A Experimental Details

A.1 Details of PTQ on BERT and GPT

For BERT, we use a batch size of 32 and sequence length 128 to calibrate the range of activations. In
order to capture the dynamic range, we use 0.95 momentum with 100 iterations, i.e.,

Tmazr = 0~95xmam + O-OBmax(xcurrentfiteration);
Tmin = 095xmzn + 0~05min(xcurrentfiteration)-

For GPT-3-style models, we use the same momentum method but change the batch size to 8 with
sequence length 2048.

A.2 Details of Main Result

BERT BERT models are trained using the code-base from Huggingface [73]. We show our
ZeroQuant method on BERT,e and BERT .. We use the same lower-case tokenizer in BERT e
instead of the cased tokenizer in the original paper [16]. When fine-tuning on GLUE [66] tasks ((i.e.,
MRPC [18], STS-B [11], SST-2 [59], QNLI [52], QQP [28], MNLI [71], CoLA [70], RTE [14]).),
we follow the instruction from Huggingface Transformer Library [73].

For ZeroQuant and ZeroQuant-LKD, we use 48 groups for group-wise weight quantization on
BERTy,s and 64 groups for group-wise weight quantization on BERT ., for all the weight matrices.

For LKD, we use 100 iterations with batch size 32 and sequence length 128 for BERT},se, and we use
400 iterations for BERT . We fix the learning rate as 5e-6 for both models on all tasks. However,
tuning them may favor ZeroQuant.

All the models are trained using a single 40G-A100 GPU (Azure ND A100 instances).

GPT-3-style Models All GPT-3-style models used in the paper are trained using DeepSpeed [53]
and Megatron-DeepSpeed Library #. The pretraining data are from PILE dataset [23], and the training
pipeline and hyperparameters are based on the Megatron-DeepSpeed repository. We use 128 A100
GPUs (Azure ND A100 instances) to do the pretraining. It takes about 32 hours to finish the training
of GPT-3350m and 120 hours of GPT-3;35. We evaluate our results on 20 zero-shot evaluation
tasks, including 19 accuracy evaluation tasks (i.e., HellaSwag [79], LAMBADA [48], TriviaQA [31],
WebQS [4], Winogrande [55], PIQA [63], ARC (Challenge/Easy) [8], ANLI (R1/R2/R3) [72],
OpenBookQA [45], RACE-h [33], BoolQ [13], Copa [1], RTE [14], WSC [36], MultiRC [75],
ReCoRD [80]) and 1 language modeling generation task (i.e., Wikitext-2 [43]).

For ZeroQuant and ZeroQuant-LKD, we use 64/128 groups for group-wise weight quantization on
GPT-3350M/GPT-3 3p for all the weight matrices.

For LKD, we use 1600 iterations with batch size 8 and sequence length 2048 for both GPT-3350m
and GPT-3 3. We fix the learning rate as 5e-6 for both models. However, tuning them may favor
ZeroQuant.

All the quantized models are trained using a single 40G-A100 GPU (Azure ND A100 instances).

A.3 Accuracy reported for BERT on GLUE

We report the performance metric for BERT on GLUE based on Table A.1. For the average score, if
the task only has one metric, we use it for the final result; if the task has two metrics, we compute
the average of the two metrics first and use it for the final average score. For instance, the score of
MRPC used to compute the final average is the mean of its accuracy and F1 score.

B Summary of Main Results

The accuracy drop varies a lot under different benchmarks and scenarios. Here, we give a summary
according to those settings:

3We exclude WNLI [36] since its results are not stable [17].
*https://github.com/microsoft/Megatron-DeepSpeed

17

https://github.com/microsoft/Megatron-DeepSpeed

Table A.1: Metric used for BERT},, on the development set of GLUE benchmark (except WNLI).
CoLA MNLIm MNLImm MRPC QNLI QQP RTE SST-2 STS-B

Matthews Correction Accuracy Accuracy /F1 Accuracy Accuracy Accuracy /F1 Accuracy Accuracy Pearson/ Spearmanr

Table C.1: Post training quantization results of BERT},,se on development sets of the GLUE benchmark
(except WNLI). Here WxAy means x-bit for weight quantization and y-bit for activation quantization.
Particularly, for W4/8, we quantize the MHSA’s weight to INT8 and FFC’s weight to INT4. Please
see Appendix A.3 for the reported metrics.

Precision CoLA MNLI-m MNLI-mm MRPC QNLI QQpP RTE SST-2 STS-B Ave.
WI16A16 59.72 84.94 85.06 86.27/90.57 92.15 91.51/88.56 72.20 93.23 90.06/89.59 83.95
W8A16 60.77 84.65 84.92 85.29/89.86 91.84 91.52/88.56 71.84 93.46 89.89/89.50 83.87
WI16A8 56.85 80.55 81.48 84.07/89.33 91.34 91.30/88.07 68.59 93.46 88.74/88.74 81.93
W8AS8 58.74 79.99 81.06 84.31/89.51 91.18 91.24/88.03 70.76 92.66 88.33/88.73 82.16
W4/8A16 0.00 16.74 16.95 31.62/0.00 50.74 63.18/0.00 47.29 70.64 16.48/1591 33.11

* For BERT on GLUE benchmark, the accuracy degradation is usually within 0—0.2 for
W28AS and about 1-2 (except RTE for BERT) for W4/8A8 (Table 2, 3, E.1, and E.2).

