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This appendix is organized as follows: We first present an extended overview of the standard treatment
effect estimation setup and discuss differences with the time-to-event setting (Appendix A). Then, we
give an extended review of strategies for nonparametric estimation of survival dynamics (Appendix
B). In Appendix C we discuss technical details – assumptions and proofs – and Appendix D we
discuss implementation. Appendix E contains additional descriptions of datasets and experimental
setup and Appendix F presents additional results. Appendix G contains the NeurIPS checklist.

A Preliminaries on treatment effect estimation

In the standard treatment effect estimation setup with binary or continuous outcomes (see e.g.
[1, 2, 3]), one usually observes a dataset D = {(ai, xi, yi)}ni=1 comprising n realizations of the tuple
(A,X, Y ). X ∈ X and A ∈ {0, 1} represent patient characteristics and treatment assignment as in
the main text. Y ∈ Y is usually a binary (Y = {0, 1}) or continuous (Y = R) outcome. The target
parameter of interest is often the conditional average treatment effect (CATE)

τ(x) = E[Y |X = x, do(A = 1)]− E[Y |X = x, do(A = 0)] (1)

which is impossible to estimate from observational data without further assumptions, as – due to the
fundamental problem of causal inference [4] – every individual is only ever observed under one of
the two possible interventions. CATE can therefore only be nonparametrically estimated under the
imposition of untestable assumptions; here we rely on the standard ignorability assumptions [5] of
No hidden confounders (1.a), Consistency (1.c) and Positivity/Overlap in treatment assignment (2.a).

A.1 Comparison with the time-to-event treatment effects setup

The time-to-event setting is made more involved by (i) the presence of censoring and (ii) the interest
in the dynamics of the underlying survival process.

Censoring – the removal of some individuals from the sample before having observed their event time
– further complicates the treatment effect estimation problem, because every individual’s outcome
(time-to-event) is now observed under at most one intervention. The presence of censoring adds an
additional source of covariate shift, and the need to rely on the assumptions of Censoring at random
(1.b) and Positivity in censoring (2.b). Censoring is, however, different from complete missingness of
the outcome as the censoring time provides some information on the outcome – an individual has
survived at least until the censoring time.

While the difference in expected survival time (the time-to-event equivalent in CATE) can be
the treatment effect of interest in a study, many survival analysis problems are concerned with
target parameters that capture differences in the dynamics of the underlying survival process across
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treatments, e.g. hazard ratios or differences in survival functions – which substantially increases the
number of possible target parameters to model (beyond ‘only’ CATE). Instead of only modeling
expected outcomes (as would be the case in the standard setup as discussed above), modeling survival
dynamics through e.g. the treatment-specific hazard function can therefore often be of interest.
Nonparametrically modeling hazard functions introduces the additional assumption on Positivity of
events (2.c).

B Strategies for loss-based discrete-time hazard and survival function
estimation

In this section, we review strategies for nonparametric (or machine-learning based) estimation of the
dynamics underlying discrete-time event processes. Here, we consider on the standard case without
treatments to highlight how a dependence on different populations arises in different modeling
strategies, and follow closely the exposition of different strategies in [6]. We focus on loss functions
that can be used for implementation to highlight that these approaches are valid for use of any
classifier, and then briefly mention specific instantiations of such approaches from related work.

Preliminaries. In addition to hazard and survival function defined in the main text, define the
probability mass functions (PMF) as

f(τ |x) = P(T = τ |X = x) and fC(τ |x) = P(C = τ |X = x) (B.1)

Note that a hazard λ(τ |x) = P(T = τ |T ≤ τ,X = x) can then also be defined as λ(τ |x) = f(τ |x)
S(τ−1|x) .

Further, recall that the survival function S(τ |x) =
∏
t≤τ

(
1 − λ(t|x)

)
, so that the PMF can be

rewritten as f(τ |x) = λ(τ |x)S(τ − 1|x) = λ(τ |x)
∏
t≤τ−1

(
1− λ(t|x)

)
.

B.1 Likelihood-based hazard estimation

Under the assumption of random censoring (which is discussed further in Appendix C.1), the
likelihood function of the observed (short) data factorizes; i.e.

P(T̃ = τ̃ ,∆ = δ|X = x) = P(T = τ̃ , C ≥ τ̃ |X = x)δP(T > τ̃ , C = τ̃ |X = x)1−δ

=
[
P(T = τ̃ |X = x)P(C ≥ τ̃ |X = x)

]δ[P(T > τ̃ |X = x)P(C = τ̃ |X = x)
]1−δ

=
[
f(τ̃ |x)(SC(τ̃ |x) + fC(τ̃ |x))

]δ[
S(τ̃ |x)fC(τ̃ |x))

]1−δ
= f(τ̃ |x)δS(τ̃ |x)1−δ︸ ︷︷ ︸

Event-relevant

fC(τ̃ |x)1−δ(SC(τ̃ |x) + fC(τ̃ |x))δ︸ ︷︷ ︸
Ignorable censoring mechanism

By the likelihood principle, the parts pertaining to censoring are ignorable, hence we can consider
censoring and event likelihoods separately [7]. The likelihood contribution of observation i to the
negative time-to-event likelihood can then be written as:

