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APPENDIX

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 SUBJECT-DRIVEN TEXT-TO-IMAGE GENERATION

For subject-driven text-to-image generation, we fine-tune models using selected samples from the
DreamBooth (Ruiz et al., 2023) and CustomConcept101 (Kumari et al., 2022) datasets. Each subject
sample contains 5 to 6 images captured from different angles and contexts. We compare full-parameter
fine-tuning (FT), LoRA (Hu et al., 2022), and our proposed CERSA on this task.

As shown in Fig. 1, we evaluate subject-driven generation across multiple domains, including scene
composition, material modification, and artistic style transfer:

• Scene composition. When placing a sports car in front of the Eiffel Tower or on a New
York street, CERSA captures both background details and subject fidelity more accurately
than LoRA, producing results that more closely resemble FT.

• Material modification. Applying glass and silver textures to a duck toy highlights CERSA’s
strength: it preserves the subject’s original shape and features while achieving consis-
tent material transfer. In contrast, LoRA and FT often distort shapes or fail to maintain
color/material consistency.

• Style transfer. When adapting a dog’s image into the styles of Vincent van Gogh and
Leonardo da Vinci, all three methods demonstrate recognizable style transfer, but CERSA
produces visuals that align more closely with FT while avoiding artifacts.

Quantitative comparison. We use CLIPScore (Hessel et al., 2022) to assess prompt-image align-
ment. CERSA achieves the highest average CLIPScore(32.75), outperforming LoRA (31.88) and FT
(32.35), indicating better generation quality.

Overall, these results demonstrate that CERSA achieves high-quality subject-driven image generation,
consistently surpassing LoRA and closely matching or even exceeding the performance of full-
parameter fine-tuning, while being significantly more memory- and parameter-efficient.

A.2 IMAGE CLASSIFICATION

In addition to testing the performance of CERSA on ViT-Large (Dosovitskiy, 2021), we also test it
on ViT-Base (Dosovitskiy, 2021). With ViT-Base Tab. 1, CERSA achieve an average accuracy of
89.0% across eight datasets, outperforming full parameter fine-tuning (FT) (86.5%) and significantly
surpassing other PEFT methods like LoRA (Hu et al., 2022) (77.6%), PiSSA (Meng et al., 2024)
(84.2%), SVFT (Lingam et al., 2024) (84.6%), and SVFit (Sun et al., 2024) (83.7%). It also excels
on fine-grained classification tasks, particularly Stanford Cars and FGVC Aircraft (Maji et al., 2013),
and matches or exceeds FT on general datasets like CIFAR-10 (Krizhevsky & Hinton, 2009), Oxford
Pets (Parkhi et al., 2012), and DTD (Cimpoi et al., 2014), demonstrating strong generalization.
Compared to ViT-Large (Dosovitskiy, 2021), the performance advantage of our method is more
obvious on ViT-base (Dosovitskiy, 2021), but the compression rate is not as good as that of the large
model.

Additionally, in Tab. 2, we evaluate the performance of all image classification tasks on ViT-
Base (Dosovitskiy, 2021) under different settings of the cumulative energy retention ratio. In the first
set of experiments, we set α = β, which means that the entire principal subspace corresponding to
the cumulative energy is fine-tuned. We test performance under different cumulative energy retention
ratios {0.95, 0.9, 0.8, 0.5}. In the second set of experiments, we fix α = 0.95 and examine the
performance of fine-tuning only a portion of the principal subspace, with β set to 0.9, 0.8, and 0.5,
respectively.

In the first set of experiments, we observe that the average performance drop is minimal (only 1.4%)
when the cumulative energy retention ratio ranges from 0.95 to 0.8. Only when the ratio decreased to
0.5 did a significant performance decline occur. This indicates that we have ample room to trade off a
slight performance loss for a substantial reduction in overall memory consumption. In the second set
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A [V] duck toy made of glass
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Figure 1: Results of visual comparison generated by the subject-driven fine-tuned diffusion model
using the proposed CERSA, LoRA (Hu et al., 2022), and DreamBooth (Ruiz et al., 2023).
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Method CIFAR-100 EuroSAT RESISC45 StanfordCars FGVC-Aircraft DTD CIFAR-10 OxfordPets Average