» For GPT-3-style models (350M and 1.3B) with W8AS, the average accuracy degradation is
about 0.1% and the perplexity drop is about 0.3 points. However, for each of individual tasks,
due to the nature of zero-shot evaluation (no task-specific fine-tuning, different number of
eval cases between tasks, etc), the accuracy change varies. Particularly, for some cases,
W8AS even outperforms FP16.

* With W4/8A8, (a) for the 350M GPT-3-style model, the average accuracy degradation is
about 2.3% and the perplexity drop is about 9.5; (b) for the 1.3B model, the average accuracy
degradation is 2.5% and the perplexity drop is about 2.5. Note that those results are achieved
without tuning the layer-by-layer knowledge distillation.

* For GPT-J (6B), our INT8 model has about 0.3 average perplexity loss; and for GPT-NeoX
(20B), our INT8 model has about 0.08% accuracy loss.

C PTQ challenge of BERT),,.

From Table C.1, we observe similar results as [7], where the accuracy degradation of INT8 quantiza-
tion is mainly from activation quantization. Specifically, there is a negligible accuracy drop from
INT8 weight quantization (i.e., the row of W8A16). However, with sole INTS activation (i.e., the
row of W16AS8), the accuracy decreases from 84.06 to 79.61. Besides, we also push the weight
quantization to a mixed-precision setting with INT4 for weights in FFC and INTS8 for weights in
MHSA (i.e., the row of W4/8A16). This ultra-low precision quantization leads the model to be purely
random without meaning prediction.

Activation Range of Each Token for Different Layers Range of Each Row for Different Attention Output Matrices
06 ,
¢
25
s s 0.5
3 g
< 201 5
9 o 0.4 N
w w ‘ . ¢
k3 5 N .
9 151 ‘. 203 v o ¢
2 2 ‘ 4 ¢
2 > H
’ @ ¢
4 104 o ¢ 3
< <02 ¢
x5)
©
s = %
> 01 % % % %
¢ s v
o 1 2 3 4 5 6 7 & 9 10 11 o 1 2 3 4 5 6 7 8 9 10 1
Layer Number Layer Number

Figure C.1: The activation range of different layers (left) and the row-wise weight range of the
attention output matrix (W) of different layers (right). The results are based on the BERT}, trained
on MNLI dataset. Please see Figure 2 for the results of GPT-3350p.

18

D Details about System Optimization

By having the weight and activation quantization, we can use the GeMM schedule that exploits the
INT8 Tensor-core units which provide 2x/4x more compute efficiency compared to the FP16/FP32
Tensor cores. For this purpose, we adapt the CUTLASS library to produce multiple schedules based
on the input sizes we are considering in our application, such as the batch size, sequence length, and
the Transformer hidden dimension. To achieve the best latency, we also develop our own efficient
parallel implementation of the quantization operator on GPU. During the inference run-time, based
on the total batch size (batch x seqien), we choose the schedule that results in the lowest possible
padding when performing the Tensor-core matrix-multiplication operations.

To find the best schedule for the GeMM operation, we use the CUTLASS profiler tool that explores
the tiling dimensions on the thread-blocks, WARPs, and WMMA (Tensor cores), as the three compute
hierarchies available within the Ampere GPU architecture. Then, we find the best schedule by sorting
the tile-based schedule based on either peak throughput achieved on the large-batch case, or the
maximum memory bandwidth taken from the main memory when the batch size is small.

However, there are still several challenges we need to address which are discussed below.

Operation Fusion for Token-wise Activation Quantization. One of the main challenges of our
quantization scheme is how to efficiently quantize hidden states before the GeMM operation. In order
to remove the overhead, we fuse the activation quantization with its associated element-wise and/or
reduction-based operations such as bias-addition, GELY, and LayerNorm. This is due to the fact that
each SM takes care of one row (token) of the activation and therefore, we can reuse the computation
from the thread registers and compute the quantization scale, avoiding the data movement between
GPU kernels and main memory. Moreover, by converting data from FP16 to INTS8, we can utilize the
memory bandwidth twice, further improving the inference latency and throughput.

Dequantization Associated with GeMM Schedule To utilize the output of integer output from
GeMM operator in the following operators, one important step is to dequantize the output by using
the scaling factor of the weight and activations. This dequantization step generally introduces extra
overhead for quantized network inference due to the data movement. As such, we add a custom
epilogue, which converts the final accumulated result (from INT32 format) of each row and column
of the output to the real value (in FP16 format), using corresponding floating-point quantization
scales computed from weight and activation group-wise quantization. By fusing the dequantization
with GeMM schedule, we ensure that there is no overhead exposed by using the INT8 operations
while producing the FP16 results that are used in the following operation.

Furthermore, to effectively combine dequantization with the GeMM operation, we read the two
groups of quantization scales for the activation and weight matrices in advance prior to completion of
the multiplication of the output matrix. Doing so, we overlap the reading of the extra quantization
parameters with the GeMM computation and the GeMM-plus-dequantization can seamlessly work
together without stalling the inference pipeline.

