
Exploiting Chain Rule and Bayes’ Theorem to Compare
Probability Distributions: Appendix

A Broader impact

This paper proposes to quantify the difference between two probability distributions with conditional
transport, a bidirectional cost that we exploit to balance the mode seeking and covering behaviors of
a generative model. The generative models trained with the proposed CT and datasets used in the
experiments are classic in the area. Thus the capacities of these models are similar to existing ones,
where we can see both positive and negative perspectives, depending on how the models are used.
For example, good generative models can generate images for datasets that are expensive to collect,
and be used to denoise and recover images. Meanwhile, they can also be misused to generate fake
images for malicious purposes.

B Proof of Lemma 1

Proof. According to the strong law of large numbers, when M →∞, 1
M

∑M
j=1 e

−dφ(x,yj), where

yj
iid∼ pY (y), converges almost surely to

∫
e−dφ(x,y)pY (y)dy and 1

M

∑M
j=1 c(x,yj)e

−dφ(x,yj)

converges almost surely to
∫
c(x,y)e−dφ(x,y)pY (y)dy. Thus when M → ∞, the term∑M

j=1 c(x,yj)π̂M (yj |x,φ) in (10) converges almost surely to
∫
c(x,y)e−dφ(x,y)pY (y)dy∫

e−dφ(x,y)pY (y)dy
=∫

c(x,y)πY (y |x)dy. Therefore, Cφ,θ(X → ŶM ) defined in (10) converges almost surely to
the forward CT cost Cφ,θ(X → Y ) defined in (2) when M → ∞. Similarly, we can show that
Cφ,θ(X̂N ← Y ) defined in (11) converges almost surely to the backward CT Cφ,θ(X ← Y ) defined
in (4) when N →∞.

C Additional details for the univariate normal toy example shown in (6)

For the toy example specified in (6), exploiting the normal-normal conjugacy, we have an analytical
conditional distribution for the forward navigator as

πφ(y |x) ∝ e−
(x−y)2

2eφ N (y; 0, eθ)

∝ N (x; y, eφ)N (y; 0, eθ)

= N
(

eθ

eθ + eφ
x,

eφeθ

eθ + eφ

)
,

and an analytical conditional distribution for the backward navigator as

πφ(x | y) ∝ e−
(x−y)2

2eφ N (x; 0, 1)

∝ N (y;x, eφ)N (x; 0, 1)

= N
(

y

1 + eφ
,

eφ

1 + eφ

)
.

Plugging them into (2) and (4), respectively, and solving the expectations, we have

Cφ,θ(µ→ ν) = Ex∼N (0,1)

[
eφ

eθ + eφ

(
eθ +

eφ

eθ + eφ
x2
)]

=
eφ

eθ + eφ

(
eθ +

eφ

eθ + eφ

)
,
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Cφ,θ(µ← ν) = Ey∼N (0,eθ)

[
eφ

1 + eφ

(
1 +

eφ

1 + eφ
y2
)]

=
eφ

1 + eφ

(
1 +

eφ

1 + eφ
eθ
)
.

D Experiment details

Preparation of datasets We apply the commonly used training set of MNIST (50K gray-scale
images, 28× 28 pixels) [65], Stacked-MNIST (50K images, 28× 28 with 3 channels pixels) [66],
CIFAR-10 (50K color images, 32× 32 pixels) [44], CelebA (about 203K color images, resized to
64× 64 pixels) [45], and LSUN bedrooms (around 3 million color images, resized to 64× 64 pixels)
[46]. For MNIST, when calculate the inception score, we repeat the channel to convert each gray-scale
image into a RGB format. For high-resolution generation, we use CelebA-HQ (30K images, resized
to 256× 256 pixels) [67] and FFHQ (70K images, with both original size 1024× 1024 and resized
size 256× 256) [48]. All image pixels are normalized to range [−1, 1].

