
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

A DETAILED IMPLEMENTATION

A.1 DATASET

ImageNet-C ImageNet-C is constructed from the validation set of the original ImageNet, which
includes 50, 000 samples across 1, 000 classes (each class containing 50 samples). Based on the
ImageNet validation set, we apply different corruption techniques to create 15 different degradation
versions, categorized into four main groups: noise, blur, weather, and digital. For each corruption
type, there are five levels of severity, ranging from 1 to 5. Severity level 1 represents the smallest
change in the intensity of corruption, while level 5 represents the most significant changes

Imbalance data simulation Our imbalanced data is based on SAR (Niu et al., 2023), and the
simulation process can be described as follows: During the adaptation, assume we have a total of
T time-steps, where T equals the number of classes C. We set the probability vector Qt(y) =

[q1, q2, · · · , qC ], where qC = qmax if c = t and qc = qmin ≜ (1 − qmax)/(C − 1) if c ̸= t. Here,
qmax/qmin represents the imbalance ratio. After that, for each time step t ∈ {1, 2, · · · , T = C}, we
sample M images from the test set according to Qt(y). Then, based on the ImageNet-C (Gaussian
Noise), we generate a new testing set that has online imbalanced label distribution shifts with a total
of 100(M)×1000(T ) images. To achieve this, we need to pre-shuffle the class orders in ImageNet-C
because the classes will appear randomly in practice.

CIFAR-10-C and CIFAR-100-C Similar to ImageNet-C, CIFAR-10-C, and CIFAR-100-C are
also created from the CIFAR validation set (10.000 samples). The corruption type and corruption
level are the same as the ImageNet-C version, which means we also have 15 different corruption
types, and each of them also includes 5 levels of severity.

VisDA-21 In this setting, we work on the validation set from the Visual Domain Adaptation Chal-
lenge in 2021 (Bashkirova et al., 2022), which contains a subset of images from four different
datasets: ImageNet-R, ImageNet-C, ImageNet-O, and ObjectNet. Instead of using all data samples,
we use images from ImageNet-{R, C, O}, which includes a total of 18, 338 images.

A.2 MODEL

Architecture For a fair comparison, we utilize existing architectures, which vary across datasets.
For ImageNet-C, following SAR, our main architecture is VITbase-LN from timm (Wightman,
2019). The model architectures for CIFAR-10-C and CIFAR-100-C are a 26-layer residual network
(He et al., 2016) and WideResNet-18-2 (Diffenderfer et al., 2021), respectively.

Optimizer We use stochastic gradient descent (SGD) as our default optimizer, with the learning
rate varying depending on the dataset. Specifically, we set the learning rates for the CIFAR and
ImageNet datasets to 0.01 and 0.1, respectively. The momentum is consistent across these datasets,
set at 0.9. Additionally, for the sharpness-aware loss, we set the learning rate for SAM to 0.1 in all
settings.

A.3 HYPER PARAMETER

s : Number of skipping classes in k-NL In our method, the skipping module balances the risk of
noise and useful information in the negative loss. Skipping more negative samples can help the target
model reduce noisy information more effectively, but it also filters out valuable negative samples,
potentially slowing down the convergence of the training model. We set s equal to 5 in all settings
(this value is selected based on cross-validation).

k: Number of selected negative classes in k-NL Generally, utilizing a large number of negative
classes can provide more information for the negative loss. However, as shown in (Feng et al.,
2020), increasing the number of k also makes the network harder to train. Therefore, the number of
negative samples is selected based on cross-validation and is set to 5 in all settings.
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Model Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
TENT† 19.8 22.1 52.1 56.9 56.5 61.2 58.0 7.0 6.6 72.2 77.4 67.2 63.1 71.9 69.1 50.7
SAR† 45.8 43.2 45.7 53.5 50.3 57.6 52.6 59.0 54.2 68.8 76.3 65.7 57.8 69.0 66.1 57.7

SAR* + Lsparse−CL 52.6 52.5 53.8 56.4 56.3 61.8 59.9 65.4 64.0 72.2 76.7 67.0 66.2 71.7 69.0 63.0
SAR* + Lfinal 54.9 55.4 56.2 58.2 58.7 63.9 62.8 67.9 65.9 73.4 77.3 68.0 68.6 72.9 70.2 65.0

Table 1: This is the biggest challenge we use to verify our model’s learning ability. In this setting, we
work with imbalanced data and small batch sizes, which are common in real-world applications. The
results in the table highlight the well-adapted capability of our method, showing that it boosts SAR
performance by 5.3% and 7.3% under sparse-CL with and without negative learning, respectively.