Cuda Graph Enhanced Small Model Inference. As the execution time for specific kernels reduce
by optimizing the throughput using the INT8 inference pipeline, the overhead of launching the GPU
kernels and the CPU-to-GPU communication become a major bottleneck mostly on small-scale
models. To address this issue, we add the CUDA-Graph support to our inference pipeline that
reduces the CPU overhead, by storing the trace of the kernels launched during the inference forward
computation, and creating the computation-graph to be reused in the next call to the inference pipeline.
Thus, after storing the graph for the first time, we can replay the graph for the following requests,
which substantially improves the performance especially on small models, such as BERT},. For a
fair comparison, we also enable Cuda Graph for FP16 baseline.

Other Operator Fusions Besides quantization/dequantization operator fusion, other fusion meth-
ods, which fuse element-wise operations, matrix multiplications, transpositions, and reductions all
into a single kernel, are also applied. These can significantly reduce the number of kernel invocations
as well as main memory access to reduce the main memory access latency. Please see [2] for more
details.

19

Table E.1: Result of BERT},s on the development set of GLUE benchmark (except WNLI). Here
WxAy means x-bit for weight quantization and y-bit for activation quantization. Particularly, for
W4/8, we quantize the MHSA’s weight to INT8 and FFC’s weight to INT4. Please see Appendix A.3
for the reported metrics.

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave.
W16A16 (Baseline) 59.72 84.94 85.06 86.27/90.57 92.15 91.51/88.56 7220 93.23 90.06/89.59 83.95
WB8AS (ZeroQuant-LKD No Tuning) 59.59 84.83 85.13 86.03/90.39 91.98 91.45/88.46 71.12 93.12 90.09/89.62 83.75
WB8AS (ZeroQuant-LKD Tuned) 60.90 84.95 85.10 86.27/90.60 92.07 91.47/88.47 71.84 93.46 90.09/89.62 84.07
W4/8A16 (ZeroQuant-LKD No Tuning) ~ 58.50 83.16 83.69 84.80/89.31 90.83 88.94/84.12 70.04 92.78 88.49/88.67 82.35
W4/8A16 (ZeroQuant-LKD Tuned) 60.04 83.64 8431 85.78/89.53 91.01 90.66/87.26 71.84 93.12 88.68/88.79 83.26
‘W4/8A8 (ZeroQuant-LKD No Tuning) 58.80 83.09 83.65 85.78/89.90 90.76 89.32/84.85 71.84 93.00 88.16/88.55 82.71
‘W4/8A8 (ZeroQuant-LKD Tuned) 60.30 83.47 84.03 85.78/89.90 90.87 90.77/87.38 71.84 93.00 88.38/88.70 83.22

Table E.2: Result of BERT ¢ on the development set of GLUE benchmark (except WNLI). Here
WxAy means x-bit for weight quantization and y-bit for activation quantization. Particularly, for
W4/8, we quantize the MHSA’s weight to INT8 and FFC’s weight to INT4. Please see Appendix A.3
for the reported metrics.

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave.
WI16A16 (Baseline) 63.35 86.65 8591 87.99/91.62 92.24 91.08/88.08 74.01 9346 90.34/90.11 85.03
W8AB8 (ZeroQuant-LKD No Tuning) 63.38 86.52 85.64 87.75/91.50 92.31 91.09/88.05 72.56 93.35 90.45/90.19 84.81
W8AS (ZeroQuant-LKD Tuned) 64.36 86.64 85.74 88.48/91.97 92.49 91.15/88.13 74.73 93.58 90.45/90.19 85.30
‘W4/8A16 (ZeroQuant-LKD No Tuning) ~ 63.72 84.90 84.81 87.99/91.39 91.45 90.34/86.92 51.62 9243 89.46/89.29 81.85
‘W4/8A16 (ZeroQuant-LKD Tuned) 64.06 85.02 84.98 88.73/91.99 91.82 90.45/87.12 52.35 92.78 89.72/89.44 82.19
W4/8A8 (ZeroQuant-LKD No Tuning) 63.51 84.70 84.71 88.73/91.99 91.73 90.25/86.74 49.82 92.09 89.34/89.08 81.62
W4/8A8 (ZeroQuant-LKD Tuned) 63.60 84.77 84.90 88.97/92.15 91.87 90.37/86.99 50.54 92.55 89.57/89.38 81.88

E Tuned Results on BERT

As mentioned in the main text and Appendix A.2, we use the same set of hyperparameters for BERT.
However, tuning them can significantly boost the performance for ZeroQuant. Here, we tune two
hyperparameters, i.e., the learning rate and the number of iterations in order to show the best possible
performance of ZeroQuant on both BERTp,s. and BERT . Particularly, we choose learning rate
from the set { 1e-6, 2e-6, 5e-6, le-5}, and choose number of iterations from the set {0, 50, 100, 200,
400, 800, 1600}. Thanks to the lightweight of LKD, the total tuning time for BERT}, (including all
data loading time, evaluation time, tokenization time, all three quantization schemes, etc) is around
4.5 hours on 8 40G-A100 GPUs (i.e., 36 GPU hours), and the tuning time for BERT g is around 16
hours on 8 40G-A100 GPUs (i.e., 128 GPU hours).

‘We summarize the best results in the Table E.1 and E.2.