Experiment setups To avoid a large increase in model complexity, the navigator is parameterized
as dφ(x,y) := dφ((x−y)◦ (x−y)), where ◦ denotes the Hadamard product, i.e., the element-wise
product. To be clear, we provide a Pytorch-like pseudo-code in Algorithm 1. For the toy datasets, we
apply the network architectures presented in Table 5, where we set H = 100 for generator, navigator
and feature encoder. For navigator, we set input dimension V = 2 and output dimension d = 1. If
apply a feature encoder, we have V = 2, d = 10 for feature encoder and V = 10, d = 1 for navigator.
The input dimension of generator is set as 50. The slopes of all leaky ReLU functions in the networks
are set to 0.1 by default. We use the the Adam optimizer [68] with learning rate α = 2× 10−4 and
β1 = 0.5, β2 = 0.99 for the parameters of the generator, and discriminator/critic. The learning rate of
navigator is divided by 5. Typically, 5, 000 training epochs are sufficient. However, our experiments
show that the DGM optimized with the CT cost can be stably trained at least over 10, 000 epochs (or
possibly even more if allowed to running non-stop) regardless of whether the navigators are frozen or
not after a certain number of iterations, where the GAN’s discriminator usually diverges long before
reaching that many training epochs even if we do not freeze it after a certain number of iterations.

For image experiments, to make the comparison fair, we strictly adopt the architecture of DCGAN
[49]1, Sliced Wasserstein Generative model (SWG) [42]2, MMD-GAN [10]3, SNGAN [50]4, and
StyleGAN2 [51]5, and follow their experiment setting: DCGAN and SWG apply CNN architecture
on all datasets; MMD-GAN applies CNN on CIFAR-10 and ResNet architecture on other datasets;
SN-GAN and StyleGAN2 apply their modified ResNet architecture. A summary of CNN and ResNet
architecture is presented from Tables 7-12. To adapt the navigator, we apply the backbone of the
discriminator in these GAN models as feature encoder and suppose the output dimension as m. The
navigator is an MLP with architecture shown in Table 5 by setting V = m, H = 512, and d = 1.
All models are able to be trained on a single GPU, Nvidia GTX 1080-TI/Nvidia RTX 3090 in our
CIFAR-10, CelebA, LSUN-bedroom experiments. For high-resolution experiments, all experiments
are done on 4 Tesla-V100-16G GPUs.

Table 5: Network architecture for toy datasets (V , H and d indicate the dimensionality).
(a) Generator Gθ

ε ∈ R50 ∼ N (0, 1)

50→ H , dense, BN, lReLU

H → bH2 c, dense, BN, lReLU

bH2 c → V , dense, linear

(b) Navigator dφ / Feature encoder Tη

x ∈ RV

V → H , dense, BN, lReLU

H → bH2 c, dense, BN, lReLU

bH2 c → d, dense, linear

1DCGAN architecture follows: https://github.com/pytorch/examples/tree/master/dcgan
2SWG architecture follows: https://github.com/ishansd/swg
3MMD-GAN architecture follows: https://github.com/mbinkowski/MMD-GAN
4SN-GAN architecture follows: https://github.com/pfnet-research/sngan_projection
5StyleGAN2 architecture follows: https://github.com/NVlabs/stylegan2. We use their config-f.
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Algorithm 1 PyTorch-like style pseudo-code of CT loss.

######################## Inputs ######################
# x: data B x C x W x H;
# y: generated samples B x C x W x H;
# netN: navigator network d -> 1
# netD: critic network C x W x H -> d
# rho: balance coefficient of forward-backward, default = 0.5

def ct_loss(x, y, netN, netD, rho):
######################## compute cost ######################
f_x = netD(x) # feature of x: B x d
f_y = netD(y) # feature of y: B x d
cost = torch.norm(f_x[:,None] - f_y, dim=-1).pow(2) # pairwise cost: B x B

