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1 FIRST AND SECOND DERIVATIVES OF KERNEL MACHINE PROBLEMS

Given a training data set {X,y} of n training instances where {X ∈ Rn×d,y ∈ Rn} =
{(x1, y1), (x2, y2), ..., (xn, yn)}, and (xi, yi) denotes the instance xi ∈ Rd with its label yi, the
objective of the kernel machine training is to find an optimal ω∗ wihch minimizes the structural risk
as follows.

minL(ω) =
1

n

n∑
i=1

l(f(ω,xi), yi) +
λ

2
||ω||2, (1)

where λ denotes the regularization constant and f(ω,xi) = 〈ω, φ(xi)〉. The variable ω is de-
fined on the reproducing kernel Hilbert space (RKHS) and 〈·, ·〉 is the inner product on the RKHS.
The function φ(·) maps the instances from their original data space to a higher dimensional feature
space induced by the kernel function. Assume the loss l(·, ·) is an affine function of ω. The rep-
resenter theorem (Schölkopf et al., 2001) shows that a minimizer of the optimization problem (1)
is ω =

∑n
j=1 αjφ(xj). Based on the reproducing property (Smola & Schölkopf, 1998), we have

f(ω,xi) =
∑n
j=1 αjk(xi,xj) where k(xi,xj) denotes a positive definite kernel function and

k(xi,xj) = 〈φ(xi), φ(xj)〉. By substituting the f(ω,xi) and ω into the Equation (1), we have the
objective below.

minL(α) =
1

n

n∑
i=1

l(

n∑
j=1

αjk(xi,xj), yi) +
λ

2
||

n∑
j=1

αjφ(xj)||2, (2)

where α = [α1 . . . αn]T is an n-dimension vector, each dimension of which corresponds to the
contribution of a training instance to the kernel machine.

Next we compute the Hessian matrix of Problem (2). We discuss two situations where Problem (2)
is solved with (e.g., kernel SVMs) or without constraints (e.g., kernel ridge regression). As it is
easy to compute the Hessian matrix of Problem (2) without any constraints, we concentrate on the
constrained problem in the following. The Hessian matrix of unconstrained Problem (2) is equal to
the one of constrained Problem (2). Problem (2) with constraints can be written as follows.

minimize L(α) =
1

n

n∑
i=1

l(

n∑
j=1

αjk(xi,xj), yi) +
λ

2
||

n∑
j=1

αjφ(xj)||2,

subject to λ > 0,

hi(X,α,Θ) = 0,∀i ∈ {1, . . . , nh},
gj(X,α,Θ) ≤ 0,∀j ∈ {1, . . . , ng},

(3)

where Θ denotes the set of hyper-parameters in kernel machines (i.e., Θ = {λ, θ1, θ2, . . .}). The
number of equality constraintsH = {hi(·, ·, ·)|∀i ∈ {1, . . . , nh}} and the number of inequality con-
straints G = {gj(·, ·, ·)|∀j ∈ {1, . . . , ng}} are denoted by nh and ng , respectively. The constraints
in H and G are affine functions, and constraints in G are convex and continuously differentiable,
which are common in kernel machines such as SVMs. In order to solve the optimization problem
as presented in Equation (3), we transform the Problem (3) to the following form with Lagrangian
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multipliers.

L(α,β,µ) =
1

n

n∑
i=1

l(

n∑
j=1

αjk(xi,xj), yi) +
λ

2
||

n∑
j=1

αjφ(xj)||2

+

nh∑
i=1

βihi(X,α,Θ) +

ng∑
j=1

µjgj(X,α,Θ).

(4)

The transformation is inspired by the proof of Lemma 4 in the paper (Keerthi & Lin, 2003). La-
grangian multipliers βi and µi denote the ith element of β and µ respectively where β ∈ Rnh

and µ ∈ Rng . Then, the Karush-Kuhn-Tucker (KKT) conditions (Keerthi & Lin, 2003) for the
Problem (3) are listed below.