FT 92.4 99.1 96.1 79.8 54.8 77.7 98.9 93.1 86.5
LoRA 92.0 98.4 92.7 45.5 25.2 75.0 98.8 93.1 77.6
PiSSA 91.2 98.7 95.5 67.1 47.6 78.7 98.6 95.9 84.2
SVFit 91.6 98.6 93.0 67.2 47.9 80.5 98.8 92.3 83.7
SVFT 91.2 98.5 92.4 67.5 56.2 79.8 98.7 92.5 84.6
CERSA 92.1 98.9 95.6 83.9 68.2 81.2 98.8 93.2 89.0

Table 1: Comparison of various fine-tuning methods on eight image classification datasets using
ViT-Base (Dosovitskiy, 2021). Methods include LoRA (Hu et al., 2022), PiSSA (Meng et al., 2024),
SVFit (Sun et al., 2024), and SVFT (Lingam et al., 2024). Bold scores indicate the highest accuracy
among PEFT methods, while underlined scores indicate that full-parameter fine-tuning (FT) achieves
the best performance.

CIFAR-100 EuroSAT RESISC45 StanfordCars FGVC-Aircraft DTD CIFAR-10 OxfordPets Average

CERSAα=1,β=1 91.3 97.6 85.5 72.8 64.6 78.9 98.6 92.3 85.2
CERSAα=0.95,β=0.95 92.1 98.9 95.6 83.9 68.2 81.2 98.8 93.2 89.0
CERSAα=0.9,β=0.9 92.1 98.6 95.3 83.5 68.2 80.3 98.6 93.2 88.7
CERSAα=0.8,β=0.8 91.1 98.1 94.9 80.2 67.4 78.1 98.5 92.6 87.6
CERSAα=0.5,β=0.5 83.3 95.4 91.7 62.9 50.7 67.4 96.3 87.7 79.4

CERSAα=0.95,β=0.95 92.1 98.9 95.6 83.9 68.2 81.2 98.8 93.2 89.0
CERSAα=0.95,β=0.9 92.1 98.6 95.3 83.7 69.8 80.5 98.7 93.1 88.9
CERSAα=0.95,β=0.8 92.3 98.1 95.1 81.5 70.4 79.0 98.6 93.2 88.5
CERSAα=0.95,β=0.5 91.5 95.4 94.3 75.8 60.2 77.6 98.4 93.2 85.8

Table 2: Evaluation results of CERSA on eight image classification datasets under different α and β
settings using ViT-Base (Dosovitskiy, 2021).

Dataset CIFAR-100 EuroSAT RESISC45 StanfordCars FGVC-Aircraft DTD CIFAR-10 OxfordPets

Attention Dropout 0.1 0.1 0.1 0 0.1 0.1 0.1 0
Weight Decay 1e-3 1e-3 1e-3 0.01 1e-3 1e-3 1e-3 0.01
LR 1e-4 8e-5 1e-3 1e-3 2e-3 3e-4 1e-4 1e-4
LR (Classifier) 1e-3 5e-4 3e-3 3e-3 6e-3 1e-3 1e-3 1e-3

Table 3: Hyperparameter settings for ViT-Large (Dosovitskiy, 2021) across different datasets for
image classification experiments. LR: Learning Rate.

of experiments, we found that reducing β from 0.95 to 0.8 results in only a performance drop of 0.5%,
and even at β = 0.5, the performance decrease is limited to 3.2%. This suggests that fine-tuning
only the most principal part of the preserved subspace allows for a more parameter-efficient approach
while incurring only a minor performance loss.

B MORE IMPLEMENTATION DETAILS

Experimental Environment. All experiments were conducted on an NVIDIA L40 GPU using the
PyTorch framework (Paszke et al., 2019) and Hugging Face’s Transformers library (Wolf et al.,
2020) for fine-tuning.

Settings for Image Classification. For image classification, we fine-tune ViT-Base and ViT-
Large (Dosovitskiy, 2021) on the Query (Q), Key (K), and Value (V) matrices within the attention
module. In our method, CERSA, we set a cumulative energy retention rate of α = β = 0.95 across
all fine-tuning tasks. For comparison, we configure LoRA (Hu et al., 2022) and PiSSA (Meng et al.,
2024) with a rank of 32, a commonly chosen value that balances performance and the number of
trainable parameters.

For SVFit (Sun et al., 2024), we adhere to the recommended configuration of the original paper, using
a rank of 768 for all models. Similarly, for SVFT (Lingam et al., 2024), we adopt the best-performing
settings. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with a fixed batch size of 32
and a linear scheduler incorporating a warm-up ratio of 0.08. For further details on hyperparameter
settings, see Tab. 3 and Tab. 4.