F QAT on BERT

We use four different learning rates for QAT on BERT g, {5e-6, 1e-5, 2e-5, 5e-5}. The final results
we reported in the paper are chosen from the best single run among those four different learning rates.
However, even with such tuning, we are not able to get good performance for BERTj,se 0n RTE.

Also, note that the time cost we used in the main text is based on a single run. if we consider the
tuning cost, the total time will be 4 x 7181s

G Other Results

G.1 TinyBERT

Our proposed method can also be applied to small Transformer models as well. One example is
BERTy, used in the main text. To further demonstrate this, we use TinyBERT (4L-312H%) with
ZeroQuant W8AS (without LKD) as an example (The checkpoint of CoLA is broken so we did not
include the result of CoLA). The results are shown in Table G.1. As can be seen, the performance of
ZeroQuant (INTS) is comparable with the original FP16 baseline.

https://huggingface.co/Sayan01

20

https://huggingface.co/Sayan01

Table G.1: Result of TinyBERT on the development set of GLUE benchmark (except WNLI).
Here WxAy means x-bit for weight quantization and y-bit for activation quantization. Please
see Appendix A.3 for the reported metrics.
Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B
WI16A16 (Baseline) - 80.1 80.2 83.3/88.8 837 88.5/85.1 66.8 87.0 87.3/87.1

W8AB8 (ZeroQuant) - 80.1 79.9 82.1/88.2 84.1 88.7/852 675 869 87.6/87.4

Table G.2: Results of ZeroQuant on ResNet family. we report both Top-1 and Top-5 accuracy here.
Precision (Method) ResNet18 ResNet50 ResNet152

W16A16 (Baseline) 69.766/89.068 76.132/92.862 78.318/94.050
WB8AS8 (ZeroQuant) 69.686/89.004 76.022/92.848 78.272/94.002

G.2 CNN Results

We can still apply our quantization scheme on convolutional neural networks with some modification.
For instance, we can use per-output-channel quantization for convolutional kernels as well as per-
image quantization for hidden states (images). As such, this quantization is still satisfied with
the hardware compute constraint since we do not break the computation granularity of GPUs
(i.e., real speedup can still be achieved on GPUs). To verify this, we applied this scheme for
ResNet18/ResNet50/ResNet152 with Top-1 and Top-5 accuracy. The code base is from PyTorch
Example®. As can be seen from Table G.2, the accuracy degradation of ZeroQuant is 0.1% as
compared to FP32 models.

G.3 ViT Result

Our method can be applied to ViTs as well. We chose Huggingface’s ViT checkpoint finetuned
on ImageNet-1K to test ZeroQuant (INT8) and PTQ. We provide both Top-1 and Top-5 accuracy
in Table G.3.

G.4 Comparison to Per-column Quantization

As requested by review, we add the comparison between ZeroQuant and per-column quantization
used in [74]. First of all, we want to clarify that the authors of [74] mainly focus on the algorithm
accuracy evaluation, and they did not provide real speedup results. However, our paper focuses on
both algorithm and hardware constraint/implementation, and we provide real speedup solutions.

Here, we include the comparison of ZeroQuant and the work of [74] (use per-column for weight and
per-row for tokens) in Table G.4. The accuracy of ZeroQuant and the method from [74]. is similar to
each other.

G.5 Comparison among Different Quantization Schemes

Asymmetric quantization introduces the zero-point (or bias term), which will affect the inference
speed performance (this bias-term introduces the extra matrix-vector production). That’s the reason
why in ZeroQuant we choose symmetric quantization as the quantization scheme. We did not directly
provide asymmetric quantization but MP-PTQ in Table 2 applied asymmetric activation quantization.
To further demonstrate that asymmetric quantization cannot fully resolve the outlier issue (and with
higher cost due to the extra matrix-vector production), we provided asymmetric quantization results
for PTQ (W8AB8) on BERTpus. and BERT, in Table G.5 and G.6.

As can be seen, asymmetric quantization boosts the PTQ accuracy a lot but it is still >1 point lower
than FP16 BERT-base. However, our ZeroQuant can close this gap to 0.25 without involving any extra

https://github.com/pytorch/examples/blob/main/imagenet/main.py

21

https://github.com/pytorch/examples/blob/main/imagenet/main.py

Table G.3: Results of ZeroQuant on ViT. we report both Top-1 and Top-5 accuracy here.

Precision (Method) ViT-base
W16A16 (Baseline) 81.430/96.010
PTQ 80.110/95.318

WB8AS (ZeroQuant) 81.464 /95.988

Table G.4: Comparison between ZeroQuant and [74]. Please see Appendix A.3 for the reported
metrics.

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave.
WI16A16 (Baseline) 59.72 84.94 85.06 86.27/90.57 92.15 91.51/88.56 72.20 93.23 90.06/89.59 83.95
W8AS [74] 59.62 84.86 85.09 85.78/90.20 9193 91.48/88.48 71.12 93.23 90.02/89.53 83.73
WS8AS (ZeroQuant) 59.59 84.83 85.13 86.03/90.39 9198 91.45/88.46 71.12 93.12 90.09/89.62 83.75

matrix-vector production for the bias/zero-point term from asymmetric quantization. For BERT e,
asymmetric PTQ has 2 points accuracy degradation and ZeroQuant only has 0.22.