Li = −f(τ̃i|xi)δiS(τ̃i|xi)1−δi = λ(τ̃i|x)δi(1− λ(τ̃i|x))1−δi
∏

t≤τ̃i−1

(
1− λ(t|x)

)
(B.2)

so that, after taking the logarithm and summing over all i ∈ [n] we have that

L = −
n∑
i=1

(
δilog(λ(τ̃i|x)) + (1− δi)log(1− λ(τ̃i|x)) +

∑
t≤τ̃i−1

log(1− λ(t|x))
)

= −
tmax∑
t=1

n∑
i=1

1(τ̃i ≥ t)
(
yi(t)log(λ(t|x)) + (1− yi(t))log(1− λ(t|x))

) (B.3)

with yi(t) = 1(τ̃i = t, δi = 1) = 1(NT (t)i = 1 ∩ NT (t−1)i = 0) as in the main text. Thus, the
classification approach with log-loss is equivalent to optimizing for the likelihood of the hazard.
Optimizing the likelihood of the hazard thus suffers from the exact same shifts as the classification
approach, namely the shifts induced by focusing on the ‘at-risk’ population at any time-step: the
log-loss also has dependence on 1(τi ≥ t). Note that, as we illustrate in section B.1.1, under such
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shifts, optimizing the likelihood is only problematic if the model for λ(τ |x) is misspecified – a
well-established fact in the literature on covariate shift [8].

Depending how λ(τ |x) is parameterized, different models proposed in related work arise. The
idea to use a classification approach dates back to at least the logistic-hazard model in [9], and is
reviewed in more detail in [10]. The first NN-based implementation that we are aware of is [11],
which parameterizes λ(τ |x) by using one shared network for all τ ∈ T where the time-indicator τ
is passed as an additional covariate. [12] instead propose a network with some shared layers and
τ -specific output layers (resulting in a model similar to the SurvIHE base-model). Finally, [13]’s
DSRA parameterizes λ(τ |x) using a recurrent network which encodes the structure shared across
time.

B.1.1 Illustration: Why (mis)specification matters

To briefly illustrate when event-induced at-risk population shift matters, we consider two simple
toy examples: we rely on event-processes with covariate-dependent but time-constant hazards, i.e.
λ(τ1|x) = λ(τ2|x), and there are 5 multivariate normal correlated covariates, of which only X1

determines the hazard. We parameterize hazard estimators using a separate logistic regression at
each time step t. We consider one process where this logistic regression is correctly specified for
the underlying hazard function, as λ1(τ |x) = σ(x1 − 0.25). We consider another process where this
logistic regression is misspecified, as λ2(τ |x) = σ(1(x1 > 0)x1 − 0.25) (i.e. there is a nonlinearity
that cannot be perfectly captured by a simple logistic regression).

(a) Hazard estimates and at-risk distribution
for λ1(τ |x) (well-specified model)

(b) Hazard estimates and at-risk distribution
for λ2(τ |x) (misspecified model)

Figure B.1: Toy example highlighting that covariate shift plays no role when models are well-specified
(left) but matters under misspecification (right).
As can be seen in Fig. B.1, both processes lead to event-induced covariate shift. However, this shift
has no effect on hazard estimator performance over time when the model is correctly specified. Yet,
when the model is incorrectly specified, the estimator has to trade off making errors in different
regions of the covariate space. The optimal trade-off w.r.t. the baseline distribution is made by the
hazard classifier at t = 1 where the at-risk distribution corresponds to the marginal distribution
of covariates. Due to event-induced covariate shift, hazard estimates become increasingly biased
towards the survivor population at later time-steps.

B.2 Survival-based estimation

An alternative approach to targeting the likelihood of the hazard would be to target the survival
function directly by realizing that P(T > t|X = x) = E[1(T > t)|X = x], so that the survival
function can be estimated directly by solving tmax classification problems with targets {1(T > t)}t∈T .
This considers a loss function

L = −
n∑
i=1

∑
t∈T

1(τ̃i > t) log(S(t|xi)) + δi(1− 1(τ̃i > t)) log(1− S(t|xi)) (B.4)

which suffers from censoring-induced covariate shift due to the interaction of δi(1− 1(τ̃i > t)); i.e.
only non-censored individuals contribute to the ‘negative class’ 1(τ̃i ≤ t), an effect that gets larger
for t large.
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The multi-task logistic regression approach proposed in [14] is a variant of the more general approach
described above; it uses a modeling approach based on conditional random fields [15] and jointly
models all survival functions by accounting for the sequential nature of targets {1(T > t)}t∈T and
the existance of a restricted set of ‘legal’ values.