Model Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
TENT† 45.0 43.4 45.5 52.4 48.2 55.6 51.3 26.7 24.0 66.7 75.2 64.9 54.0 67.1 64.7 52.3

Lsparse−CL 52.0 52.2 53.2 55.5 56.0 61.0 59.5 64.9 63.2 71.2 76.2 66.3 66.0 70.8 68.4 62.4
Lfinal 54.3 54.7 55.6 57.9 58.2 63.1 61.5 66.2 10.0 72.8 77.3 67.7 67.9 72.6 69.9 60.6

Table 2: Performance of our loss function versus entropy minimization when adapting alone (with-
out high entropy sample filtering, sharpness-aware loss, or model recovery). Generally, adaptation
using our loss helps the model transfer better to the target domain, improving target accuracy. More-
over, it helps overcome the failed cases of self-entropy loss (Snow and Frost). Additionally, ap-
plying negative learning boosts sparse-CL to achieve better performance on almost all corruption
types. However, under some particularly challenging settings (like Frost in this situation), the effect
of noise in the negative loss can reduce model performance.

η: Learning rate Selecting the right value for the learning rate is crucial to the success of our
method. As mentioned earlier, the learning rate needs to be large enough to help the model converge
to a good solution before the negative effects of noisy labels (confirmation bias and memorization)
appear. In our main experiments, we empirically found that our learning rate can be up to 100 times
larger than the base learning rate in SAR under SAM loss (base learning rate equal to 10−2), or it
could be 5000 times larger under the SGD loss when adapting to the TENT setting (base learning
rate equal to 10−3).

B ANALYSIS

B.1 THE BENEFIT OF SPARSE UPDATING

Under the prototype learning setting (where we view the classifier h(·) as a list of source proto-
types), the proposed sparse-CL utilizes information from the most similar prototype (highest prob-
ability class), assigning zero weight to all remaining classes. Therefore, during backpropagation,
the gradient only flows through the highest prototype, resulting in sparse updating. Previous works
(Iofinova et al., 2022; Andriushchenko et al., 2023; Hoefler et al., 2021) have shown that sparse
updating helps the model learn more stably. Moreover, we hypothesize that under a large learning
rate, the sparse loss will help the model converge more easily because it only needs to focus on one
specific class. Additionally, sparse updating supports faster training (fewer parameters need to be
updated), making it beneficial for online learning.

B.2 ON THE CONNECTION BETWEEN OURS AND TRIPLE LOSS

Basically, the classifier ht(·) is a template matching module that measures the inner product between
input features and source prototypes (learned during source domain training). In sparse-CL loss, the
model selects the most similar prototype as the positive sample and pulls the feature fx closer to
this (positive) prototype. Conversely, the k-NL loss selects the k-hard negative prototypes to push
fx away. The behavior of our loss during learning is similar to the triplet loss (Schroff et al., 2015;
Sohn, 2016; Chen & He, 2021), where fx is viewed as the anchor, and negative or positive samples
are selected for fx in the prototype set using the inner product operation. This connection partially
explains why our loss can help the model converge to better solutions during adaptation. Previous
work (Koch et al., 2015) has shown that triplet loss is an efficient loss in few-shot learning, which
can be understood as a branch of domain adaptation.
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Figure 1: We verify how SAR gradually improves with increasing learning steps on shot noise cor-
ruption (severity level 5). The results indicate that SAR stability improves as we increase the number
of steps. The enhancement is consistent until the step number reaches 10 (achieving 55.6% accu-
racy, with our model achieving 57.2% accuracy after 1 step). However, performance deteriorates
when the step number reaches 11 (dropping to 46.7% accuracy).