∂L(α,β,µ)

∂αp
=

1

n

n∑
i=1

∇αp
l(

n∑
j=1

αjk(xi,xj), yi) + λαTKp

+ βT
∂h(X,α,Θ)

∂αp
+ µT

∂g(X,α,Θ)

∂αp
= 0,

subject to hi(X,α,Θ) = 0, µjgj(X,α,Θ) = 0,

gj(X,α,Θ) ≤ 0, µj ≥ 0,

∀i ∈ {1, . . . , nh}, ∀j ∈ {1, . . . , ng}.

(5)

The function h(X,α,Θ) consists of all the hi(X,α,Θ); similarly, g(X,α,Θ) is formed by all
the gi(X,α,Θ). Let Kp denote the pth column in the kernel matrix K ∈ Rn×n. The elements
in the i-th row and j-th column of matrix K is defined as Kij = k(xi,xj). Then, based on the
assumptions made earlier, we have that all the terms in ∂L(α,β,µ)

∂αp
except for λαTKp can be written

as a constant with respect to αp. If we take the second-order derivative of L(α,β,µ) with respect
to α, we can obtain that ∂L(α,β,µ)

∂αp∂αq
= Kpq where p and q are in {1, . . . , n}. Hence we have the

Hessian matrix H of objective function (5) equal to the kernel matrix K below.

H =


∂L(α,β,µ)
∂α1∂α1

∂L(α,β,µ)
∂α1∂α2

· · · ∂L(α,β,µ)
∂α1∂αn

...
...

. . .
...

∂L(α,β,µ)
∂αn∂α1

∂L(α,β,µ)
∂αn∂α2

· · · ∂L(α,β,µ)
∂αn∂αn

 =

K11 K12 · · · K1n

...
...

. . .
...

Kn1 Kn2 · · · Knn

 = K.

2 DERIVATION OF THE UPDATE FORMULA FOR W

To project the original optimization objective J (W ) (e.g., cross entropy loss) of the neural network,
the weight matrix W ∈ Rdout×din is first projected to a new matrix called Ŵ . By introducing the
projection matrix P , we have the projected weight Ŵ = WP

1
2 where P ∈ Rdin×din is a symmetric

matrix. With Ŵ , we have the transformed loss Ĵ (Ŵ ) as follows.

J (W ) = J (ŴP−
1
2 ) = Ĵ (Ŵ ). (6)

Using the chain rule, the first derivatives of Ĵ (Ŵ ) with respect to Ŵ is presented as follows.

∇Ŵ Ĵ (Ŵ ) =
∂Ĵ (Ŵ )

∂Ŵ
=
∂J (ŴP−

1
2 )

∂Ŵ
=
∂J (W )

∂W
(P−

1
2 )T . (7)

where∇Ŵ Ĵ (Ŵ ) ∈ Rdout×din . Using standard SGD, the update formula for Ŵ with loss Ĵ (Ŵ ) is
as below.

Ŵ ′ = Ŵ − η∇Ŵ Ĵ (Ŵ )

⇒W ′P
1
2 = WP

1
2 − η∇WJ (W )(P−

1
2 )T

⇒W ′ = W − η∇WJ (W )(P−
1
2 )T (P−

1
2 ).

(8)

Since P is symmetric and diagonalizable, P can be decomposed as P = QΣQT and P
1
2 =

QΣ
1
2QT , where Σ is a diagonal matrix. We can prove that P

1
2 is symmetric (i.e., (P

1
2 )T =

Q(Σ
1
2 )TQT = QΣ

1
2QT = P

1
2 ).
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Thus we have the update formula (8) of Ŵ with loss Ĵ (Ŵ ) equivalent to the following update
formula of W with loss J (W ) .

W ′ = W − η∇WJ (W )(P−
1
2 )T (P−

1
2 )

= W − η∇WJ (W )(P−
1
2 )(P−

1
2 )

= W − η∇WJP−1.

(9)

In Kernel SGD, we use the Hessian matrix H of the kernel machine as the projection matrix P .
The positive semi-definite Hessian matrix may transform the problem to a space where Kernel SGD
has a higher probability to converge to a better solution. Hence Kernel SGD updates the weight W
with the following formula which corresponds to the update of the projected weight in the space
transformed by the Hessian matrix.