B.3 PMF-based estimation

Finally, instead of focussing on hazard or survival function, one could also estimate the PMF function;
the PMF can be transformed to hazard or survival functions by realizing that λ(1|x) = f(1|x) and
S(1|x) = (1−f(1|x)). This can be done by treating the survival problem as a tmax-class classification
problem with one-hot encoded labels (1(τi = t))t∈T leading to the loss

L = −
n∑
i=1

δi log(f(τ̃i|xi)) (B.5)

so that each uncensored observation contributes mainly to the estimate of f at its event-time step
τi [13] (instead of multiple time-steps as in the previous two subsections). Due to the presence of
censoring indicator δi, this suffers from censoring-induced covariate shift. As in [16]’s DeepHit, a
likelihood contribution (1− δi) log

(∑tmax
t=τ̃i+1 f(t|xi)

)
marginalizing over possible outcomes for all

censored observations can be added, such that they contribute to t > τi by signalling that their event
times are larger. For correctly specified models f this corresponds to optimizing the likelihood of the
PMF and is hence sufficient to correct for censoring, however, otherwise this does not exactly correct
for censoring-induced covariate shift.

C Technical details: Assumptions and Proofs

C.1 Assumptions

In this section, we discuss and formally state the assumptions made in Section 2. As e.g. [17, 18, 19],
we assume the fairly general causal structure encoded in the DAG in Figure 1. By assuming that
observed data was generated from this DAG, the classical identifying assumptions (No Hidden
Confounders, Censoring At Random, and Consistency) are implicitly formalized [17].

Equivalently, we can restate the assumptions using potential outcomes [20] notation. As in e.g.
[21], we let Ta denote the potential event time that would have been observed had treatment a been
assigned, and C = tmax been externally set. Then, the following assumptions are implied by the
DAG:
Assumption 1 (1.a No Hidden Confounders/ Unconfoundedness). Treatment assignment is random
conditional on covariates, i.e. Ta |= A|X .
Assumption 2 (1.b Censoring at random). Censoring and outcome are conditionally independent,
i.e. Ta |= C|X,A.
Assumption 3 (1.c Consistency). The observed outcomes are the potential outcomes under the
observed intervention, i.e. if A = a then T = Ta.

Then, we can write

λa(τ |x) = P(T = τ |T ≥ τ, do(A = a,C ≥ τ), X = x)

= P(Ta = τ |Ta ≥ τ, do(C ≥ τ), X = x)

= P(Ta = τ |Ta ≥ τ,A = a, do(C ≥ τ), X = x)

= P(Ta = τ |Ta ≥ τ, C ≥ τ,A = a,X = x)

= P(T = τ |T ≥ τ, C ≥ τ,A = a,X = x)

= P(T̃ = τ,∆ = 1|T̃ ≥ τ,A = a,X = x) = λ(τ |a, x)

Here, the equalities in line one and two follow by definition, line three follows by assumption 1.a,
line four follows by assumption 1.b, the equality in line five follows by assumption 1.c, and the final
line follows by definition.

To enable nonparametric estimation of λa(τ |x) for some fixed τ ∈ T , we additionally consider a
number of conditions on the likelihood of observing certain events.
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Assumption 4 (2.a Overlap/positivity (treatment assignment)). Treatment assignment is non-
deterministic, i.e. for some ε1 > 0, we have that ε1 < P(A = a|X = x) < 1− ε1
Assumption 5 (2.b Positivity (censoring)). Censoring is non-deterministic, i.e. for some ε2 > 0, we
have that P(NC(t) = 0|A = a,X = x) = P(C > t|A = a,X = x) => ε2 for all t < τ .
Assumption 6 (2.c Positivity (events)). Not all events deterministically occur before time τ , i.e.
P(NT (τ−1) = 0|A = a,X = x) > P(T > τ − 1|A = a,X = x)ε3 > 0

Assumptions 1.a, 1.c and 2.a are standard within the treatment effect estimation literature [2, 1];
assumptions 1.b and 2.b are standard within the literature with survival outcomes [21, 22]. Assumption
2.c is needed only if we aim to estimate λa(t|x) for all t, otherwise it would suffice to follow a
convention such as setting λa(t|x) = 1 whenever P(NT (τ−1) = 0|A = a,X = x) = 0.

C.2 Proof of proposition 1

In this section we state the proof of proposition 1 and restate two lemmas from [23] which we use
within the proof.

Notation and definitions (restated) For fixed a, τ and representation Φ : X → R, let PΦ
0 , PΦ

a,τ

and Pw,Φa,τ denote the baseline, observational and weighted observational distribution w.r.t. the
representation Φ. Define the pointwise losses

lh,Q(x; a, τ)
def
= EY (τ)|x,a∼Q[`(Y (τ), h(Φ(X)))|X = x,A = a]

lh,QΦ(φ; a, τ)
def
= EY (τ)|φ,a∼QΦ [`(Y (τ), h(Φ))|Φ = φ,A = a]

(C.1)

of (hazard) hypothesis h : R → [0, 1] w.r.t. distributions in covariate and representation space,
respectively.