######################## compute transport map ######################
mse_n = (f_x[:,None] - f_y).pow(2) # pairwise mse for navigator network: B x B x d
d = netN(mse_n).squeeze().mul(-1) # navigator distance: B x B
forward_map = torch.softmax(d, dim=1) # forward map is in y wise
backward_map = torch.softmax(d, dim=0) # backward map is in x wise

######################## compute CT loss ######################
# element-wise product of cost and transport map
ct = rho * (cost * forward_map).sum(1).mean() + (1-rho) * (cost * backward_map).sum(0).mean()
return ct

E Supplementary experiment results

E.1 Results of 2D toy datasets and robustness in adversarial feature extraction

We visualize the results on the 8-Gaussian mixture toy dataset and other three commonly-used 2D
toy datasets: Swiss-Roll, Half-Moon and 25-Gaussian mixture. As shown in Figs. 7-10, in the first
5k epochs, all DGMs are normally trained and the generative distributions are getting close to the
true data distribution, while on 8-Gaussian and 25-Gaussian data, Vanilla GANs show mode missing
behaviors. After 5k epochs, as the discriminator/navigator/feature encoder components in all DGMs
are fixed, we can observe GAN and WGAN that solve min-max loss appear to collapse. This mode
collapse issue of both GAN and WGAN-GP becomes more severe on the Swiss-Roll, Half-Moon,
and 25-Gaussian datasets, since they rely on an optimized discriminator/critic to guide the generator.
SWG relies on the slicing projection and is not affected, while its generated samples only cover the
modes and ignore the correct density, indicating the effectiveness of slicing methods rely on the
slicing [69]. The proposed CT cost show consistent good performance on the fitting of all these toy
datasets, even after the navigator and the feature encoder are fixed after 5k epochs. This justifies our
analysis about the robustness of CT cost.
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Figure 7: On a 8-Gaussian mixture data, comparison of generation quality and training stability
between two min-max deep generative models (DGMs), including vallina GAN and Wasserstein
GAN with gradient penalty (WGAN-GP), and two min-max-free DGMs, whose generators are trained
under the sliced Wasserstein distance (SWD) and the proposed CT cost, respectively. The critics of
GAN, WGAN-GP, the navigators of CT and the adversarially trained feature encoders of AdvCT are
fixed after 5k training epochs. The last column shows the true data density.
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Figure 8: Analogous plot to Fig. 7 for the Swiss-Roll dataset.
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Figure 9: Analogous plot to Fig. 7 for the Half-Moon dataset.
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Figure 10: Analogous plot to Fig. 7 for the 25-Gaussian mixture dataset.

20



E.2 Additional results of cooperative vs. adversarial encoder training

Here we provide additional results to the cooperative experiments, where we minimize CT in the
feature encoder spaces trained by: 1) maximizing discriminator loss in GANs, 2) using random slicing
projections, 3) maximizing MMD and 4) maximizing CT cost. Fig. 11 shows the results analogous to
Fig. 4 on other three synthetic datasets: Swiss-Roll, Half-Moon and 25-Gaussian mixture. Fig. 12
provide qualitative results of Table 1 and Table 2.
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(a) Adv CT. (b) GAN.
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(c) LD + CT. (d) SWD.
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(e) Slicing + CT.
Figure 11: Analogous plot to Fig. 4 on Swiss roll, half-moon and 25 Gaussians datasets. Ablation of fitting
results by minimizing CT in different spaces

E.3 Empirical Wasserstein loss vs empirical CT

From Table 1, Fig. 4, and Fig. 11 we notice the proposed CT can improve the fitting with SWG [70] in
the sliced 1D space. Considering SWG applies random slicing projections to project high-dimensional
data to several 1D spaces, since the empirical Wasserstein distance has a close form in 1D case
and can be calculated with ordered statistics, here we compare the empirical Wasserstein loss and
empirical CT cost with a 1D toy experiments.