W ′ = W − η∇WJ (W )H−1. (10)

In the mini-batch setting, we use a subset of the training data, for example, a mini-batch ofm training
instances, to approximate the Hessian matrix whereH is then anm×mmatrix. Ifm 6= din, H−1 is
reshaped as presented in Section 3.1 of the main paper. As for the weights in a tensor form, we can
compute the gradient of each 2-dimension matrix in the tensor and then combine all the gradients as
a tenor.

3 POSITIVE SEMI-DEFINITE PROPERTY OF THE INVERSE OF HESSIAN
MATRIX

We already know that Hessian matrixH ∈ Rm×m of the kernel machine (ie.,H is the kernel matrix)
is symmetric and positive semi-definite. Assume H has inverse and we have

(HT )−1 = H−1 = (H−1)T . (11)

Thus, H−1 is symmetric. Next, for any non-zero vector z ∈ Rm, we have

zTH−1z = zTH−1HH−1z

= (zTH−1)H(H−1z)

= (H−1z)TH(H−1z).

(12)

As zTHz ≥ 0 and assume H−1z is not a zero vector, we can obtain

zTH−1z = (H−1z)TH(H−1z) ≥ 0. (13)

Hence H−1 is positive semi-definite.

When m 6= din where din denotes the number of columns of matrix W , the Hessian matrix needs
to be reshaped as mentioned in Section 3.1 in the main paper. We prove that the reshaped Hessian
matrix which is denoted as Ĥ−1 is still positive semi-definite. If m < din, suppose z = [ẑ 0]T

where ẑ ∈ Rm is non-zero and 0 ∈ Rdin−m. Thus for any non-zero vector ẑ, we have zTH−1z =

ẑT Ĥ−1ẑ ≥ 0. Hence Ĥ−1 is positive semi-definite. If m > din, we removed the last m−din rows
and columns. The reshaped inversed matrix can be treated as the inverse of a new Hessian matrix
computed with a subset of input instances which is still positive semi-definite.

4 PROOF OF THE CONVERGENCE THEOREM

Convergence Theorem. In the neural network with the last layer of a fully connected layer with
softmax activation function, given the weight matrix W of the last layer and the corresponding
updated weight matrix W ′ computed by Equation (10), the cross entropy losses J (W ′) and J (W )
satisfy the following inequality.

J (W ′) ≤ J (W ). (14)
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Proof. We denote the weight matrix of the last layer by W which is an nc × din matrix (i.e.,
dout = nc), where nc is the number of classes. With the definition of J (W ) = −fi + ln

∑nc

j=1 e
fj

, Inequality (14) can be rewritten as follows.

−f ′i + ln

nc∑
j

ef
′
j ≤ −fi + ln

nc∑
j

efj .

From the definition of fi, we have f ′i = W ′iG(x). W ′i is the i-th row in of the matrix W ′.
As W ′i = Wi − η∇WiJ (W )H−1 according to Equation (10), then we have f ′i = WiG(x) −
η∇WiJ (W )H−1G(x). Therefore, we can express Inequality (10) as follows.

η∇Wi
J (W )H−1G(x) + ln

nc∑
j

ef
′
j ≤ ln

nc∑
j

efj . (15)

Then we take the natural exponential function on both sides and can obtain

nc∑
j

ef
′
j+η∇Wi

J (W )H−1G(x) ≤
nc∑
j

efj . (16)

In Inequality (16), if each term in the summation on the left side is less than or equal to the corre-
sponding term on the right side, then Inequality (16) holds. Let us take the j-th term on each side
and prove that for all j in {1, . . . , nc}, we have

f ′j + η∇Wi
J (W )H−1G(x) ≤ fj . (17)

We can move fj to the left side of the inequality. Proving the above inequality is equivalent to prove
Ej ≤ 0 , where

Ej = η[∇Wi
J (W )−∇Wj

J (W )]H−1G(x). (18)

The expression of Ej can be achieved using the definition of fj and expression of f ′j above Equa-
tion (15). Let Wj indicate the j-th row in matrix W . According to the definition of J (W ) with
variable W , we can compute the gradient of loss J (W ) with respect to Wj as follows.

