0.44 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.11

0.22

0.33 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

atol rtol PMLE
0.00

0.04

0.08

0.12

0.16
1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(a) Sines

atol rtol PMLE
0.00

0.01

0.02

0.03 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(b) Stocks

atol rtol PMLE
0.00

0.02

0.04

0.06

0.08 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(c) Energy

atol rtol PMLE
0.00

0.02

0.04

0.06 1e
-1

1e
-1 11e

-2
1e
-2 21e

-3
1e
-3 3

(d) MuJoCo

Figure 12: The sensitivity of the discriminative score (the 1st row) and predictive score (the 2nd row)
w.r.t. some key hyperparameters for irregular data (dropped 70%)

17

G The best hyperparamter set for GT-GAN

• ‘atol’ means absolute tolerance for the generator.
• ‘rtol’ means relative tolerance for the generator.
• ‘PMLE’means the period of the negative log-density training for the generator.
• ‘KAE’ means the autoencoder’s pre-training iteration numbers.
• ‘d-layer’ means the number of discriminator’s GRU layers.
• ‘r-acti’ means the last activation function of the decoder.
• ‘reg-recon’ means the reconstruction regularization for the generator.
• ‘reg-kinetic’ means the kinetic-energy regularization for the generator.
• ‘reg-jacobian’ means the Jacobian-norm2 regularization for the generator.
• ‘reg-direct’ means the directional-penalty regularization for the generator.

Table 18: The best hyperparameters

method Data atol rtol PMLE KAE d-layer r-acti reg-recon reg-kinetic reg-jacobian reg-direct

GT-GAN
(Regular)

Sines 1e-2 1e-3 1 5000 1 softplus 0.01 0.05 0.1 0.1
Stocks 1e-2 1e-3 2 10000 1 softplue 0.01 0.01 0.05 0.01
Energy 1e-3 1e-2 2 5000 2 sigmoid 0.01 0.5 0.1 0.01

MuJoCo 1e-3 1e-2 2 5000 2 sigmoid 0.01 0.05 0.01 0.01

GT-GAN
(Dropped 30%)

Sines 1e-2 1e-3 2 5000 1 softplus 0.01 0.05 0.01 0.01
Stocks 1e-2 1e-3 2 10000 1 softplue 0.01 None None 0.05
Energy 1e-3 1e-2 2 5000 2 sigmoid 0.01 0.5 0.1 0.01

MuJoCo 1e-3 1e-2 2 2500 2 sigmoid 0.01 0.5 0.1 0.01

GT-GAN
(Dropped 50%)

Sines 1e-2 1e-3 2 5000 2 softplus 0.01 0.05 0.01 0.01
Stocks 1e-3 1e-3 2 10000 1 softplue None 0.05 0.01 0.05
Energy 1e-3 1e-2 2 5000 2 sigmoid 0.01 0.5 0.1 0.01

MuJoCo 1e-3 1e-2 2 1500 2 sigmoid 0.1 0.1 0.01 0.01

GT-GAN
(Dropped 70%)

Sines 1e-2 1e-3 2 5000 1 softplus 0.01 0.05 0.01 0.01
Stocks 1e-2 1e-3 1 10000 1 softplue None 0.05 0.01 0.05
Energy 1e-3 1e-2 2 2500 2 sigmoid 0.01 0.5 0.1 0.01

MuJoCo 1e-3 1e-2 2 2500 2 sigmoid 0.01 0.5 0.1 0.01

H Model size & training time comparison

In Table 19, we report the model size and training time of our method and TimeGAN, one of the best
performing baseline. As shown, our model has much smaller numbers of parameters than TimeGAN.
However, it take much longer time to train our model than TimeGAN. This is mainly because we need
to solve various differential equations, which is not needed for TimeGAN. The memory requirements
are more or less the same in both models. Therefore, these exist pros and cons for our method in
comparison with the state-of-the-art baseline.