Let’s consider the same 1D Gaussian mixture data used in Fig. 2, where the bimodal Gaussian
mixture has a density form pX(x) = 1

4N (x;−5, 1) + 3
4N (x; 2, 1). We use an empirical sample set

X , consisting of |X | = 5, 000 samples, and train a generative model with the Wasserstein loss and
CT cost estimated with these empirical data and generated samples. We vary the training mini-batch
size from small to large. Fig. 13 shows the training curve w.r.t. each training epoch and the fitting
results with mini-batch size 20, 200 and 5000. We can observe when the mini-batch size N is as
large as 5000, both Wasserstein and CT lead to a well-trained generator. However, as shown in the
left and middle columns, when N is getting much smaller, the generator trained with Wasserstein
under-performs that trained with ACT, especially when the mini-batch size becomes as small as
N = 20. While the Wasserstein distance W(X,Y ) in theory can well guide the training of a
generative model, the sample Wasserstein distanceW(X̂N , ŶN ), whose optimal transport plan is
locally re-computed for each mini-batch, could be sensitive to the mini-batch size N , which also
explains why in practice the SWG are difficult to fit desired distribution. By contrast, CT shows
better robustness across mini-batches, leading to a well-trained generator whose performance has low
sensitivity to the mini-batch size.
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(a) LD + CT. (b) Slicing + CT. (c) MMD + CT. (d) Adv CT.

Figure 12: Analogous plot to Fig. 4 and Fig. 11 on image datasets. Ablation of fitting results by minimizing CT
in different spaces.
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Figure 13: Top: Plot of the sample Wasserstein distance W2(X̂5000, Ŷ5000)
2 against the number of training

epochs, where the generator is trained with either W2(X̂N , ŶN )2 or the CT cost between X̂N and ŶN , with
the mini-batch size set as N = 20 (left), N = 200 (middle), or N = 5000 (right); one epoch consists of
5000/N SGD iterations. Bottom: The fitting results of different configurations, where the KDE curves of the
data distribution and the generative one are marked in red and blue, respectively.
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E.4 Additional results on mode-covering/mode-seeking study

The mode covering and mode seeking behaviors discussed in Figs. 2 also exist in the real image case.
For illustration, we use the Stacked-MNIST dataset [66] and fit CT in three configurations: normal,
forward only, and backward only. DCGAN [49], VEEGAN [66], PacGAN [71], and PresGAN [72]
are applied here as the baseline models to evaluate the mode-capturing capability.

Table 6: Assessing mode collapse on Stacked-MNIST. The true total number of modes is 1,000.
DCGAN, VEEGAN, and CT (Backward only) all suffer from collapse. The other models capture
nearly all the modes of the data distribution. Furthermore, the distribution of the labels predicted
from the images produced by these models is closer to the data distribution, which shows lower KL
scores.

Method Mode Captured KL

DCGAN [49] 392.0 ± 7.376 8.012 ± 0.056
VEEGAN [66] 761.8 ± 5.741 2.173 ± 0.045
PacGAN [71] 992.0 ± 1.673 0.277 ± 0.005
PresGAN [72] 999.4 ± 0.80 0.102 ± 0.003

CT 999.07 ± 0.162 0.181 ± 0.003
CT (Foward only) 999.18 ± 0.9 0.124 ± 0.003
CT (Backward only) 192 ± 1.912 9.166 ± 0.06
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Figure 14: Visual results of the generated samples produced by DCGAN, VEEGAN, PacGAN,
PresGAN, and ACT-DCGAN on the Stacked-MNIST dataset.