∇Wj
J (W ) = [∇Wj1

J (W ) ∇Wj2
J (W ) . . . ∇Wjd

J (W )] = (aj − yj)G(x)T , (19)

where ∇Wj
J (W ) is a d-dimension row vector. Substituting ∇Wj

J (W ) of Equation (18) with the
result of Equation (19), we have

Ej = η(ai − aj − yi + yj)G(x)TH−1G(x).

According to the definition of the softmax function, we have that 0 ≤ ai ≤ 1 and thus derive the
following formulas.

ai − aj − yi + yj =

{
0 i = j,

ai − aj − 1 ≤ 0 i 6= j,

which can be integrated as (ai − aj − yi + yj) ≤ 0. Since the learning rate η is greater than or
equal to zero, we can derive that η(ai− aj − yi + yj) ≤ 0 always holds. Then the last term in Ej to
determine is G(x)TH−1G(x). Given that Hessian matrix H is a positive semi-definite matrix, we
can prove that H−1 is positive semi-definite. When the number of rows in H equals to the number
of neurons d in the FC layer, based on the definition of positive semi-definite matrix, for any vector
G(x), we always have G(x)TH−1G(x) ≥ 0. In the situations that the Hessian matrix needs to
be reshaped as mentioned in Section 3.1, G(x)TH−1G(x) ≥ 0 still holds which is proven in the
supplementary material. From the above, we can conclude that G(x)TH−1G(x) ≥ 0 and hence
Ej ≤ 0 is proved.

We summarize from the bottom up. As Ej ≤ 0, Inequality (16) and Inequality (17) are satisfied.
Hence we can prove that the loss decreases or stays unchanged as the training progresses when
using Kernel SGD. �
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5 PROOF OF THE PROPOSITION

Here we give the detailed proof of the proposition. First, we compute the second derivative of the
loss. Let F be the first derivative which is ∇WJ (W ) ∈ Rnc×din and F̂ denotes ∇Ŵ Ĵ (Ŵ ) ∈
Rnc×din . Then we represent the second derivative with F which is∇2

WJ (W ) where∇2
WJ (W ) =

∂F
∂W . Based on the relation between the derivatives (i.e., ∂F

∂W ) and differentials (i.e., dF and dW ),
we have

vec(dF ) =
∂F

∂W

T

vec(dW ), (20)

where vec(·) denotes vectorization of the matrix and vec(W ) can be presented as vec(W ) =
[W11 . . . Wnc1 W12 . . . Wnc2 W1din . . . Wncdin ]T . For differentials, we have

dF = d(∇Ŵ Ĵ (Ŵ )H
1
2 )

= (d∇Ŵ Ĵ (Ŵ ))H
1
2 +∇Ŵ Ĵ (Ŵ )(dH

1
2 )

= (d∇Ŵ Ĵ (Ŵ ))H
1
2 = (dF̂ )H

1
2 ,

dW = d(ŴH−
1
2 )

= (dŴ )H−
1
2 + ŴdH−

1
2

= (dŴ )H−
1
2 ,

where dH
1
2 = 0 and dH−

1
2 = 0. The inverted Hessian matrix H−1 is the reshaped Hessian where

H−1 is a din-by-din matrix. Then we we have the vectorization of differentials dF and dW as
follows.

vec(dF ) = vec((dF̂ )H
1
2 )

= (H
1
2T ⊗ I)vec(dF̂ )

= (H
1
2 ⊗ I)vec(dF̂ ), (21)

vec(dW ) = vec(d(Ŵ )H−
1
2 )

= (H−
1
2T ⊗ I)vec(dŴ )

= (H−
1
2 ⊗ I)vec(dŴ ), (22)

where ⊗ is the Kronecker product and I is an nc × nc identity matrix. Using the definition in
Equation (21) and Equation (22), we can rewrite Equation (20) as follows.

vec(dF ) =
∂F

∂W

T

vec(dW ),

⇒ (H
1
2⊗I)vec(dF̂ ) =

∂F

∂W

T

(H−
1
2 ⊗ I)vec(dŴ ). (23)

We multiply (H
1
2 ⊗ I)−1 on both sides of Equation (23), and can derive the following equations.

vec(dF̂ ) = (H
1
2 ⊗ I)−1

∂F

∂W

T

(H−
1
2 ⊗ I)vec(dŴ ),

⇒ vec(dF̂ ) = (H−
1
2 ⊗ I)

∂F

∂W

T

(H−
1
2 ⊗ I)vec(dŴ ).