Table 19: Comparison of model size and training time

Sines Stocks Energy MuJoCo
Model GT-GAN TimeGAN GT-GAN TimeGAN GT-GAN TimeGAN GT-GAN TimeGAN

Parameter 41,913 34,026 41,776 48,775 57,104 1,043,179 47,346 264,447
Memory (MB) 1,675 1,419 1,653 1,423 1,839 1,611 1,655 1,546

Training Time (HH:MM) 10:12 2:56 12:20 2:59 10:39 3:37 13:12 3:10

I Visualizations with t-SNE and data distribution

We introduce additional visualization outcomes in Figs. 13 to 20.

18

(a) 30% (b) 50% (c) 70%

Figure 13: t-SNE visualization of recovered irregular Sines data (the 1st column is for a dropping rate
of 30%, the 2nd column for a rate of 50%, and the 3rd column for a rate of 70%)

19

(a) 30% (b) 50% (c) 70%

Figure 14: t-SNE visualization of recovered irregular Stocks data (the 1st column is for a dropping
rate of 30%, the 2nd column for a rate of 50%, and the 3rd column for a rate of 70%)

20

(a) 30% (b) 50% (c) 70%

Figure 15: t-SNE visualization of recovered irregular Energy data (the 1st column is for a dropping
rate of 30%, the 2nd column for a rate of 50%, and the 3rd column for a rate of 70%)

21

(a) 30% (b) 50% (c) 70%

Figure 16: t-SNE visualization of recovered irregular MuJoCo data (the 1st column is for a dropping
rate of 30%, the 2nd column for a rate of 50%, and the 3rd column for a rate of 70%)

22

(a) 30% (b) 50% (c) 70%

Figure 17: Distributions of the Sines data (the 1st column is for a dropping rate of 30%, the 2nd

column for a rate of 50%, and the 3rd column for a rate of 70%)

23

(a) 30% (b) 50% (c) 70%

Figure 18: Distributions of the Stocks data (the 1st column is for a dropping rate of 30%, the 2nd

column for a rate of 50%, and the 3rd column for a rate of 70%)

24

(a) 30% (b) 50% (c) 70%

Figure 19: Distributions of the Energy data (the 1st column is for a dropping rate of 30%, the 2nd

column for a rate of 50%, and the 3rd column for a rate of 70%)

25

(a) 30% (b) 50% (c) 70%

Figure 20: Distributions of the MuJoCo data (the 1st column is for a dropping rate of 30%, the 2nd

column for a rate of 50%, and the 3rd column for a rate of 70%)

26

J Algorithm

Algorithm 1: How to train GT-GAN
Input: Pre-train iteration number KAE , Joint-train iteration number KJOINT , MLE train period

PMLE , Encoder θf , Decoder θg , Generator θr, and Discriminator θq

1 Initialize θf , θg , θr and θq;
2 k ← 0 ;
3 while k < KAE do
4 hreal ← Encoder(xreal;θf);
5 x̂real ← Decoder(hreal;θg);
6 Update θf and θg with ‖xreal − x̂real‖2;
7 k← k + 1;
8 end
9 4 k ← 0 ;

10 while k < KJOINT do
11 hreal ← Encoder(xreal;θf);
12 x̂real ← Decoder(hreal;θg);
13 Update θf and θg with ‖xreal − x̂real‖2;
14 if k mod PMLE ≡ 0 then
15 ẑ← Generator−1(hreal,θr) ;
16 ĥreal ← Generator(ẑ,θr) ;
17 Update θr with − log Pr(ĥreal);
18 end
19 hfake ← Generator(z,θr);
20 xfake ← Decoder(hfake,θg);
21 Update θr and θq with the adversarial loss with Discriminator(xfake,xreal,θq);
22 k ← k + 1;
23 end

We describe the training method in Alg. (1). We first pre-train the autoencoder in the first while loop,
followed by the second while loop for the main training step. The main training step consists of i)
fine-tuning the autoencoder, ii) training the generation with the log-density loss, iii) training the GAN
part with the adversarial loss.

K Efficacy of the log-density training

In order to see the efficacy of the log-density training, we conduct two more studies. The first model
GT-GAN (w/o Eq. (8)) is a model in which the generator is trained only with adversarial loss. The
second model GT-GAN (supervised loss) replacing the log-density loss to a supervised loss. To
obtain the supervised loss, like TimeGAN, we added a supervisor network between the encoder and
decoder.