G.6 Five-seed Results

First, we want to clarify that all the results we reported in the main text do not use any hyper-parameter
tuning. For W8AS, since there is no training involved, there is no tuning at all. Also, for W4/8A16 or
W4/8A8, the main text results use a fixed set of hyperparameters, which means there is no hyper-
parameter tuning. This part is mentioned with the detailed setting in Appendix A. The tuning results
in Appendix E are used to demonstrate the low-cost of layer-by-layer knowledge distillation as well
as for better comparison if someone applied hyperparameter search.

For now, the results we used in the paper are based on a single seed. The main reason is that layer-
by-layer knowledge distillation is a lightweight training procedure. As such, the weight won’t be
significantly changed during LKD finetuning. To further alleviate the concern about variance/noise,
we run the results for BERT-base with W4/8A16 and W4/8A8 with 5 seeds and report the results here.
We follow the same setting as we used in the main text. Particularly, for LKD, we use 100 iterations
with batch size 32 and sequence length 128, and we fix the learning rate as 5e-6. For group-wise
quantization, we choose 48 groups for all weight matrices. We use seed {40, 41, 42, 43, 44} for this
experiment. The results are shown in Table G.7. As can be seen, the 5-seed average result is similar
to what we have reported in the main text.

G.7 INT8 Comparison between cuBLAS and CUTLASS

For the INTS8 kernels, we run a profiling on different tiling schedules for thread-blocks, WARPs, and
tensor-cores (WMMA instructions) in order to get the best latency based on the model dimension
and batch size. Note that there are some paddings needed to keep the tenor shapes 16, 32, 64, or
128-aligned in order to maximize the performance when configuring the CUTLASS GeMM kernels.
In our inference system, we choose the best scheduling for each application that minimizes the
padding and gives the best performance. In our experiments, we see much better performance on
the INT8 kernels for CUTLASS vs cuBLAS. Furthermore, we can fuse the dequantization step
by modifying the CUTLASS kernels whereas this is not an option for cuBLAS library as it is not
open-sourced.

We included detailed profiling results in Table G.8 for BERT-scale matrix sizes and GPT-J/GPT-
NeoX-scale matrix sizes. The hardware used is the 40GB-A100. Here we use bsz to represent batch
size, and seq to represent sequence length. The time is computed based on 1000 runs average time
and the TFLOPS here means the Tera-Flops/s the hardware achieved. As we can see, our highly
optimized CUTLASS INT8 GEMM is much faster than FP16/INT8 CUBLAS GEMM.

22

Table G.5: Comparison between symmetric and asymmetric quantization schemes on BERT .
Please see Appendix A.3 for the reported metrics.

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave.
WI16A16 (Baseline) 59.72 84.94 85.06 86.27/90.57 92.15 91.51/88.56 7220 9323 90.06/89.59 83.95
WS8AS8 (PTQ, Symmetric) 56.06 79.99 81.06 75.49/79.67 87.35 89.92/86.82 4838 91.40 86.58/86.44 77.41
WS8AS (PTQ, Asymmetric) 59.94 80.58 81.54 84.80/89.67 92.00 91.42/88.30 71.12 92.89 89.34/80.30 82.72
‘W8AS (ZeroQuant) 59.59 84.83 85.13 86.03/90.39 91.98 91.45/88.46 71.12 93.12 90.09/89.62 83.75

Table G.6: Comparison between symmetric and asymmetric quantization schemes on BERT .
Please see Appendix A.3 for the reported metrics.

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave.
W16A16 (Baseline) 63.35 86.65 85.91 87.99/91.62 9224 91.08/88.08 74.01 93.46 90.34/90.11 85.03
W8AS8 (PTQ, Symmetric) 60.57 75.69 76.94 81.13/84.93 88.49 84.04/7435 4693 91.74 62.57/55.77 73.54
WB8AS (PTQ, Asymmetric) 60.52 86.16 85.84 85.29/89.40 92.11 90.09/86.16 6498 92.89 89.40/89.38 83.04
W8AS8 (ZeroQuant) 63.38 86.52 85.64 87.75/91.50 92.31 91.09/88.05 72.56 93.35 90.45/90.19 84.81

G.8 Effectiveness of Group Quantization and Token Quantization

We summarize the results in Table G.9. Besides directly adopting group quantization (GQ) from
Q-BERT, we also include the real GPU kernel implementation. Without the GPU kernel part, there is
no real speedup benefit for group quantization. Meanwhile, without token-wise quantization (TQ),
the average accuracy of GQ is 66.52. TQ can further bring this number to 81.06 (14.54 accuracy gain,
which is non-trivial). This demonstrates the benefit of TQ.

G.9 Relative Error Analysis

We use the relative error results for BERTy,s of the quantized models to support the claim that
the proposed method can deal with the dynamic range of full-precision activations and weights.
Particularly, the relative error is computed as

|Aquantize - Afull| (3)

A
verage(Apat +1c—8 '

where A means the weight or activation, and the subscript quantize (full) means the quantized (FP16)
version.

The results are summarized in Table G.10. The proposed methods in ZeroQuant can significantly
reduce the relative error as compared to the standard quantization method.