Model Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
TENT† 72.4 74.3 64.1 87.3 65.2 85.9 87.9 82.9 82.8 85.0 91.6 87.7 76.4 80.7 73.0 79.8
SAR† 75.3 75.9 66.8 87.3 64.9 84.9 88.4 84.8 82.6 87.5 91.5 88.2 77.1 83.4 77.1 81.0
Lfinal 78.1 79.5 70.6 88.0 70.5 86.7 89.2 85.2 84.7 87.9 91.8 89.5 78.0 84.5 78.5 82.8

SAR* + Lfinal 78.5 78.8 69.0 87.6 69.9 86.0 88.8 84.7 84.5 87.6 91.7 89.8 77.8 83.6 78.5 82.5

Table 3: Results on CIFAR-10-C using our method show the following: First, compared to TENT,
SAR performs worse in this setting. Second, our method helps the model improve by over 2.7%
compared to TENT and by 1.5% under the SAR setting.

Model Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
TENT † 61.8 63.1 59.1 74.6 59.5 72.8 73.3 67.7 67.7 63.3 74.7 72.6 64.7 68.7 62.1 67.0
SAR† 64.0 65.6 66.0 75.3 62.3 73.8 74.5 69.7 69.5 67.7 75.8 75.5 66.8 71.5 65.3 69.6
Lfinal 64.3 65.6 65.7 74.6 62.2 73.5 74.1 69.9 69.6 67.7 75.2 74.2 66.6 71.4 65.1 69.3

SAR* + Lfinal 64.6 66.0 66.8 75.2 62.3 74.3 74.6 70.0 69.9 67.5 75.6 75.0 66.8 72.0 65.2 69.7

Table 4: Under CIFAR-100-C, adapting using Ours does not gain a clear improvement when working
with SAR. However, training it alone still helps the model improve up to 2.3% ( compared to entropy
minimization).

Model Accuracy
TENT† (Wang et al., 2020) 46.4

Lfinal 47.9
SAR† (Niu et al., 2023) 46.4

SAR* + Lfinal 54.6

Table 5: Result of our method on VisDA-21 when learns on normal settings.
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Model Accuracy
TENT† (Wang et al., 2020) 47.5

Lfinal 49.9
SAR† (Niu et al., 2023) 47.4

SAR* + Lfinal 55.4

Table 6: Result of our method on VisDA-21 when learns on small batch size settings.

C ABLATION STUDY

C.1 LEARNING UNDER IMBALANCE DATA WITH SMALL BATCH SIZE

In this setting, we investigate the performance of our method on imbalanced data, with a batch size
set to 1, which is common in real-world applications. Detailed results are shown in Table 1, where
Sparse-CL improves by 5.3% under the SAR setting. Applying k-NL further enhances Sparse-CL
performance from 63% to 65%, a 2% increase.

C.2 CAN SAR BE CLOSE TO OUR MODEL PERFORMANCE WHEN TRAINING UNDER
MULTIPLE STEPS?

Because SAR cannot work under a large learning rate, we compare the strength of our method and
SAR by investigating how SAR improves when adapting to the target data in multiple steps. The
results in Figure 1 reveal that increasing the number of steps can improve SAR performance. How-
ever, updating the model on the sample for too long also reduces its performance (model accuracy
deteriorates when the step number reaches 11). We speculate this happens due to confirmation bias,
where errors accumulate after each step and significantly reduce model performance.

C.3 PERFORMANCE OF OUR METHOD WHEN STANDS ALONE

We further confirm the effect of the proposed loss compared to entropy minimization when used
alone. This can be achieved by replacing the loss function in TENT (Wang et al., 2020) with ours.
Similar to the previous settings, we conducted these experiments on ImageNet-C with the highest
level of severity (level 5). We also consider both versions of the proposed loss: sparse-CL when
used alone and in combination with k-NL. Detailed results are shown in Table 2.