Table 20: Ablation study for log-likelihood training

Stocks (Regular) Discriminative Score Predictive Score
GT-GAN .077 .040

GT-GAN (w/o Eq. (8)) .159 .043
GT-GAN (supervised loss) .124 .037

According to the above results, it was confirmed that even if TimeGAN’s supervised loss is used, no
better results than those of our original design are obtained (the predictive score is slightly improved
though). In other words, this experiment confirms the importance of the log-density path in our
model.

27

Table 21: Regular time series

Stocks (Regular) Discriminative Score Predictive Score
GT-GAN .077 .040

TimeGAN (NCDE) .183 .036
GT-GAN (GRU-4t) .184 .041

Table 22: Irregular time series (30% dropped)

Stocks (30% dropped) Discriminative Score Predictive Score
GT-GAN .077 .021

TimeGAN (NCDE) .430 .036
GT-GAN (GRU-4t) .345 .022

L Efficacy of the NCDE-based encoder

We execute two experiments to justify using an NCDE-based encoder. First, we experiment by
replacing the encoder of TimeGAN with our NCDE-based encoder. Second, the NCDE-based
encoder of GT-GAN is changed to GRU-4t. The results are in Tables 21 and 22. Our model shows
the best outcomes when we use the NCDE-based encoder.

M Role of each network

Although our model looks complicated, we use an appropriate network for each part to fit its role.
The role of each part is as follows:

Encoder The neural CDE-based encoder is able to encode a regular/irregular time series sample into
a regular/irregular hidden vector sequence. Neural CDEs are sometimes called continuous RNNs and
are specially designed for the representation learning of irregular time series. As reported in our first
email, generation quality is severely degraded when this network is substituted with GRU-4t.
Decoder The GRU-ODE-based decoder is able to decode a regular/irregular hidden vector sequence
into a regular/irregular time series sample. One beauty of this decoder is, as shown in Fig. 2 in our
main paper, that the sampling time point and the sample length can be freely determined by users.

Generator The CTFP-based invertible generator was intentionally selected by us since we can
perform both the log-likelihood and the adversarial training together. Since this network is a key part
of our model, we wanted to use the two different training paradigms. Our ablation studies about the
log-likelihood and supervised-learning training in Table. 20 justify our design selection.

Discriminator The GRU-ODE-based discriminator is able to process regular/irregular time series.
Unlike the encoding task of the neural CDE-based encoder, we observed faster and better results with
the GRU-ODE-based discriminator. Moreover, neural CDEs require interpolation of input as a pre-
processing. We can do this for real data before training. However, it is hard to perform dynamically for
the fake hidden vector sequence due to its excessive computation amount. In particular, it significantly
delays the overall training process if we use a neural CDE-based discriminator.

In general, our key design points lie in utilizing i) the continuous-time method-based autoencoder, and
ii) the CTFP-based generator. Therefore, we can stabilize the generating performance for complicated
irregular time series as well.

N Discriminative vs. predictive score

Figure 21: t-SNE visualization of GT-GAN
and GT-GAN (w/o pre-training)

In Table 5, GT-GAN without pre-training performs bet-
ter than GT-GAN in terms of the predictive score. In
Fig. 21, however, GT-GAN generates samples a little
out of the original data distribution whereas GT-GAN
w/o pre-training has a severe mode-collapse problem
(i.e., generating in a narrow region). We conjecture
that those samples a little outside the original data dis-
tribution make the prediction tasks’ scores a little low.
However, note that GT-GAN can successfully recall
almost the entire data region.

28

O Discussions

Limitations Our model shows the best performance in both regular and irregular time series synthesis.
However, since our model has a complicated architecture, many hyperparameters exist. Sometimes it
is hard to train such large models, which involves a large scale hyperparameter search.

Societal impacts Time series data is one of the most widely used data in the field of machine learning.
In many cases, time series data carries sensitive personal information, in which case one can use our
method to synthesize fake time series and protect privacy. Likewise, we believe that our method has
much more positive impacts on our society than negative ones.

29