Settings for Text-to-Image Generation. For the subject-driven text-to-image generation task,
We use Stable Diffusion v2-1-base (Rombach et al., 2022) as the pre-trained model and apply
DreamBooth (Ruiz et al., 2023) for subject-driven text-to-image fine-tuning. We follow the setup
of DreamBooth (Ruiz et al., 2023) to evaluate CERSA’s fine-tuning. This ensures that the method
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Dataset CIFAR-100 EuroSAT RESISC45 StanfordCars FGVC-Aircraft DTD CIFAR-10 OxfordPets

Attention Dropout 0.1 0.1 0.1 0 0.1 0.1 0.1 0
Weight Decay 1e-3 1e-3 1e-3 0.01 1e-3 1e-3 1e-3 0.01
LR 2e-4 1e-4 2e-3 2e-3 1e-3 2e-4 2e-4 2e-4
LR (Classifier) 1e-3 5e-4 5e-3 5e-3 5e-3 1e-3 1e-3 1e-3

Table 4: Hyperparameter settings for ViT-Base (Dosovitskiy, 2021) across different datasets for
image classification experiments. LR: Learning Rate.

Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Max Seq. Len. 256 128 320 64 512 320 320 128
Epochs 8 16 30 15 10 8 20 15
Batch Size 16 32 16 16 32 16 16 32
Classifier Dropout 0.15 0 0 0.1 0.1 0.2 0.2 0.2
Weight Decay 0 0.01 0.01 0 0.01 0.01 0.01 0.1
LR 1e-4 1e-4 2e-4 1e-4 1e-4 1e-4 2e-4 2e-4
LR(Classifier) 3e-4 3e-4 4e-4 3e-4 3e-4 3e-4 4e-4 4e-4

Table 5: Hyperparameter settings for DeBERTa-V3-Base (He et al., 2023) across different datasets
for NLU experiments. LR: Learning Rate.

Methods Trainable
Parameter (M)

Trainable
Ratio (%)

Weights
Memory (MB)

Optimizer
State Memory (MB)

Gradient
Memory (MB)

Total
Memory (MB)

FT 303.3 100 1157.7 2314.4 1157.7 4629.8
LoRA (Hu et al., 2022)(r = 8) 0.8 0.3 1161.9 9.4 4.7 1175.9
LoRA (Hu et al., 2022)(r = 32) 3.2 1.0 1175.4 36.4 18.2 1229.9
SVFit (Sun et al., 2024) 0.04 0.02 1349.8 1.1 0.6 1351.5
SVFT (Lingam et al., 2024) 0.12 0.06 1350.9 3.3 1.7 1355.8
CERSAα=β=0.95 10.5 3.6 1111.4 80.5 40.3 1232.2
CERSAα=β=0.92 8.1 2.8 1069.0 59.0 29.5 1157.5
CERSAα=β=0.9 6.3 2.3 1048.6 49.3 24.6 1122.5
CERSAα=β=0.85 4.3 1.6 1011.4 33.3 16.7 1061.4
CERSAα=β=0.8 3.0 1.2 985.2 23.6 11.8 1020.6

Table 6: Memory consumption comparison across various methods with different settings.

captured subject-specific details while preserving pre-trained knowledge. We compare CERSA with
full-parameter DreamBooth (Ruiz et al., 2023) and LoRA (Hu et al., 2022), evaluating image quality
and textual alignment.

In our implementation, we replace all linear layers in the UNet (Ronneberger et al., 2015) and the
attention modules of the CLIP (Radford et al., 2021) text encoder with CERSA. The cumulative
energy retention rate is set to α = β = 0.95. For LoRA (Hu et al., 2022), we insert the adapters
into the same layers with a rank of 32. For full-parameter fine-tuning, we made all these layers
trainable. The VAE(variational autoencoder) module remains frozen in all methods. We use the
AdamW (Loshchilov & Hutter, 2017) optimizer and a constant scheduler. To ensure fairness in
the inference stage, we use identical random seeds, inference steps, and guidance scales across all
methods, preventing variations due to different parameter settings.

Settings for NLU Experiments. For the NLU experiments, we fine-tune the Q, K, and V matrices
in DeBERTa-v3-base (He et al., 2023). The adapter rank for LoRA (Hu et al., 2022) and PiSSA (Meng
et al., 2024) is set to 32. SVFit (Sun et al., 2024) and SVFT (Lingam et al., 2024) use the same settings
as in the image classification experiments. To ensure fairness, we follow SVFT’s (Lingam et al.,
2024) max sequence length settings. We use the AdamW (Loshchilov & Hutter, 2017) optimizer and
employ a linear scheduler with a warm-up ratio of 0.08. For detailed hyperparameters, see Tab. 5.