We calculate the captured mode number of each model, as well as the Kullback–Leibler (KL)
divergence of the predicted label distributions between the generated samples and true data samples.
For Stacked-MNIST data, there are 1000 modes in total. The results in Table 6 justify CT using
only forward or using both forward and backward can almost capture all the modes, thus we do
not suffer from the mode collapse problem. Using backward only can only encourages the mode
seeking/dropping behavior. Fig. 14 provides the visual justification of this experiment, where the
observations is consistent with those on toy datasets: if we only apply forward CT, the generator
is encouraged to cover all the modes; if we only apply the backward CT for optimization, we can
observe the mode seeking behavior of the generator.
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E.5 Additional results on image datasets

(a) CIFAR-10. (b) CelebA. (c) LSUN-Bedroom.
Figure 15: Analogous plot to Fig. 5, with additional generated samples. Top: samples generated with CNN
backbone; Bottom: samples generated with ResNet backbone.

(a) CIFAR-10. (b) CelebA. (c) LSUN-Bedroom.
Figure 16: Analogous plot to Fig. 15.
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(a) LSUN-Bedroom (256x256).

(b) FFHQ (256x256).

(c) FFHQ (1024x1024).

Figure 17: Analogous plot to Fig. 6: additional high-resolution samples.
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F Architecture summary

Table 7: DCGAN architecture for the CIFAR-10 dataset.

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 512, dense, linear

4× 4, stride=2 deconv. BN 256 ReLU

4× 4, stride=2 deconv. BN 128 ReLU

4× 4, stride=2 deconv. BN 64 ReLU

3× 3, stride=1 conv. 3 Tanh

(b) Feature encoder Tη

x ∈ [−1, 1]32×32×3

3× 3, stride=1 conv 64 lReLU
4× 4, stride=2 conv 64 lReLU

3× 3, stride=1 conv 128 lReLU
4× 4, stride=2 conv 128 lReLU

3× 3, stride=1 conv 256 lReLU
4× 4, stride=2 conv 256 lReLU

3× 3, stride=1 conv. 512 lReLU

h× w × 512→ m, dense, linear

Table 8: DCGAN architecture for the CelebA and LSUN datasets.

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 1024, dense, linear

4× 4, stride=2 deconv. BN 512 ReLU

4× 4, stride=2 deconv. BN 256 ReLU

4× 4, stride=2 deconv. BN 128 ReLU

4× 4, stride=2 deconv. BN 64 ReLU

3× 3, stride=1 conv. 3 Tanh

(b) Feature encoder Tη

x ∈ [−1, 1]64×64×3

4× 4, stride=2 conv 64 lReLU
4× 4, stride=2 conv BN 128 lReLU

4× 4, stride=2 conv BN 256 lReLU

3× 3, stride=1 conv BN 512 lReLU

h× w × 512→ m, dense, linear, Normalize

Table 9: ResNet architecture for the CIFAR-10 dataset.

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 256, dense, linear

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3× 3 conv, 3 Tanh

(b) Feature encoder Tη

x ∈ [−1, 1]32×32×3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU

Global sum pooling

h = 128→ m, dense, linear, Normalize
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Table 10: ResNet architecture for the CelebA and LSUN datasets.

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 1024, dense, linear

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3× 3 conv, 3 Tanh

(b) Feature encoder Tη

x ∈ [−1, 1]64×64×3

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ReLU
Global sum pooling

h = 1024→ m, dense, linear, Normalize

Table 11: ResNet architecture for the LSUN-128 dataset.

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 1024, dense, linear

ResBlock up 1024

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3× 3 conv, 3 Tanh

(b) Feature encoder Tη

x ∈ [−1, 1]128×128×3

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 1024

ResBlock 1024

ReLU
Global sum pooling

h = 1024→ m, dense, linear, Normalize

Table 12: ResNet architecture for the CelebA-HQ dataset.

(a) Generator Gθ

ε ∈ R128 ∼ N (0, 1)

128→ 4× 4× 1024, dense, linear

ResBlock up 1024

ResBlock up 512

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3× 3 conv, 3 Tanh

(b) Feature encoder Tη

x ∈ [−1, 1]256×256×3

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock down 512

ResBlock down 1024

ResBlock 1024

ReLU
Global sum pooling

h = 1024→ m, dense, linear, Normalize
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