A Deferred Technical Arguments

A.1 Explanation and Proof of Proposition 2]

We first define the permutation invariance and the negation equivariance of CNF formulas concretely.
Given a satisfiable formula (X; V —=X32) A (=X V X3), the permutation invariance refers to the fact
that all the satisfying assignments are not affected by permuting any variables (e.g. swapping X; and
X, throughout the formula), by permuting any clauses (e.g. swapping the first clause with the second
clause) or by permuting any literals within a clause (e.g. swapping X; and —.X5 in the first clause).
The negation equivariance means that the assignment of a given variable should be negated if we
negate every its corresponding literals (e.g. swap X; and =X throughout the formula). Note the
permutation invariance and the negation equivariance are important properties of CNF formulas, we
also enforce such properties in NSNet.

Proof. Given our graph representation of a CNF formula, permuting any variables or clauses is
equivalent to changing the orderings of the corresponding assignment nodes or clause nodes in the
original graph representation. However, all the learnable modules are not affected by the different
orderings, and our summation aggregation and LSE aggregation for updating assignment to clause
embeddings and clause to assignment embeddings are also not subject to the orderings of neighboring
embeddings. Thus the embeddings between a variable node and an assignment node remain the
same after permutation regardless of any parameterization of hq, ho, A;, As and As. On the other
hand, permuting any literals within a clause has no effect on our graph construction, so all of the
embeddings in NSNet remain unchanged. Similarly, negating every literal corresponding to a given
variable X; is equivalent to swapping two assignment nodes X! and X} in our graph representation,
while all the edges in the graph remain the same. Therefore, all the edge embeddings connected to
X9 are the same as the embeddings connected to X} after negating and vice versa. O

A.2 Constructing A Satisfying Assignment from Marginals

Besides performing the stochastic local search, there are multiple ways to generate a satisfying
assignment from the estimated marginals. One common approach is the decimation algorithm [29]
(Algorithm[I]), which processes the following steps iteratively: (1) estimate the variable marginals.
(2) fix a variable with the highest certainty (whose marginal value is the most extreme) to the
value O or 1. (3) simplify the given formula. If we can estimate the marginals accurately at each
iteration, such a process would act as an oracle search without backtracking to construct a satisfying
assignment. Besides the decimation algorithm, one can also combine NSNet with backtracking
search solvers by using the estimated marginals to guide the branching heuristic in these solvers.
However, if we integrate NSNet with the decimation algorithm or the backtracking-based solvers,
each iteration of these processes needs to query the neural networks on a new simplified formula,
which is computationally demanding and impractical for large instances. To reduce the overhead of
querying neural networks, we call NSNet only once to estimate marginals and execute a local search
to find a satisfying assignment.

Algorithm 1 The decimation algorithm

Input: A satisfiable formula & with n variables
1: P+ P
2: fort < 1ltondo
3: Estimate marginals b;(1), b;(0) for each variable X; of the formula ®;_;

4: Find the variable X; with the highest value |b;(1) — b;(0)]

5: if bj(l) > bj (O) then

6: Ty < 1

7: else

8: Tj < 0

9: end if
10: Obtain a new formula ®; from ®;_; by substituting x; for variable X; and simplifying
11: end for
12: return The assignment = {x1,22,...,Zp}

14

B Additional Experimental Details

B.1 Implementation Details

For training, we use the Adam optimizer [23]] with a learning rate of 1e-4 and a weight decay of 1e-10
and clip the gradient with a global norm of 0.65. We train all the neural networks with a batch size of
128 for 200 epochs on synthetic datasets and 1000 epochs on the BIRD and SATLIB benchmarks.
For experiments on the synthetic datasets and SATLIB benchmark, we select the best checkpoint for
each model based on its performance on the validation set. We run BPNN using the official codeﬂ
and implement NeuroSAT and NSNet using PyTorch [32]] and PyTorch Geometric [16].

B.2 SAT Solving
B.2.1 Datasets

For SR, we use the same parameters as NeuroSAT but limit the maximum length of each clause to
4. For random 3-SAT, we generate satisfiable instances where the relationship between the number
of clauses (m) and variables (n) is m = 4.258n + 58.26n 3 [[13]. For CA, we set the number of
communities between 3 to 10 and the modularity factor () between 0.7 and 0.9. Note that the) value
is typically less than 0.3 for random k-SAT problems but larger than 0.7 for real-world instances [4].

B.2.2 Results

We also test the performance of the SLS solvers by reporting their average number of flips. As shown
in Table[3] all modified Sparrow solvers can use fewer flips than Sparrow to find a satisfying solution
while solving much more instances at the same time. This further demonstrates the effectiveness of
the initial assignments from the estimated marginals. Among these SLS solvers, NSNet-Sparrow can
not only solve more instances than other SLS solvers but also generate a satisfying assignment with
the least local search steps.

Table 5: Average number of flips for Sparrow with different initializations on the synthetic datasets.
We only take the solved instances into account.