G.10 Comparison with MP-PTQ and Q-BERT of BERT ;e

Since the original Q-BERT and MP-PTQ do not include BERT-large study, we implement our own
code to produce the result of Q-BERT based on the paper’s description and use the open-sourced
code’ to produce the result of MP-PTQ (we use —quant-dict "’y’: 16, ’h’: 16, °’x’: 16, ’P’: 16, ’C’:
16" and —quant-setup MSE_logits for STS-B task, and we use —quant-dict "’y’: 16, ’h’: 16, ’x’: 16"
for other tasks). The results are shown in Table G.11. As can be seen, ZeroQuant achieves similar
accuracy as Q-BERT but without any training cost.

For MP-PTQ, we can reproduce the paper’s result for BERT-base models. However, for BERT-large,
all tasks give random guess except CoLA (we tried three different kinds of checkpoints, including
Huggingface’s checkpoint, our own checkpoints, and checkpoints trained using the MP-PTQ repo).
As such, we did not include the rest of the results. After increasing the bit-precision for activation
from 8 to 10 bits, the accuracy of MP-PTQ is significantly boosted. Therefore, the quantization
error of activation is the main cause of MP-PTQ on BERT-large and this is primarily from the
dynamic range of activations as what we discussed in Section C. Also, this result (i.e., MP-PTQ
works for BERT-base but not BERT-large out of the box) is aligned with our reported PTQ results
in Table 2 and 3, i.e., BERT-large’s W8AS has lower accuracy than BERT-base’s W8AS8, which means
BERT-large is more sensitive to dynamic activation ranges.

"https://github.com/qualcomm-ai-research/transformer-quantization

23

https://github.com/qualcomm-ai-research/transformer-quantization

Table G.7: Five-seed results on BERTy,. Please see Appendix A.3 for the reported metrics.

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave.
WI16A16 (Baseline) 59.72 84.94 85.06 86.27/90.57 92.15 91.51/88.56 7220 93.23 90.06/89.59 83.95
W4/8A16 (Single Seed) 58.50 83.16 83.69 84.80/89.31 90.83 88.94/84.12 70.04 92.78 88.49/88.67 82.35
W4/8A16 (Five Seeds) 58.64 83.15 83.74 84.65/89.22 90.87 89.08/84.39 70.40 92.82 88.48/88.65 8243
W4/8A8 (Single Seed) 58.80 83.09 83.65 85.78/89.90 90.76 89.16/84.85 71.84 93.00 88.16/88.55 82.71
W4/8A8 (Five Seeds) 58.76 83.03 83.63 84.75/89.26 90.78 89.45/85.97 71.12 9278 88.16/88.56 82.52

Table G.8: GeMM Speed Comparison.

BERT FP16 CUBLAS INTS8 cuBLAS INT8 CUTLASS

bsz seq Matrix dim time (ms) TFLOPS time (ms) TFLOPS time (ms) TFLOPS
1 128 768 0.02355 6.411796 0.021473 7.031874 0.009805 15.39947
1 128 1024 0.019223 13.9643 0.022616 11.86932 0.010406 25.79559
1 256 768 0.018297 16.50514 0.025432 11.87458 0.009844 30.67661
1 256 1024 0.019206 27.95322 0.060184 8.920457 0.010737 50.00222
64 128 768 0.049335 195.8768 0.153681 62.88129 0.035627 271.2449
64 128 1024 0.077738 220.9962 0.255213 67.31586 0.050085 343.0171
64 256 768 0.096026 201.2717 0.303941 63.58921 0.064837 298.0926
64 256 1024 0.15432 222.6525 0.500961 68.58771 0.092166 372.8039
GPT

bsz seq Matrix dim time (ms) TFLOPS time (ms) TFLOPS time (ms) TFLOPS
1 1 4096 0.027091 1.23857 0.031635 1.060677 0.017066 1.966157
1 1 6144 0.066214 1.140199 0.073625 1.025434 0.036825 2.050146
1 4096 0.025938 10.34901 0.061419 4.37056 0.017056 15.73871
1 8 6144 0.064703 9.334616 0.175115 3.44904 0.036513 16.54146
1 16 4096 0.026499 20.25984 0.061636 8.710351 0.017051 31.48534
1 16 6144 0.065374 18.47757 0.175221 6.893921 0.036419 33.16868

G.11 Different loss choices of LKD

We tried both L2 and L1 losses, and the results from those two losses are very similar. Below we
provide the results of W4/8A8 on BERT-base. As can be seen from Table G.12, the accuracy of L1
loss and L2 loss based LKD is similar to each other.

H Limitations and Future Work

We believe it is critical for every work to clearly state its limitations, especially in this area. One
limitation is that in this work we only focused on natural language models, but it would be interesting
to see how ZeroQuant would perform for computer vision models. We leave this as a future work.

Another limitation is that we can only verify the scalability of ZeroQuant up to 20B scale models. If
there are new releases of larger open-sourced models, it would be great to test ZeroQuant on those
larger models as well.

Third, in this paper, we found out that the activation input of self-attention is more sensitive for
quantization for the extra-large model (GPT-NeoX,og). However, we are unable to verify this on
other extra-large models due to the lack of open-sourced models.

I Full Zero-shot Evaluation of GPT-3-style Models

We includes all zero-shot evaluation results in this section for all GPT-3-style models, inlcuding
GPT—NCOXZ()B .

24

Table G.9: Results of effectiveness of group quantization and token-wise quantization. Please
see Appendix A.3 for the reported metrics.