C.4 RESULT ON CIFAR-10-C AND CIFAR-100-C

Besides running on different settings using ImageNet-C, we validated our method on two additional
datasets: CIFAR-10-C and CIFAR-100-C under normal settings (batch size of 200). The exper-
iments utilized 15 common corruption types (severity level 5). Generally, our loss function can
outperform entropy minimization when used individually or based on SAR (combined with high
entropy sample filtering and sharpness-aware loss) across all types of perturbations. More results
can be found in Tables 3 and 4.

C.5 MORE RESULT ON VISDA-21

Table 5 and 6 shows the accuracy our model reach under VisDA-21 dataset (Bashkirova et al.,
2022). Generally, our model acquires better performance when standing alone. Moreover, adapting
this loss function under the SAR setting helps the final improvement increase up to 8%.

C.6 THE BENEFIT OF SKIPPING s HARDNESS SAMPLES

Learning with a large learning rate can be risky, especially when the training data includes noise.
Even small amounts of noise can disrupt model learning under large updates. Therefore, it is crucial
to carefully consider filtering out noise during the learning process. In our loss function, noise tends
to come from the k-NL loss. To reduce the effect of noise from the k-NL loss (where positive sam-
ples are mistakenly considered negative), we first skip s nearby negative samples with the positive
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Figure 2: The changes in accuracy of our loss function with different learning rates (measured on
Gaussian noise severity level 5, ImageNet-C) are significant. Learning by skipping the first s hard
negative samples helps the model adapt better as we increase the learning rate, resulting in improved
stability. In contrast, directly utilizing the first s highest probability samples as negative ones leads
to deteriorating model performance when the learning rate is large.

Model Running time (ms)
TENT 128

Lsparse−CL 131
Lfinal 133
SAR 382

SAR* + Lsparse−CL 380
SAR* + Lfinal 384

Table 7: The computation time of different loss functions was measured on Gaussian noise corrup-
tion type when processing one batch of data (batch size of 64) on a GPU RTX 3090. Generally, all
losses yield similar computational costs (under TENT or SAR settings). Learning with sparse-CL
achieves lower times, but the gap is small. This may be because we only updated the BN layers, so
the difference between these losses is not significant.

one, then select consecutive k samples as negative. This section aims to highlight the advantages of
this skipping procedure. Generally, Figure 2 shows that without skipping modules, the model can-
not adapt to a large learning rate due to the noisy effect. On the other hand, filtering out s negative
samples helps the model improve stability under large updates. 1

C.7 COMPUTATION TIME

To better understand our module, we conducted an additional experiment to measure the running
time of cross-logit, k-hardness negative alone, and when combined. Table 7 shows that these two
modules do not change the running time. In fact, they even help the network update faster due to
sparse updating.

1This experiment is implemented when using our loss alone instead of combining with SAR because the
effect of noise could be partially mitigated by sharpness-aware loss and filtering out high entropy samples.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

D RELATED WORK

D.1 DOMAIN ADAPTATION

In the era of deep learning, models are built with increasingly large sizes and trained on massive
amounts of data (Dosovitskiy et al., 2020; Radford et al., 2018). These models, known as source
models, are then used to transfer knowledge to target domains. This learning strategy has been a
key factor in the success of deep learning models for nearly a decade when applied to real-world
problems, and it is commonly known as domain adaptation (DA) (Ben-David et al., 2006; Ganin
& Lempitsky, 2015). Generally, DA algorithms help improve training time and performance on
the target domain by utilizing knowledge from the source domain. Currently, common techniques
applied to the domain adaptation problem include unsupervised learning (Ganin & Lempitsky, 2015;
Saito et al., 2018), self-supervised learning (Saito et al., 2020; Sun et al., 2019), weakly supervised
learning (Inoue et al., 2018; Cozzolino et al., 2018), and feature learning (Long et al., 2018; Shen
et al., 2018). The main goal of these learning techniques is to utilize the source model and data to
make learning on the target domain more effective in terms of learning time and accuracy.