C PERFORMANCE ON MEMORY CONSUMPTION

Tab. 6 compares the parameter and memory efficiency of various fine-tuning methods. We exclude
activation and dataset-related memory usage, as they remain largely independent of the fine-tuning
approach. Thus, total memory refers to the sum of the weight size, the gradient size, and the size of
the optimizer parameter. Besides, in Tab. 6, we report the number of trainable parameters in millions
(M).
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Figure 2: Training throughput and training time of fine-tuning ViT-Large (Dosovitskiy, 2021) on the
DTD (Cimpoi et al., 2014) dataset under various configurations.

Full-parameter fine-tuning (FT) updates all model parameters (303.3 M trainable parameters), result-
ing in a substantial total memory consumption of 4629.8 MB. This high memory demand makes FT
impractical for resource-constrained environments.

LoRA (Hu et al., 2022), with ranks of 8 and 32, significantly reduces the number of trainable
parameters to 0.8 M and 3.2 M, respectively. However, its total memory consumption remains
considerable – 1175.9 MB for rank=8 and 1229.9 MB for rank=32 – exceeding the memory footprint
of the pre-trained weights due to additional optimizer state and gradient storage. Similarly, SVFit (Sun
et al., 2024) achieves high parameter efficiency with only 0.04 M of trainable parameters yet still
requires 1351.5 MB of total memory, primarily due to the storage overhead of full singular vector
matrices.

The proposed CERSA method provides a flexible solution for memory and parameter-efficient fine-
tuning by adjusting the cumulative energy retention rate, enabling different levels of efficiency based
on memory constraints. For example, with a relatively ample memory budget, setting the retention
rate to α = β = 0.95 yields better performance. At α = β = 0.92, CERSA maintains a memory
footprint equivalent to the pre-trained weights during fine-tuning. When reduced to α = β = 0.8, it
retains 3.0 M trainable parameters comparable to LoRA (Hu et al., 2022) (rank=32) while significantly
lowering total memory consumption to 1020.6 MB (while LoRA (Hu et al., 2022) uses up to 1229.9
MB).

Although not as parameter-efficient as SVFit (Sun et al., 2024) and SVFT (Lingam et al., 2024),
CERSA excels in overall memory efficiency, even with more trainable parameters. This makes it
particularly advantageous for fine-tuning large-scale models in memory-constrained environments.
Additionally, its adjustable cumulative energy retention rate allows for customized trade-offs, making
CERSA a versatile solution that outperforms other PEFT methods in total memory consumption
while maintaining competitive performance.

D PERFORMANCE ON SPEED

CERSA decomposes the pre-trained weight matrix into three components: Up, Sp, and Vp. For
simplicity, we assume that CERSA is configured with α = β = 0.95. Compared to the original
weight matrix W , this decomposition introduces more granular matrix computations. However, since
the size of the matrices involved in computation is significantly reduced, the overall computational
cost is also reduced. To evaluate the actual impact on fine-tuning, we design experiments to measure
training throughput and training time.

To eliminate the impact of dataset pre-processing and batch size on computation time and throughput,
we fix the batch size at 32 and the number of epochs at 15. Fine-tuning is performed on ViT-
Large (Dosovitskiy, 2021) across full-parameter fine-tuning, LoRA (Hu et al., 2022), and CERSA.

Experimental results show that our method achieves a comparable or superior training efficiency to
LoRA while significantly outperforming FT in terms of speed. As shown in Fig. 2, LoRA (r=32,
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Figure 3: Out-of-distribution evaluation on various tasks.

Method FT LoRA (Hu et al., 2022) CERSA

Average Forgetting Rate 17.8% 2.3% -1.5%

Table 7: Average forgetting rate of FT, LoRA (Hu et al., 2022) and CERSA on the four datasets
(CIFAR-100 (Krizhevsky & Hinton, 2009), DTD (Cimpoi et al., 2014), StanfordCars (Krause et al.,
2013), and RESISC45 (Cheng et al., 2017))

r=8) improves throughput by about 30% over FT. CERSA, across all cumulative energy retention
rates {0.95, 0.9, 0.85, 0.8}, slightly exceeds LoRA’s efficiency, demonstrating that the cumulative
energy retention decomposition of the weight matrix effectively reduces computational complexity
while preserving model capacity. Despite introducing more granular matrix multiplications, the
significantly reduced dimensionality effectively lowers the computational cost. As a result, CERSA
matches or even surpasses LoRA in fine-tuning speed.