Precision GQ TQ CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave.
WI16A16 - - 5972 84.94 85.06 86.27/90.57 92.15 91.51/88.56 7220 9323 90.06/89.59 83.95
W8AS8 No No 56.06 79.99 81.06 75.49/79.67 87.35 89.92/86.82 4838 92.66 86.58/86.44 77.41
WBA8 Yes No 59.84 80.25 81.37 83.82/89.18 91.23 91.32/88.14 70.04 93.12 88.66/88.80 82.31
W3BAS8 Yes Yes 59.59 84.83 85.13 86.03/90.39 91.98 91.45/88.46 71.12 93.12 90.09/89.62 83.75

Table G.10: Results of relative error of group quantization and token-wise quantization as compared
to standard quantization methods. Please see Appendix A.3 for the reported metrics.

Standard Quantization GQ or TQ
Weight, INTS 0.10 0.05
Weight, INT4 0.73 0.43
Activation, INTS8 0.22 0.13

Table G.11: Comparison between ZeroQuant and Q-BERT/MT-PTQ on BERT,,.. Please see Ap-
pendix A.3 for the reported metrics.

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave. Time
WI16A16 (Baseline) 63.35 86.65 85.91 87.99/91.62 92.24 91.08/88.08 74.01 93.46 90.34/90.11 85.03 -
W8AS (Q-BERT) 62.86 86.26 86.43 86.27/90.38 92.07 91.59/88.66 73.73 9392 89.87/89.54 84.83 718
W8AS8/16 (MT-PTQ) 61.48 - - - - - - - - - -
W8A10/16 (MT-PTQ) 62.6 85.68 85.68 87.25/91.22 91.37 90.51/87.09 72.56 93.00 85.2/87.07 83.90 10
WB8AS (ZeroQuant) 63.38 86.52 85.64 87.75/91.50 92.31 91.09/88.05 72.56 93.35 90.45/90.19 84.81 0

Table G.12: Loss choices of LKD on BERT},,.. Please see Appendix A.3 for the reported metrics.

Precision (Method) CoLA MNLI-m MNLI-mm MRPC QNLI QQP RTE SST-2 STS-B Ave.
WI16A16 (Baseline) 59.72 84.94 85.06 86.27/90.57 92.15 91.51/88.56 7220 93.23 90.06/89.59 83.95
W4/8A8 (L1) 58.90 83.41 83.84 83.82/89.00 90.55 88.92/84.12 73.29 92.66 88.18/88.56 82.66
W4/8A8 (L2) 58.80 83.09 83.65 85.78/89.90 90.76 89.16/84.85 71.84 93.00 88.16/88.55 82.71

Table I.1: The full results of GPT-33500Mm.

Tasks Baseline PTQ ZeroQuant ZeroQuant-LKD
WI16A16 W8AI6 WI6A8 WSA8 W4/8A16 WB8AS W4/8A16 W4/8A8 W4/8AT6 W4/8AR
HellaSwag 38.6 38.1 37.6 36.8 26.5 38.4 30.4 30.5 353 353
LAMBADA 49.3 49.3 44.7 429 0 51.0 10.1 10.5 39.8 374
TriviaQA 3.00 2.67 2.70 232 0 2.86 0.159 0.194 1.043 0.23
WebQs 143 0.935 1.23 0.689 0 1.378 0.246 0.394 0.591 0.049
Winogrande 532 52.1 52.1 52.1 47.8 514 52.6 50.7 51.6 51.8
PIQA 66.3 66.1 64.8 64.1 514 66.5 58.5 57.7 63.8 61.8
ARC (Challenge) 242 24.0 24.0 24.1 27.0 245 22.0 21.8 21.8 23.6
ARC (Easy) 455 44.7 44.2 439 25.1 44.5 37.6 37.5 40.5 40.5
ANLIRI1 31.1 30.0 31.3 332 334 31.1 32.8 32.7 324 338
ANLIR2 34.3 36.0 36.5 359 33.4 343 34.7 342 34.1 335
ANLIR3 34.1 34.0 33.0 37.2 335 334 349 345 33.1 334
OpenBookQA 294 29.6 28.2 28.0 30.2 29.2 272 28.0 29.4 28.2
RACE-h 324 31.3 30.3 30.7 224 322 25.7 26.4 29.5 29.7
BoolQ 60.3 60.2 57.0 56.9 37.8 60.2 60.1 59.4 61.9 61.9
Copa 69.0 67.0 71.0 73.0 48.0 69.0 63.0 64.0 68.0 66.0
RTE 53.8 542 52.7 53.1 52.7 534 52.0 52.7 53.1 53.1
WSC 36.5 36.5 36.5 35.6 63.5 36.5 36.5 36.5 36.5 36.5
MultiRC 0.839 0.839 0.839 0.944 0.315 0.839 1.889 1.889 0.839 0.839
ReCoRD 75.1 74.8 69.2 67.5 16.1 74.9 56.5 553 70.1 68.5
Wikitext-2 21.52 22.09 24.56 26.20 1.76e5 21.68 88.64 92.10 30.56 31.13
Average Acc 38.86 38.54 37.78 37.84 28.9 38.71 33.52 3342 37.02 36.64

25

Table 1.2: The full results of GPT-3 35.