D.2 TEST-TIME ADAPTATION

For deployed deep learning systems, learning the target model based on traditional domain adapta-
tion problems is no longer suitable. On the one hand, the source data is usually not accessible (for
privacy reasons), so we can only take advantage of the pre-trained source model. On the other hand,
the model needs to adapt and infer in an online manner, so the time for adaptation needs to be done
in one or a few steps. This context-based learning is called Test-time adaptation (TTA) (Wang et al.,
2020; Liu et al., 2021a). In general, learning in this direction focuses on improving the quality of
the model using only target data and the source model. To update the target model quickly and ef-
ficiently, (Wang et al., 2020) points out that batch normalization layers, which work by shifting and
scaling features during the learning process, could help the target model adapt well to distribution
shifts. Therefore, simply fine-tuning BN layers based on entropy minimization could be efficient
and save much computational cost. (Niu et al., 2022) improves the quality of TENT by filtering out
low-confidence samples and using Fisher information to mitigate catastrophic forgetting. (Niu et al.,
2023) enhances the model’s learning ability by adapting sharpness-aware loss and a model recovery
mechanism. Additionally, (Iwasawa & Matsuo, 2021) approaches the problem based on prototype
learning, where the author takes advantage of source prototypes and then updates these prototypes
based on test samples. Works by (Wang et al., 2023; Li et al., 2020) leverage unsupervised learning
techniques to update models based on softmax or feature spaces, while (Goyal et al., 2022; Wang
et al., 2022) rely on the success of weakly supervised learning to improve model quality. More-
over, under the self-supervised learning setting, (Chen et al., 2022; Sun et al., 2020) also achieve
promising results.

D.3 COMPLEMENTARY AND NEGATIVE LEARNING

Supervised learning is a popular and powerful method in machine learning and deep learning,
achieving impressive results in various tasks. However, it requires large amounts of labeled data,
which can be costly and difficult to obtain, especially for complex problems such as segmentation.
Moreover, the quality of the labels can affect the performance of the learning models, as noise and
errors can be introduced during the labeling process. To address these challenges, (Ishida et al.,
2017) proposed complementary learning, a method that leverages information from other classes
(complementary classes) besides the ordinary class. (Ishida et al., 2019; Yu et al., 2018) extended
this framework to different loss functions and provided theoretical guarantees. However, these meth-
ods assume that the labels are clean and accurate, and cannot handle noisy labels. To overcome this
limitation, (Kim et al., 2019) proposed a novel algorithm called negative learning, which can learn
from both ordinary labels and negative labels (labels that are opposite to the true labels). They em-
pirically show that negative learning can improve the robustness and accuracy of learning models
under noisy label settings.
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D.4 STABILITY LEARNING

Deep learning models have achieved remarkable success in many practical applications (He et al.,
2016; Brown et al., 2020), but they also suffer from instability issues when dealing with challenging
real-world problems, such as noisy data (Natarajan et al., 2013), imbalanced data (Haixiang et al.,
2017), or adversarial attacks (Goodfellow et al., 2014). These issues can degrade the quality of
the models during training and inference, affecting their robustness and generalization. To address
these challenges, various research directions have been proposed to enhance the stability of neural
network training in different contexts, such as learning with noisy labels (Song et al., 2022), im-
balanced learning (Fernández et al., 2018), or adversarial learning (Zhang et al., 2018). Moreover,
many studies have shown that the loss landscape plays a crucial role in the generalization of neural
networks, as it reflects the complexity and diversity of the solutions (Li et al., 2018; Wu et al., 2020).
Therefore, some methods have been developed to optimize the loss landscape and find more stable
regions for the models (Foret et al., 2020; Kwon et al., 2021). For example, (Foret et al., 2020)
proposed a sharpness-aware minimization method that simultaneously minimizes the loss value and
the loss sharpness, leading to better generalization and robustness. Besides the loss landscape, the
gradient norm during training also indicates the stability of the network, as stable networks tend
to have smaller gradient variance (less fluctuation of the gradient norm across different batches of
data) (Johnson & Zhang, 2013; Liu et al., 2021b). Based on this idea, some works have introduced
methods to improve network learning efficiency based on gradient variance. For example, (Faghri
et al., 2020) proposed a gradient clustering method that reduces gradient variance by using stratified
sampling.
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