Further, define the integral probability metric distance (IPM) w.r.t. a function class G as

IPMG(P,Q) = sup
g∈G

∣∣∣∣∫ g(x)(P(x)−Q(x))dx

∣∣∣∣ (C.2)

Define the excess target information loss η`Φ(h) analogously to [23] as

η`Φ(h)
def
= EX∼P0

[ξPΦ,P(X)− ξPw,Φa,τ ,P(X)] (C.3)

with
ξQΦ,Q(x)

def
= `h,QΦ(φ; a, τ)− `h,Q(x; a, τ) (C.4)

Preliminaries
Lemma 1 (Adapted from Lemma A.3 in [23]).

EX∼Q[`h,Q(X; a, τ)] = EΦ∼QΦ [`h,QΦ(Φ; a, τ)]

Proof. This proof is adapted to our notation and setting from [23] and stated for completeness. Let
y = y(τ) and z = Φ(x)

EΦ∼QΦ [`h,QΦ(Φ; a, τ)] =

∫
z,y

QΦ(z, y)`(y, h(z))dzdy

=

∫
z,y

`(y, h(z))

∫
x:z=Φ(x)

Q(x, y)dxdzdy

=

∫
x,y

Q(x, y)

∫
z

1{z = Φ(x)}`(y, h(z))dzdxdy

=

∫
x,y

Q(x, y)`(y, h(Φ(x))dxdy

= EX∼Q[`h,Q(X; a, τ)]
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Lemma 2 (Adapted from Lemma A.4 in [23]).

EX∼P0 [`h,P0(X; a, τ)] = EΦ∼PΦ
0

[lh,Pw,Φa,τ
(Φ; a, τ)] + ηlΦ(h)

Proof. This proof is adapted to our notation and setting from [23] and stated for completeness.

EX∼P0 [`h,P0(X; a, τ)] = EX∼P0 [EY (τ)|x,a∼Q[`(Y (τ), h(Φ(X)))|X = x,A = a]]

= EΦ∼PΦ
0

[`h,PΦ
0

(Φ; a, τ)] (by Lemma 1)

= EΦ∼PΦ
0

[`h,Pw,Φa,τ
(Φ; a, τ)] + EΦ∼PΦ

0
[`h,PΦ

0
(Φ; a, τ)]− EΦ∼PΦ

0
[`h,Pw,Φa,τ

(Φ; a, τ)]

= EΦ∼PΦ
0

[`h,Pw,Φa,τ
(Φ; a, τ)] + EΦ∼PΦ

0
[ξPΦ

0 ,P(X)− ξPw,Φa,τ ,P(X)]

= EΦ∼PΦ
0

[lh,Pw,Φa,τ
(Φ; a, τ)] + ηlΦ(h)

where the second to last line follows as lh,P(x; a, τ) cancels in ηlΦ(h)

Proof of proposition 1
Proposition 1 (Restated). Assume there exists a constant CΦ > 0 s.t. CΦ

−1`h,Pw,Φa,τ
(φ, a, τ) ∈ G for

some family of functions G. Then we have that

EX∼P0
[`h,P(X; a, τ)]︸ ︷︷ ︸
Target Risk

≤ EX∼Pa,τ [wa,τ (X)`h,P(X; a, τ)]︸ ︷︷ ︸
Weighted observational risk

+CΦ IPMG(PΦ
0 ,Pw,Φa,τ )︸ ︷︷ ︸

Distance in Φ-space

+ ηlΦ(h)︸ ︷︷ ︸
Info loss

(C.5)

Proof. By Lemma 2,

EX∼P0 [`h,P0(X; a, τ)] = EΦ∼PΦ
0

[lh,Pw,Φa,τ
(Φ; a, τ)] + ηlΦ(h)

Further,

EΦ∼PΦ
0

[lh,Pw,Φa,τ
(Φ; a, τ)]− EΦ∼Pw,Φa,τ

[lh,Pw,Φa,τ
(Φ; a, τ)] =

∫
φ

`h,Pw,Φa,τ
(φ; a, τ)(PΦ

0 (φ)− Pw,Φa,τ (φ))dφ

= CΦ

∫
φ

`h,Pw,Φa,τ
(φ; a, τ)

CΦ
(PΦ

0 (φ)− Pw,Φa,τ (φ))dφ

≤ CΦ sup
g∈G

∣∣∣∣∫
φ

g(φ)(PΦ
0 (φ)− Pw,Φa,τ (φ))dφ

∣∣∣∣
= CΦIPMG(PΦ

0 ,Pw,Φa,τ )

Thus

EX∼P0
[`h,P0

(X; a, τ)] ≤ EΦ∼Pw,Φa,τ
[lh,Pw,Φa,τ

(Φ; a, τ)] + CΦIPMG(PΦ
0 ,Pw,Φa,τ ) + ηlΦ(h)

= EX∼Pwa,τ [`h,P(X; a, τ)] + CΦIPMG(PΦ
0 ,Pw,Φa,τ ) + ηlΦ(h)

where the last line follows by Lemma 1 and the unconfoundedness and censoring at random assump-
tions, by which `h,P(X; a, τ) = `h,Pwa,τ (X; a, τ)

D Implementation

We discuss implementation of SurvITE and baselines in turn below. The source code for SurvITE is
available in https://github.com/chl8856/survITE. Throughout the experiments, training
SurvITE and its variants takes approximately 30 minutes to 1 hour on a single GPU machine2.