Baseline PTQ ZeroQuant ZeroQuant-LKD
Tasks WI16A16 ~WSA8 WA4/8AI16 WSAS W4/SA16 WA4/3AS WA4/SAL6 WA/SAS
HellaSwag 514 47.0 26.1 50.8 43.7 432 48.5 46.7
LAMBADA 61.3 54.8 0 62.6 43.9 46.8 59.4 48.7
TriviaQA 7.37 443 0 6.67 2.36 2.0 4.8 2.99
WebQs 2.90 1.476 0 2.07 1.132 1.28 1.673 1.083
Winogrande 57.1 557 50.1 57.1 54.6 543 553 53.8
PIQA 714 67.7 50.4 70.7 66.5 66.4 69.5 68.1
ARC (Challenge) ~ 27.2 27.1 26.5 26.8 25.7 253 27.8 26.5
ARC (Easy) 54.5 497 26.0 53.8 48.0 47.0 522 50.3
ANLIRI 32.0 33.1 33.0 334 338 336 342 338
ANLIR2 32.0 329 333 33.9 33.0 33.0 33.8 328
ANLIR3 338 335 323 34.8 336 335 33.7 33.0
OpenBookQA 336 326 27.0 334 30.0 28.8 316 29.0
RACE-h 336 326 224 327 30.9 29.9 32.7 332
BoolQ 62.4 59.2 378 61.3 60.3 59.8 61.7 613
Copa 70.0 70.0 55.0 72.0 73.0 74.0 72.0 70.0
RTE 53.1 545 50.9 527 527 527 527 52.0
WSC 375 36.5 63.5 36.5 36.5 36.5 36.5 36.5
MultiRC 105 0839 0315 0839 1.259 1.154 0.839 0.839
ReCoRD 82.6 75.7 15.8 80.9 773 76.2 79.7 774
Wikitext-2 15.3 18.85 1.35¢5 15.69 219 24.09 17.56 18.18
Average Acc 4236 4049 28.97 4226 39.38 39.24 41.48 39.90
Table 1.3: The full results of W4/8A8 GPT-3350y using different data resources.

Tasks Random Data Wikipedia Original Training Data
HellaSwag 33.9 35.5 35.3
LAMBADA 26.1 33.9 37.4
TriviaQA 0.088 0.972 0.23

WebQs 0.049 0.344 0.049
Winogrande 50.3 52.4 51.8

PIQA 59.3 62.4 61.8

ARC (Challenge) 22.6 23.3 23.6

ARC (Easy) 38.3 40.0 40.5

ANLI R1 33.0 32.0 33.8

ANLI R2 34.3 34.7 33.5

ANLI R3 334 32.9 334
OpenBookQA 29.2 28.0 28.2
RACE-h 27.8 29.1 29.7

BoolQ 47.8 52.6 61.9

Copa 65.0 69.0 66.0

RTE 50.5 52.7 53.1

WSC 36.5 36.5 36.5
MultiRC 1.574 1.154 0.839
ReCoRD 64.9 69.5 68.5
Wikitext-2 40.63 30.36 31.13
Average Acc 34.45 36.16 36.64

26

Table 1.4: The full results of GPT-NeoX,og.

Tasks WI16A16 W8ARZ/16

HellaSwag 71.4 71.2
LAMBADA 71.7 71.9
TriviaQA 25.8 25.9
WebQs 6.3 6.64
Winogrande 66.0 65.7
PIQA 77.7 78.3
ARC (Challenge) 41.0 42.2
ARC (Easy) 68.5 68.8
ANLI R1 33.1 33.9
ANLI R2 33.4 34.4
ANLI R3 35.1 35.4
OpenBookQA 39.8 38.8
RACE-h 38.5 37.6
BoolQ 69.4 69.9
Copa 84.0 85.0
RTE 54.9 54.9
WSC 50.0 44.2
MultiRC 3.57 4.41
ReCoRD 88.3 88.0

Average Acc 50.45 50.38

27

	Introduction
	Related Work
	Background and Challenge
	Transformer Architecture
	Quantization Background
	Post Training Quantization

	Methodology
	Fine-grained Hardware-friendly Quantization Scheme
	Layer-by-layer Knowledge Distillation with Affordable Cost
	Quantization-Optimized Transformer Kernels

	Results
	Main Results of BERT
	Main Results of GPT-3-style Models
	Latency Reduction of BERT and GPT-3-style Models
	A Showcase of GPT-J6B and GPT-NeoX20B
	Ablation Study of Different Components
	No Access to The Original Training Data

	Conclusions
	Experimental Details
	Details of PTQ on BERT and GPT
	Details of Main Result
	Accuracy reported for BERT on GLUE

	Summary of Main Results
	PTQ challenge of BERTbase
	Details about System Optimization
	Tuned Results on BERT
	QAT on BERTlarge
	Other Results
	TinyBERT
	CNN Results
	ViT Result
	Comparison to Per-column Quantization
	Comparison among Different Quantization Schemes
	Five-seed Results
	INT8 Comparison between cuBLAS and CUTLASS
	Effectiveness of Group Quantization and Token Quantization
	Relative Error Analysis
	Comparison with MP-PTQ and Q-BERT of BERTlarge
	Different loss choices of LKD

	Limitations and Future Work
	Full Zero-shot Evaluation of GPT-3-style Models

