A APPENDIX

A.1 PROOFS

Proof of theorem 1. Letu € B and U ~ Unif(B%). The vector V € B¢ sampled as in algorithm 1,
has p.m.f.

(0| u) 1/P(MU,u) > k) if M(v,u) >k
b 1/P(MU,u) < k) ifM(v,u) < k.
The event that M(U,u) = x when “5*L € 7 implies that U and u match in exactly “H5+L

coordinates; the number of such matches is ( ( . Computing the binomial sum, we have
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Now we show unbiasedness via showing E[V | u = u] = m - u. We have
E[V |u=u] =pE[U | M(U,u) > ]+ (1 —p)E[U | M(U,u) < k]
By rotational symmetry, it suffices to show:
E[V!|u=u] =pE[U" | M(U,u) > &] +(1 — p) E[U* | M(U,u) < K]
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For T, we have:
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Where in the second equality we used the fact that Y

g w = 0. Similar calculations yield:
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Combining the preceding display with (T)), we have:
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Next we show privacy guarantee. As P(M (U, u) > k) is decreasing in x for any u,u’ € B and
v € B? we have
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The result follows by relation (5) O]

A.2 ON THE PRACTICALITY OF PRIVACY-PRESERVING SELECTION METHODS

Performing top-k selection with local privacy constraints could be done via two approaches. The first
take is iteratively running the exponential mechanism (Dwork et al., 2014) for &k times, each time
selecting a single index with gumble noise. The bottleneck of this take is that it requires sampling
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Figure 1: Comparison of sqSGD and sqSGDpr,

from a high dimensional distribution for k times, which is computationally heavy. Note that the
privatization step is carried out on the client side device, which is usually assumed to be of limited
computational power in FL settings (Kairouz et al.,2019), thus using iterative exponential mechanism
is not practical for FL scenarios. The second take is the noisy top-k algorithm (Ding et al., [2019),
which generalizes the report noisy max mechanism in Dwork et al.|(2014). The algorithm requires
adding Laplacian noise of scale 2Uk /¢ to each dimension of the gradient vector. In practice, k is
typically chosen at the order of hundreds. Since most of the gradients are very small in magnitude,to
ensure reasonable noise requires a high e budget to allocate for the selection step. This would
significantly affect the overall privacy level.

A.3  COMPARISONS OF SQSGD Vs SQSGDyprq

We construct an instance of sqSGDpr(, via utilizing the multi-dimensional piecewise mechanism
PM detailed in Wang et al.| (2019, Algorithm 4). As discussed in section 2.4, we need only slight
modification to algorithm 2. In particular, we modify line 15 of algorithm 2 to be Z ; = PM(X, ;).
The sampling rate is chosen such that d := |rd| < 2.5, as this guarantees that throughout the
perturbation process of PM, there will be no additional subsampling performed, and the experimental
results in section 4 do not necessarily implies the inferiority of the performance of PM. Throughout

the training process, each client send gradient updates that are quantized to the range B¢, with the
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radius chosenas U = £ 57,

To compare the performance of sqSGD and sqSGDpr, , we evaluated both algorithms on MNIST,
EMNIST and FMNIST datasets using the same federation scheme in section ??. We fix the following
hyperparameters: for the gradient update rule we set = 0.001, « = 8 = 1.0, for privacy level, we
set ¢ = 400 for MNIST and EMNIST, and ¢ = 2000 for FMNIST. The sampling ratio is fixed at
0.5%. We compare the test set accuracy, using different quantization levels. The results are plotted
in figure (1) The result suggests that sqSGDpr, is also valid for training large scale models, but to
achieve comparable accuracy with sqSGD, a larger communication cost shall be sacrificed.

A.4 EXPERIMENTS ON THE EFFECT OF GRADIENT SUBSAMPLING

In this experiment, we investigate the effect of subsampling under the setup of training a ResNet110
model on the FMNIST dataset. We fix the privacy level at e = 2000 and quantization level at K = 16.
We vary the subsampling ratio from the set {1,5, 10,50} x 1073, The results are plotted in figure
It could be seen from the plot that using a high sampling ratio severely hurts the training performance,
while also incurs more communication. It is thus necessary to perform subsampling. However, using
a very low subsampling ratio also causes training failure. This phenomenon will be further explored
in the next experiment.

A.5 EXPERIMENTS ON THE TRADE-OFF BETWEEN QUANTIZATION AND SAMPLING

In this experiment, we study the trade-off between quantization and sampling under the setup of
training a LeNet-5 model on the MNIST dataset. We fix the privacy level at e = 400, and fix the total
communication cost per client, measured using the product r log, K. We vary the quantization level
in the range {2, 8, 32,128} which corresponds to using {1, 3, 5, 7} bits per client per dimension, and
the sampling rate are adjusted accordingly. The results are shown in figure|3| The results suggest
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Figure 2: Study on the effect of gradient subsampling
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Figure 3: Study on the trade-off between quantization and sampling with fixed communication level

that increasing the quantization level may not monotonically increase training performance. This is
mainly due to the random subsample scheme of sqSGD, under which the structure of gradients is not
fully explored.
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