2The specification of the machine is: CPU – Intel Core i7-8700K, GPU – NVIDIA GeForce GTX 1080Ti,and
RAM – 64GB DDR4.
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D.1 SurvITE

Throughout the experiments, we implement SurvITE utilizing 3-layer fully-connected network (FC-
Net) with 100 nodes in each layer for the representation estimator Φ, and 2-layer FC-Net with 100
nodes in each layer for each hypothesis estimator ha,t, respectively. The parameters (θΦ, θh) are
initialized by Xavier initialization [24] and optimized via Adam optimizer [25] with learning rate of
0.001 and dropout probability of 0.3. We choose the balancing coefficient β within a set of possible
candidates B = {1., 0.1, 0.01, 0.001, 0.0001} utilizing a grid search. More specifically, we select
the highest value in B that does not compromise its discriminative performance (i.e. C-Index) based
on the validation set (i.e., 20% of the training set) to guarantee that the learned representation is
balanced as much as possible to adjust for the covariate shift while being informative about the
survival predictions. The effect of the balancing coefficient is further investigated in Section F.2.

Finite-Sample Wasserstein Distance. For the finite sample approximation of the Wasserstein
distance, we use Algorithm 1 with the entropic regularization strength set to λ = 10 and the number
of Sinkhorn iterations set to S = 10 following the implementation in [26, 27]. Thus, given two
sets of samples B0,B1 based on the treatment-group time-step combinations, we can compute
Wass

(
{Φ(xi)}i∈B0

, {Φ(xi)}i∈B1

)
based on Algorithm 1.

Algorithm 1 Pseudo-code for Finite Sample Wasserstein Distance

Input: Set B0, B1, entorpic regularization parameter λ ∈ R, the number
of Sinkhorn iterations S, representation θΦ

n1 = |B1| and n0 = |B0|
a = 1

n1
1 ∈ Rn1 and b = 1

n0
1 ∈ Rn0

M (i,j) = ‖Φ(xi)− Φ(xj)‖2 ∀i ∈ B1, ∀j ∈ B0

K = exp(−λM)

K̃ = diag(a−1)K
Initialize u = a
for s = 1, · · · , S do
u = 1./(K̃(b./(KTu)))

end for
v = b./(KTu).
T ∗λ = diag(u)Kdiag(v)

Output: Wass
(
{Φ(xi)}i∈B0

, {Φ(xi)}i∈B1

)
≈
∑
i,j T

∗(i,j)
λ M (i,j)

Smoothing and Parameter Sharing. Employing a separate FC-Net at each time step provides
sufficient capacity to estimate the hazard function accurately. However, this can be computationally
burdensome as the number of parameters linearly increases with the number time steps considered in
the study, and may result in having hypothesis estimators overfitted at the later time steps due to the
scarcity of samples at those time steps. To avoid such issues, one can employ coarser time intervals
for discritization or non-uniform time intervals (as in our experiments on the Twins dataset) such
that finer time intervals are used in the earlier time steps and coarser time intervals are used in the
later time steps to guarantee a sufficient amount of samples for training each hypothesis network. In
addition to these immediate solutions, one could consider two different remedies that slightly change
our model design:

• Smoothing regularization: We introduce an auxiliary regularization term that smooths the
hazard estimators across time steps for each treatment group. This encourages the hazard
estimators not to deviated too much from those at adjacent time steps. Formally, the smoothing
regularization is given by

Lsmoothing(θh) =
∑

a∈{0,1}

tmax∑
t=1

‖θha,t − θha,t−1‖22.

• Parameter Sharing: Instead of employing a separate FC-Net for each time step, we implement
a single FC-Net for each treatment group that is shared throughout the time steps i.e., t ∈ T ,
taking both the representation Φ(x) and t as input to the network. Formally, the hazard function
is defined as ha : R× T → [0, 1].
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We present experimental results using these approaches in Section F.3.

D.2 Details of Baselines

We compared SurvITE with baselines ranging from commonly used survival methods to the state-
of-the-art HTE methods based on deep neural networks. The details of how we implemented the
benchmarks are described as the following:

• Cox3 [29], RSF3 [30], and DeepHit4: When there are treatments, we use these models in
a two-model (T-learner) approach by training a separate model using samples in the treated
(A = 1) and controlled (A = 0) groups, respectively. For Cox, we set the coefficient for ridge
regression penalty as α = 0.001. For RSF, we use the default hyper-parameter setting (i.e.,
n_estimators = 100 using a survival tree as the baseline estimator and min_samples_leaf = 3
without maximum depth restriction). For DeepHit, we use utilize the 3-layer FC-Net with 100
nodes in each layer. We choose the DeepHit’s hyper-parameters α, σ from a set of possible
candidates {0.001, 0.01, 0.1, 1, 10} and {0.01, 0.1, 1.10}, respectively.