(24)

Since we know that vec(dF̂ ) = ∂F̂
∂Ŵ

T
vec(dŴ ), combining with Equation (24), and we have
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∂F̂

∂Ŵ

T

= (H−
1
2 ⊗ I)

∂F

∂W

T

(H−
1
2 ⊗ I), (25)

⇒ ∂F̂

∂Ŵ
= (H−

1
2 ⊗ I)T

∂F

∂W
(H−

1
2 ⊗ I)T

= (H−
1
2T ⊗ IT )

∂F

∂W
(H−

1
2T ⊗ IT )

= (H−
1
2 ⊗ I)

∂F

∂W
(H−

1
2 ⊗ I). (26)

Equation (26) shows the relation between the second derivative of the transformed loss and second
derivative of the original loss. Then we compute the first-order Taylor expansion of the projected
loss near the point Ŵ and the original loss near the point W , respectively. We take derivatives on
both sides of the expanded equations. Suppose Ŵ ∗ andW ∗ are the global minimum of the projected
and original loss, respectively. We can derive that

vec(∆Ŵ ) = vec(Ŵ ∗ − Ŵ )

= −∇2
Ŵ
Ĵ (Ŵ )

−1
vec(∇Ŵ )Ĵ (Ŵ ), (27)

vec(∆W ) = vec(W ∗ −W )

= −∇2
WJ (W )

−1
vec(∇WJ (W )), (28)

where∇2
WJ (W ) is the second-order derivative of loss J (W ). According to the definition in Equa-

tion (26), we can rewrite Equation (27) as below.

vec(∆Ŵ ) = −(
∂F̂

∂Ŵ
)−1vec(∇Ŵ Ĵ (Ŵ ))

= −((H−
1
2 ⊗ I)

∂F

∂W
(H−

1
2 ⊗ I))−1vec(∇Ŵ Ĵ (Ŵ ))

= −(H−
1
2 ⊗ I)−1

∂F

∂W

−1
(H−

1
2 ⊗ I)−1vec(∇Ŵ Ĵ (Ŵ ))

= −(H
1
2 ⊗ I)∇2

WJ (W )
−1

(H−
1
2 ⊗ I)−1vec(∇Ŵ Ĵ (Ŵ )).

(29)

With Equation (7), we have the right side of Equation (29) is equal to the following formula.

− (H
1
2 ⊗ I)∇2

WJ (W )
−1

(H−
1
2 ⊗ I)−1vec(∇WJ (W )(H−

1
2 )T )

= −(H
1
2 ⊗ I)∇2

WJ (W )
−1

(H−
1
2 ⊗ I)−1(H−

1
2 ⊗ I)vec(∇WJ (W ))

= −(H
1
2 ⊗ I)∇2

WJ (W )
−1

vec(∇WJ (W ))

= (H
1
2 ⊗ I)vec(∆W ).

(30)

Combining Equation (29) and Equation (30), and we have vec(∆Ŵ ) = (H
1
2 ⊗ I)vec(∆W ). We

take Euclidean norm on both sides and have

||vec(∆Ŵ )||2 = ||(H 1
2 ⊗ I)vec(∆W )||2

≤ ||H 1
2 ⊗ I||F ||vec(∆W )||2

= ||H 1
2 ||F ||I||F ||vec(∆W )||2

=
√
nc ||H

1
2 ||F ||vec(∆W )||2,

(31)

where || · ||F is the Frobenius norm and || · ||2 is the Euclidean norm. The inequality in Equation (31)
is derived from the fact that the Frobenius norm of a matrix is compatible with the Euclidean norm of
a vector (i.e., ||Av||2 ≤ ||A||F ||v||2 where A ∈ Rn×n and v ∈ Rn). We use eigen-decomposition
on H and can have H

1
2 = QΛ

1
2QT where Λ is the eigenvalue matrix of H . With the last result of
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Equation (31), we have ∣∣∣∣vec(∆Ŵ )
∣∣∣∣

2
≤
√
nc

∣∣∣∣QΛ
1
2QT

∣∣∣∣
F

∣∣∣∣vec(∆Ŵ )
∣∣∣∣

2

=
√
nc

∣∣∣∣Λ 1
2
∣∣∣∣

F

∣∣∣∣vec(∆Ŵ )
∣∣∣∣

2

=

√√√√nc ·
din∑
i=1

(π
1
2
i )2

∣∣∣∣vec(∆Ŵ )
∣∣∣∣

2
.