Method Larger Distribution

SR 3-SAT CA Total
Sparrow 60.68 = 0.80 58.59+046 56.82+0.26 57.55+0.21
BP-Sparrow 1932+ 043 1727+£0.25 1876 £0.15 1851 £0.15
NeuroSAT-Sparrow 26.45 £ 0.55 2259 £0.51 18.87+£0.20 2091 £0.22
NSNet-Sparrow 16.28 + 0.25 14.16 £ 0.27 15.86 +0.18 15.53 £+ 0.11

B.3 Model Counting
B.3.1 Baselines

To ensure a fair comparison, we train BPNN using the message passing iteration of 10 rather than 5
in its original paper, which also slightly improves its performance on the BIRD benchmark. Note
that ApproxMC3 provides probably approximately correct (PAC) guarantee on the estimated model
count with two parameters: the tolerance € and the confidence 1-9, we first run ApproxMC3 in the
default settings (e=0.8, =0.2) and further conduct experiments with different settings. Following
the evaluation of BPNN, we run F2 with the default parameters and choose the low bound mode.
In addition, for these two solvers, finding minimal independent support (MIS) [20] is always used
as a preprocessing step to boost their computations. So we also use the MIS tool [21] within 1k
seconds as the preprocessing. We record two times for each instance: one is the sum of the MIS
tool’s runtime and the time of the #SAT solvers with the MIS support; the other is the running time
of the #SAT solvers without the MIS. The minimum of these two times is reported. For BP, we try
to perform message passing with 7" = 10, 20, 50, 100, 200, 500 iterations, but only achieve the best
overall RMSE on the BIRD benchmark and SATLIB benchmark of 20.42 and 17.67 respectively,
which is not comparable with other baselines.

https://github.com/jkuck/BPNN.

15

https://github.com/jkuck/BPNN

10% 4 °
ApproxMC3 '°.° ApproxMC3
F2 ° F2
BPNN BPNN
© NSNet o NSNet

102 4

In (Estimated Counting)
-

5
Relative Error
< o
= 9
5 3
.
%,
g

0.02 o g
T T T 0.00 ¥ N ¥ T T
10! 10? 10° 50 100 150 200 250
In (Exact Counting) Solved Instances

Figure 4: (Left) Scatter plot comparing the estimated log countings against the ground truth for each
solver on the BIRD benchmark. (Right) Relative error between the estimated log countings and the
ground truth log countings for each solver on the BIRD benchmark.

B.3.2 Results

Figure [4] (Left) shows the scatter plot comparing the estimated log countings against the ground truth
for each solver on the BIRD benchmark. We can observe that both ApproxMC3 and NSNet can
provide tighter estimates than both F2 and BPNN on most instances when the ground truth is less than
1%, While ApproxMC3 fails to finish in 5,000 seconds when the ground truth counting is more than
e'00 NSNet can still give tight approximations when the ground truth counting is even more than
1099 This demonstrates the effectiveness of NSNet to solve hard and large instances. We further
report the relative error between the estimated log countings and the ground truth log countings in
Figure 4] (Right). On average, NSNet’s relative error is less than 2%, which is significantly better
than F2’s and BPNN’s. Note that NSNet only spends 0.02 seconds for each instance, such relative
error is also acceptable in many applications.

Table[6]shows the detailed RMSE results of each solver on the SATLIB benchmark. Compared with
its performance on the BIRD benchmark, the precision of NSNet decreases by a large margin. We
conjecture this is because the data of the BIRD benchmark is collected from many real-world model
counting applications, which may share a lot of common logical structures to learn. On the other
hand, the instance in the SATLIB benchmark is generated randomly, making NSNet hard to exploit
common features. Nevertheless, NSNet still outperforms F2 in most categories.

Table 6: RMSE between estimated log countings and ground truth for each solver on the BIRD
benchmark.

Method Distribution

etho RND3SAT BMS CBS GCP SW-GCP Total
ApproxMC3 0.04 0.05 005 0.06 0.05 0.05
F2 2.13 242 237 240 2.66 2.36
NSNet 1.57 245 168 2.14 1.37 1.71

Since ApproxMC3 can be configured to achieve different trade-offs between speed and accuracy, we
also test it with different settings. Table|/|shows the performance of ApproxMC3 with different € and
0. Although we significantly relax the theoretical PAC guarantee on the estimated model count to
improve the speed of ApproxMC3, ApproxMC3 can still give quite tight estimates while spending
orders of magnitudes time than NSNet in practice. Additionally, ApproxMC3 timeouts on more
than 30 instances in 5,000 seconds while NSNet solves all the instances. We believe the overhead
of ApproxMC3 is still significant with much loose bound because it needs to frequently call the
CryptoMiniSat [38]] to reason about subformulas of the original CNF formula. Instead, NSNet only
performs message passing to provide an estimation, which is much more efficient. To trade the slight
inaccuracy with significant speedup, NSNet can serve as a more feasible choice.

16

Table 7: RMSE between estimated log countings and ground truth for ApproxMC3 with different
parameters on the BIRD benchmark.

Parameter Metric

€ 1) RMSE Avg. runtime (s) #Failed
0.8 0.2 0.03 123.32 33
0.8 0.8 0.13 39.07 33

4 0.2 0.07 63.95 33

4 0.8 0.21 23.69 34
10 0.99 0.23 22.45 35

17

	Deferred Technical Arguments
	Explanation and Proof of Proposition 2
	Constructing A Satisfying Assignment from Marginals

	Additional Experimental Details
	Implementation Details
	SAT Solving
	Datasets
	Results

	Model Counting
	Baselines
	Results