• LR-sep: We utilize the long data format as described in Section 2 of the manuscript and train
a separate logistic regression model5 at each time step t ∈ T to solve the hazard classification
problem utilizing only “at-risk” samples whose time-to-event/censoring is at or after t. Formally,
the logistic regression models are trained based on the log-loss in (B.3). When there are treatments,
we use LR-sep in a two-model (T-learner) approach by training a separate model using samples
in the treated (A = 1) and controlled (A = 0) groups, respectively.

• CSA6 [31]: We use the CSA-INFO model of [31], where we use its generative capabilities to
approximate target quantities via monte-carlo sampling. We use the code and specifications
provided by the authors, in particular we use a hidden dimension of 100, set the imbalance penalty
α = 100 and train for 300 epochs. To create monte carlo approximations, we sample 1000 times
from the model for each observation in the test set.

• SurvITE (CFR-1) and SurvITE (CFR-2): We consider two variants of SurvITE by replacing
our Lipm(θφ) with a balancing term based on the CFRNet7 proposed in [1]:

– SurvITE (CFR-1) creates a representation balancing treatment groups at baseline only which
is formally given as:

Lipm(θφ) = Wass
(
{Φ(xi)}i:ai=1, {Φ(xi)}i:ai=0

)
(D.1)

– SurvITE (CFR-2) creates a representation optimizing for balance of treatment groups at
each time step

Lipm(θφ) =

tmax∑
t=1

Wass
(
{Φ(xi)}i:τ̃i≥t,ai=1, {Φ(xi)}i:τ̃i≥t,ai=0

)
(D.2)

Note that, in both variants, there is no balancing towards P0. We implement SurvITE (CFR-1)
and SurvITE (CFR-2) with the same network architecture and hyper-parameters with those of
SurvITE.

E Dataset Description and Experimental Setup

E.1 Synthetic Experiments

In this section, we present some illustrations of the properties of the synthetic DGPs. Recall that
λw(τ |x) is the same across all settings, therefore we focus here on S3 to analyze the interplay of
selection bias and event processes. In Fig. E.1, we present histograms of event times in S3 for
different degrees of selection bias. Note that there is a positive treatment effect (treatment reduces

3Python package scikit-survival [28]
4https://github.com/chl8856/DeepHit
5Python package scikit-learn
6https://github.com/paidamoyo/counterfactual_survival_analysis
7https://github.com/clinicalml/cfrnet
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event probabilities) encoded in our DGP; this is clearly visible in the left panel without selection
bias as consistently more events occur for control than for treated group. As we add selection bias,
it seems that treatment has a negative effect on survival after time 10, as more events occur in the
treatment group. This correlation is spurious: as X2 linearly increases event hazard, and treatment is
selected based on X2 (rightmost panel) or based on a variable correlated with it (middle panel) it
seems as if treatment increases mortality. Note that this is not the case for t < 10 because X1 enters
λw(τ |x) in squared form.

Figure E.1: Histograms of event times in S3 for different degrees of selection bias; no selection (left),
no overlapping selection covariates (middle) and full overlap (right)

In Figure E.2 we further analyze the interplay between event-induced covariate shift and selection
bias by considering the distribution of X1 in the at-risk population over time. As −X2

1 appears
in the hazard, individuals with small magnitude of X1 have lower probability of survival – this
becomes visible for ζ = 0 as the at-risk histogram flattens out over time. Because X1 enters e(x)
linearly, when we add selection bias (ζ > 0), we observe that the populations not only differ already
at baseline, but that the difference appears to become more extreme over time – this is precisely
because the overlapping parts of the population (|X1| small) have larger event probability, so that the
event-induced shift further amplifies the selection boas over time.

Figure E.2: Histograms of X1 in the at-risk population by time (left to right) and ζ (top to bottom)
for S3 with P = {1, 2}, highlighting covariate shift due to selection bias (across ζ) and occurred
events (across t)

E.2 Semi-Synthetic Experiments: Twins

This dataset is derived from all births in the USA between 1989–1991 [32] where we only focus on the
twins. We artificially create a binary treatment such that a = 1(a = 0) denotes being born the heavier
(lighter). The outcome of interest is the time-to-mortality (in days) of each of the twins in their first
year, thus administratively censored at t = 365. Since we have records for both twins, we treat their
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time-to-event outcomes as two potential outcomes, i.e., τ̃(1) and τ̃(0), with respect to the treatment
assignment of being born heavier. As previously used in [33, 34], we obtained 30 features (which has
39 feature dimension after one-hot encoding on categorical features) for each twin relating to the
parents, the pregnancy, and the birth (e.g., marital status, race, residence, number of previous births,
pregnancy risk factors, quality of care during pregnancy, and number of gestation weeks prior to birth).
We only chose twins weighing less than 2kg and without missing features. To create an observational
time-to-event dataset, we selectively observed one of the two twins (no censoring) with selection
bias and (censoring) with both selection bias and censoring bias as follows: the treatment assignment
is given by a|x ∼ Bern(σ(w>1 x+ e)) where w ∼ Uniform(−0.1, 0.1)39×1) and e ∼ N (0, 12), and
the time-to-censoring is given by C ∼ Exp(100 · σ(w>2 x)) where w2 ∼ N (0, 12).