E PERFORMANCE ON OUT-OF-DISTRIBUTION TASKS

During full-parameter fine-tuning, the model gradually forgets core features from the pre-training
data as its parameter space shifts significantly. In contrast, CERSA restricts updates to Sp, adjusting
only the most critical feature subspace while ensuring that the principal subspace remains unaffected
by less important dimensions. This preserves essential pre-trained knowledge.

Out-of-distribution(OOD) performance is a crucial indicator of knowledge retention, as previously
studied in (Hendrycks & Gimpel, 2017) and (Kumar et al., 2022). Fig. 3 shows the OOD perfor-
mance of models fine-tuned on each of the four datasets (CIFAR-100 (Krizhevsky & Hinton, 2009),
DTD (Cimpoi et al., 2014), StanfordCars (Krause et al., 2013), and RESISC45 (Cheng et al., 2017)),
with accuracy evaluated on the remaining three datasets. We compare FT, LoRA (Hu et al., 2022),
and our proposed CERSA method. The gray bars indicate the model’s original performance before
fine-tuning, serving as a reference for relative performance degradation.

Across all fine-tuning settings, CERSA consistently achieves superior OOD performance compared to
FT and LoRA (Hu et al., 2022). Specifically, when fine-tuned on CIFAR-100 (Krizhevsky & Hinton,
2009) (leftmost subplot), CERSA maintains a higher average OOD accuracy than LoRA (Hu et al.,
2022) and FT, suggesting that it better preserves pre-trained knowledge for handling novel tasks such
as DTD (Cimpoi et al., 2014) and StanfordCars (Krause et al., 2013), or even leverages knowledge
from CIFAR-100 (Krizhevsky & Hinton, 2009). A similar trend is observed in the DTD (Cimpoi
et al., 2014) fine-tuning scenario (second subplot), where CERSA demonstrates stronger retention of
pre-trained features, particularly on CIFAR-100 (Krizhevsky & Hinton, 2009).

In our experiments, fine-tuning is performed on one dataset while accuracy is evaluated on the
remaining three. The average forgetting rate is defined as the ratio of the average accuracy drop
in the three out-of-distribution tasks compared to the baseline accuracy of the pre-trained model
after fine-tuning on a specific task. As shown in Tab. 7, these results highlight CERSA’s ability to
mitigate catastrophic forgetting by retaining key representations learned during pre-training, thereby
preserving higher accuracy on tasks not directly involved in fine-tuning.
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Dataset CIFAR-100 EuroSAT RESISC45 StanfordCars
Q 99.69%/99.65% 99.94%/99.94% 99.81%/99.79% 99.95%/99.94%
K 99.76%/99.74% 99.96%/99.96% 99.86%/99.85% 99.94%/99.94%
V 99.58%/99.58% 99.91%/99.91% 99.79%/99.79% 99.92%/99.92%

Dataset FGVC-Aircraft DTD CIFAR-10 OxfordPets
Q 99.76%/99.73% 99.91%/99.90% 99.68%/99.63% 99.96%/99.94%
K 99.78%/99.76% 99.94%/99.94% 99.74%/99.72% 99.94%/99.93%
V 99.69%/99.70% 99.85%/99.86% 99.55%/99.55% 99.89%/99.90%

Table 8: Principal subspace similarity between the Q, K, and V matrices of ViT-Large (Dosovitskiy,
2021) pre-trained on ImageNet-21K (Deng et al., 2009) and the fine-tuned weights on various
downstream image classification tasks.
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Figure 4: The similarity between the principal output subspace Up of the pre-trained and fine-tuned
weights for the Q, K, and V matrices in layers 0, 11, and 23 of ViT-Large (Dosovitskiy, 2021). The
x-axis represents the subspace spanned by the top-i singular vectors of the pre-trained weights, while
the y-axis represents the subspace spanned by the top-j singular vectors of the fine-tuned weights.