≤

√√√√nc ·
n∑

i=1

(π
1
2
i )2

∣∣∣∣vec(∆Ŵ )
∣∣∣∣

2
.

where πi is the i-th eigenvalue of matrix H . Since the Hessian matrix H is symmetric, matrix Q
is an orthogonal matrix. Thus, the Frobenius norm of Λ

1
2 stays the same after mapped using Q. If

the assumption is satisfied where
∑n
i=1 πi ≤

1
nc

, we have ||vec(Ŵ ∗ − Ŵ )||2 ≤ ||vec(W ∗ −W )||2
which indicates that the optimum is closer to the initial point in the transformed space.

6 SELECTED HYPER-PARAMETERS OF THE BEST MODELS

In our experimental studies, we compared the performance of the best models achieved by Kernel
SGD with those achieved by other baselines. The hyper-parameters of the best models were selected
based on the validation accuracy. Here we list the selected learning rate and hyper-parameter γ using
different random seeds in Table 1.

Table 1: Selected hyper-parameters of the best models

dataset optimizer η γ
seed1 seed2 seed3 seed4 seed5 seed1 seed2 seed3 seed4 seed5

mnist

ours 0.1 0.1 0.1 0.1 0.1 0.0001 0.001 0.0001 0.001 0.0001
L-BFGS 0.01 0.01 0.01 0.01 0.01 – – – – –
ESGD 0.1 0.1 0.1 0.1 0.1 – – – – –
SGD 0.1 0.1 0.1 0.1 0.1 – – – – –

SGD+M 0.1 0.1 0.1 0.1 0.1 – – – – –

usps

ours 0.01 0.1 0.1 0.1 0.1 0.01 0.01 0.1 0.1 0.1
L-BFGS 0.01 0.1 0.01 0.01 0.01 – – – – –
ESGD 0.1 0.1 0.1 0.1 0.1 – – – – –
SGD 0.1 0.1 0.1 0.1 0.1 – – – – –

SGD+M 0.1 0.1 0.1 0.1 0.1 – – – – –

cifar10

ours 0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.001 0.01 0.1
L-BFGS 0.01 0.01 0.01 0.01 0.01 – – – – –
ESGD 0.1 0.1 0.1 0.1 0.1 – – – – –
SGD 0.1 0.1 0.1 0.1 0.1 – – – – –

SGD+M 0.01 0.01 0.01 0.01 0.01 – – – – –

S-CoV

ours 0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.001 0.01 0.1
L-BFGS 0.1 0.1 0.01 0.01 0.1 – – – – –
ESGD 0.1 0.1 0.1 0.1 0.1 – – – – –
SGD 0.1 0.1 0.1 0.1 0.1 – – – – –

SGD+M 0.01 0.01 0.01 0.01 0.01 – – – – –

COV-tw

ours 0.1 0.1 0.1 0.1 0.1 0.0001 0.1 0.1 0.1 0.1
L-BFGS 0.1 0.1 0.1 0.01 0.01 – – – – –
ESGD 0.1 0.1 0.1 0.1 0.1 – – – – –
SGD 0.01 0.1 0.1 0.1 0.1 – – – – –

SGD+M 0.01 0.01 0.01 0.01 0.1 – – – – –

IMDB

ours 0.1 0.1 0.1 0.1 0.1 0.0001 0.0001 0.1 0.0001 0.01
L-BFGS 0.1 0.01 0.1 0.1 0.1 – – – – –
ESGD 0.1 0.1 0.1 0.1 0.1 – – – – –
SGD 0.1 0.1 0.1 0.1 0.1 – – – – –

SGD+M 0.1 0.1 0.01 0.01 0.01 – – – – –
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