For continuous-time models (i.e., Cox, RSF, and CSA), we use the original time resolution in days
without discarding any information. For discrete-time models (i.e., LR-sep, SurvITE , and variants
of SurvITE), we use a non-uniform discretization – i.e. resolution of days in the first 30 days and
months after the first 30 days – because most of the events are concentrated in the first 30 days
(approximately 87% of the events occur within that period).

E.3 Performance Metrics

Once SurvITE (or SurvIHE) is trained, we can simply estimate the (treatment-specific) survival
function based on the estimated hazard functions as the following:

Ŝa(τ |x) =
∏
t≤τ

(
1− ha,t(Φ(x))

)
for a ∈ {0, 1}. (E.1)

Heterogeneous Treatment Effects. For synthetic experiments where we have the ground-truth
treatment-specific survival functions i.e., S1(τ |x) and S0(τ |x), we evaluate HTEsurv(τ |x) =
S1(τ |x)−S0(τ |x) and HTErmst(x;L) =

∑
tk≤L

(
S1(tk|x)−S0(tk|x)

)
· (tk − tk−1) in terms of

the averaged root mean squared error (RMSE) of the estimation:

εHTEsurv (t) =

√√√√ 1

n

n∑
i=1

(
HTEsurv(t|xi)− ĤTEsurv(t|xi)

)2
, (E.2)

εHTErmst(L) =

√√√√ 1

n

n∑
i=1

(
HTErmst(xi;L)− ĤTErmst(xi;L)

)2
. (E.3)

Here ĤTEsurv(t|x) = Ŝ1(τ |x)− Ŝ0(τ |x) and ĤTErmst(x;L) =
∑
tk≤L

(
Ŝ1(tk|x)− Ŝ0(tk|x)

)
·

(tk − tk−1) where (tk − tk−1) may vary depending on how the continuous time is discretized (e.g.,
non-uniform time intervals for the Twins dataset).

For semi-synthetic experiments where we have the ground-truth treatment-specific time-to-event out-
comes but not the treatment-specific survival functions, we only report εHTErmst(L) in (E.3) where
the ground-truth HTErmst(x;L) is defined in terms of the ground-truth time-to-event outcomes,
i.e., HTErmst(x;L) = (min(T (1), L)−min(T (0), L)) where T (1) and T (0) are the time-to-event
given a = 1 and a = 0, respectively.

(Treatment-Specific) Survival Functions. For evaluating the estimation performance of the
(treatment-specific) survival functions, we evaluate the averaged RMSE of these estimations as
the following:

εSa(t) =

√√√√ 1

n

n∑
i=1

(
Sa(t|xi)− Ŝa(t|xi)

)2
. (E.4)

Discriminative Performance. For assessing the survival predictions of all the survival models with
respect to how well the predictions discriminate among individual risks, we use the concordance
index (C-Index) [35]:

C-Index(t) = P
(
Ŝ(t|xi) < Ŝ(t|xj)

∣∣τ̃i < τ̃j , τ̃i ≤ t, δi = 1
)

(E.5)
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where Ŝ(t|x) = a · Ŝ1(t|x) + (1 − a) · Ŝ0(t|x) is the survival prediction given treatment a. The
resulting C-Index in (E.4) tells us how well the given survival model discriminates the individual
risks among the events that occur before or at time t.

F Additional Experiments

Figure F.1: RMSE of estimating the treatment-specific survival function S0(t|x) and the treatment
effect HTEsurv(t|x) for different time steps across synthetic settings (Lower is better). Averaged
across 5 runs; the error bar indicates 95%-confidence interval.

Figure F.2: RMSE of estimating the treatment effect HTEsurv(t|x) for different time steps across
synthetic settings (Lower is better) for methods not presented in the main text. Averaged across 5
runs.

Figure F.3: RMSE of estimating the treatment effect HTEsurv(t|x) for different time steps across
synthetic settings (Lower is better) for settings not presented in the main text. Averaged across 5 runs.

Figure F.4: RMSE of estimating the treatment-specific hazard function λ0(t|x) for different time
steps across synthetic settings (Lower is better). Averaged across 5 runs.

F.1 Additional Results on the Synthetic Experiments

In this subsection, we report the additional results on the synthetic experiments that were not provided
in the manuscript due space constraints.
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Figure F.5: C-Index for different time steps for S3 and S4 with ζ = 3 and P = {1, 2} (Higher is
better). Averaged across 5 runs.

Table F.1: RMSE on estimation of S0(t|x) and HTEsurv(x) (mean ± 95%-CI) for the synthetic
settings S3 and S4 with ζ = 3 and P = {9, 10} at L = 10.