F SUBSPACE SIMILARITY ANALYSIS

F.1 SUBSPACE SIMILARITY BETWEEN PRE-TRAINED AND FINE-TUNED MODELS

Our theoretical analysis assumes that CERSA can approximate full-parameter fine-tuning based on
the premise that the principal subspace of W ′ after full fine-tuning on a downstream task remains
highly similar to that of the pre-trained weights. This assumption suggests that fine-tuning primarily
refines the existing subspace rather than significantly altering its structure. To empirically validate
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Figure 5: The similarity between the principal input subspace Vp of the pre-trained and fine-tuned
weights for the Q, K, and V matrices in layers 0, 11, and 23 of ViT-Large (Dosovitskiy, 2021). The
x-axis represents the subspace spanned by the top-i singular vectors of the pre-trained weights, while
the y-axis represents the subspace spanned by the top-j singular vectors of the fine-tuned weights.

this assumption, we measure the subspace similarity between W ′ and the pre-trained weights W
of the ViT-Large (Dosovitskiy, 2021) model, initially trained on ImageNet-21K (Deng et al., 2009),
across eight different downstream image classification datasets.

To quantitatively assess this similarity, we employ the Grassmann subspace similarity (Hu et al.,
2022), a metric that effectively captures the alignment between the principal output subspaces of the
pre-trained and fine-tuned weights. Formally, the Grassmann similarity is defined as follows:

ψ(U i
A,U

j
B) =

∥U i⊤
A U j

B∥2F
min{i, j}

, ψ ∈ [0, 1] (1)

where U i
A and U j

B stands for top-i columns of the U matrix from SVD decomposition of matrix A
and top-j columns of the U matrix from SVD decomposition of matrix B respectively. ψ ranges
from 0 (completely disjoint subspaces) to 1 (identical subspaces).

Similarly, we extend this analysis to the input subspace represented by V , applying the same similarity
computation. The results presented in Tab. 8 are computed using a subspace that retains 95% of
the cumulative energy. The first value represents the similarity of the output subspace U , while the
second corresponds to the input subspace V .

Analyzing Tab. 8, we observe that across all downstream tasks, the Grassmann subspace similarity
between the fine-tuned and pre-trained subspaces consistently exceeds 99.5% for both U and V
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across all three attention matrices – Q, K, and V. This strong evidence suggests that fine-tuning
minimally affects the principal subspace of the pre-trained weights, thereby validating our assumption.

To further examine the stability of the Grassmann subspace similarity under varying top-k selections,
we conducted experiments on the 0th, 11th, and 23rd layers of the ViT-Large (Dosovitskiy, 2021)
model before and after fine-tuning on CIFAR-10 (Krizhevsky & Hinton, 2009). Specifically, we
extract the Q, K, and V matrices from these layers, perform SVD to obtain the principal subspaces U
and V for both the pre-trained and fine-tuned models, and measure subspace similarity by selecting
top-i and top-j singular vectors. The results are visualized in a heat map.

Since all similarity values fall within the range of 0.9 to 0.9999, we applied a logarithmic transforma-
tion to the color scale for better visualization. As depicted in Fig. 4 and Fig. 5, the subspaces of the
fine-tuned and pre-trained weight matrices exhibit consistently high similarity across all choices of
top-i and top-j, with values ranging from 0.9 to 0.9999. This confirms that the observed subspace
similarity is not confined to specific top-k selections but persists across all choices of singular vectors.

Regardless of the truncation level, the fine-tuned and pre-trained weight matrices maintain excep-
tionally high Grassmann subspace similarity. This finding further substantiates our hypothesis that
fine-tuning does not significantly alter the principal subspace of the pre-trained model, reinforcing
the fundamental assumption underlying our method.

F.2 PROOFS

Proof. Let M ∈ Rm×n be a matrix of rank k. By the singular value decomposition (SVD), we can
write M = UΣV T , where U ∈ Rm×k and V ∈ Rn×k are matrices with orthonormal columns,
and Σ ∈ Rk×k is a diagonal matrix with positive diagonal entries (the singular values).

Since there exists an orthonormal basis Q = {e1, e2, . . . ,ek} such that Span(U) = Span(Q), both
U and Q form orthonormal bases for the same k-dimensional subspace. Therefore, there exists an
orthogonal matrix R ∈ Rk×k such that

U = QR.

Similarly, because Span(V ) = Span(Q′), there exists an orthogonal matrix R′ ∈ Rk×k satisfying

V = Q′R′.

Substituting these expressions into the singular value decomposition of M , we obtain

M = UΣV T = (QR)Σ(Q′R′)T = QRΣR′TQ′T .

Defining S = RΣR′T , we have
M = QSQ′T ,

where S ∈ Rk×k. This completes the proof.
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