Methods RMSE on S0(t|x) RMSE on HTEsurv(t|x)
S3 S4 S3 S4

Cox 0.127±0.002 0.127±0.001 0.101±0.004 0.099±0.004
RSF 0.074±0.005 0.079±0.005 0.081±0.003 0.084±0.004

LR-sep 0.112±0.002 0.115±0.006 0.096±0.003 0.099±0.005
DeepHit 0.095±0.012 0.087±0.003 0.107±0.014 0.095±0.007

CSA 0.155±0.005 0.147±0.001 0.176±0.025 0.148±0.011

SurvITE (no IPM) 0.086±0.008 0.088±0.011 0.071±0.011 0.079±0.012
SurvITE (CFR-1) 0.084±0.003 0.097±0.009 0.068±0.009 0.083±0.005
SurvITE (CFR-2) 0.059±0.003 0.085±0.020 0.061±0.009 0.073±0.011

SurvITE 0.055±0.007 0.063±0.010 0.060±0.009 0.063±0.004

In Table F.1, we report the performance comparison using DeepHit with respect to the estimations on
both S0(t|x) and HTEsurv(t|x) for the synthetic settings S3 and S4 with ζ = 3 and P = {9, 10}
at L = 10. We observe that DeepHit performs worse than the SurvITE architecture without IPM
term, indicating that our model architecture alone is better suited for estimation of treatment-specific
survival functions (note that [16] focused mainly on discriminative (predictive) performance, and
not on the estimation of the survival function itself). Therefore, upon addition of the IPM-terms, the
performance gap between SurvITE and DeepHit only becomes larger.

Figure F.1 shows the performance of estimations on S0(t|x) and HTEsurv(t|x) with error bars
(omitted in the main text for readability), Figure F.2 shows the performance of HTEsurv(t|x)
estimation for survival methods that were not presented in the main text to ensure readability, and
Figure F.3 shows the performance of HTEsurv(t|x) estimation for synthetic scenarios (combinations
of P and ζ) not provided in the main text due to space constraints. In all cases, we observe that
SurvITE (/SurvIHE) outperforms all other methods.

In Figure F.4 we present the RMSE of estimating the hazard function instead of the survival function
as in the main text8. The results for hazard estimation largely mimic the ones presented in the main
text; in particular, we observe that SurvITE (/SurvIHE) performs best throughout. Noteably, the gaps
in performance across all methods at later time-steps appear somewhat smaller for hazard than for
survival functions; this is expected as the errors on hazards accumulate when the survival function is
computed from them.

In addition, in Figure F.5, we report the discriminative performance of the various survival models for
synthetic scenarios S3 and S4 with ζ = 3 and P = {1, 2} across different time steps. We evaluate
the discriminative performance in terms of the C-index defined in (E.4). The figure shows that
SurvITE performs the best also in terms of discriminative performance throughout different scenarios
and different time steps due to the accurate estimation of the treatment-specific survival functions.

8Note that we excluded CSA-INFO from this plot, as it only outputs real-valued time-to-event predictions,
which makes it unclear how to best use it to directly estimate hazard functions.
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Figure F.6: RMSE of estimating the treatment effect HTEsurv(t|x) and C-index of the survival
predictions with different β on S4 with ζ = 3 and P = {1, 2}. Averaged across 5 runs.

F.2 Sensitivity Analysis

In this subsection, we investigate the effect of the balancing coefficient β in Figure F.6 on the
estimation performance of the HTE, and the discriminative performance of the survival predictions.
As expected, Figure F.6 shows that SurvITE with a proper amount of IPM regularization improves
the treatment effect estimation: imposing too much regularization will make the representation
estimator unable to maintain important information for estimating treatment-specific hazard functions
while setting regularization too low will not balance the representation from the different sources
of covariate shift. Similarly, if the representation is balanced too much, it will lose discriminative
power which will eventually make the trained model less useful. In this context, due to the absence of
counterfactual information in practice, we propose to select the balancing coefficient β by increasing
the value starting from the lowest value in the set of possible candidates {1., 0.1, 0.01, 0.001, 0.0001}
as long as the method maintains good discriminative performance on the validation set (and stop
when discriminative performance deteriorates). In our experiments, we choose β = 0.001, which is
the largest value that provides good discriminative performance based on the validation set (see the
right hand panel in Figure F.6).

(a) Training samples: 5000

(b) Training samples: 2000

Figure F.7: RMSE of estimating the treatment-specific survival function S0(t|x), that of the treatment
effect HTEsurv(t|x), and C-index of the survival predictions S(t|x) using smoothing and parameter
sharing on S4 with ζ = 3 and P = {9, 10}. Averaged across 5 runs.

F.3 SurvITE Variants with Smoothing and Sharing Parameters

In this subsection, we further investigate SurvITE variants with techniques that can address the
practical issue of potentially having too many separate hypothesis estimators for large tmax. Figure
F.7 compares the estimation performance of the treatment-specific survival functions, estimation
performance of the HTE, and the discriminative performance of survival predictions. When the
models are trained with a sufficient number of samples (here: 5000 training samples), the smoothing
regularization maintains a very similar performance in terms of estimating the treatment-specific
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survival functions and the HTE while sacrificing its discriminative performance at early time step.
Sharing the parameters of hypothesis estimator across different time steps suffers more performance
loss (nonetheless, it still provides reasonable performance) as the flexibility of the network is more
restricted. On the other hand, when the models are trained with a smaller number of samples (here:
2000 training samples), the smoothing and sharing the network parameters play significant role in
improving the estimation performance.
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