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ABSTRACT

Curriculum learning aims to accelerate reinforcement learning (RL) by generat-
ing curricula, i.e., sequences of tasks of increasing difficulty. Although existing
curriculum generation approaches provide benefits in sample efficiency, they over-
look safety-critical settings where an RL agent must adhere to safety constraints.
Thus, these approaches may generate tasks that cause RL agents to violate safety
constraints during training and behave suboptimally after. We develop a safe cur-
riculum generation approach (SCG) that aligns the objectives of constrained RL
and curriculum learning: improving safety during training and boosting sample
efficiency. SCG generates sequences of tasks where the RL agent can be safe and
performant by initially generating tasks with minimum safety violations over high-
reward ones. We empirically show that compared to the state-of-the-art curriculum
learning approaches and their naively modified safe versions, SCG achieves optimal
performance and the lowest amount of constraint violations during training.

1 INTRODUCTION

Curriculum learning for reinforcement learning (RL) aims to generate task sequences that boost the
performance and speed of convergence of RL agents (Narvekar et al., 2020). A common strategy in
curriculum generation is to start with easy tasks and adjust the difficulty toward the target tasks as the
RL agent improves. Automating curriculum generation increases sample efficiency in wide-ranging
environments (Baranes & Oudeyer, 2010; Jiang et al., 2021b) with minimum human effort.

The typical exploration by trial-and-error in RL may cause unsafe behaviors during training, making
such techniques unsuitable for safety-critical scenarios (Kendall et al., 2019). In addition to improving
sample efficiency, curriculum learning can potentially mitigate this issue by prioritizing tasks with no
or low potential for harm so that an RL agent can learn how to accomplish a task without behaving
unsafely (Turchetta et al., 2020). For example, a curriculum can start by proposing to an agent
learning how to drive a traffic scene without cars and pedestrians, minimizing the risk of accidents.

Constrained RL addresses safety-critical scenarios where, given a safety threshold, a constraint
on a cost function characterizes safe behavior (Altman, 1999). A constrained RL agent aims to
maximize its reward while satisfying such constraint (Achiam et al., 2017). A standard metric for
safety violations during training is the constraint violation regret, i.e., accumulated excess cost over
the safety threshold (Efroni et al., 2020). Curriculum learning approaches overlook constrained RL
and fail to consider the cost constraint. They cannot distinguish unsafe behaviors, and propose tasks
that, while yielding high rewards, also incur high costs, leading to high constraint violation regret.

A standard curriculum learning method aims to help an RL agent achieve higher rewards faster. Thus,
a naive combination of an off-the-shelf curriculum learning approach and a constrained RL algorithm
fails to minimize constraint violation regret due to their misaligned objectives. In comparison,
a constrained RL algorithm searches for policies that primarily satisfy the cost constraint while
maximizing reward as much as possible. Given such a combination, the curriculum generator can
propose a task that allows the agent to collect high rewards and simultaneously costs higher than the
safety threshold, which violates the constraint. Therefore, we argue that a safe automated curriculum
generation method should actively prioritize tasks aligned with both objectives.

∗Correspondence to: Cevahir Koprulu (cevahir.koprulu@utexas.edu). Code
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Figure 1: SCG initially prioritizes low-cost contexts to minimize safety violations, then high-reward
contexts to boost performance, and finally approaches target distribution by treating them equally.

We propose a safe curriculum generation method (SCG) that improves performance, accelerates
learning, and minimizes safety violations during training (Fig. 1). Inspired by CURROT (Klink
et al., 2022), given a distribution over target tasks, SCG generates a sequence of task distributions that
allows the current policy to collect higher rewards than a performance threshold and lower costs than
a safety threshold. Initially, SCG prioritizes safety over performance by proposing tasks where the
agent satisfies a cost constraint. Once the agent behaves safely in all possible tasks under the current
distribution, SCG shifts its focus to satisfying a performance constraint. After the agent becomes
performant in all contexts in the current support, SCG generates task distributions that approach the
target distribution by equally treating safety and performance until the end of the training.

Contribution. Our contribution is three-fold: 1) We describe how existing curriculum learning
approaches fail to learn an optimal behavior in a constrained environment safely in Section 4.2, 2) pro-
pose Safe Curriculum Generation (SCG), an automated curriculum learning approach developed for
constrained RL to boost learning speed and minimize constraint violation regret in Section 5, and
lastly 3) our empirical results provide evidence that, compared to the state-of-the-art curriculum gen-
eration approaches and their naively modified versions that account for safety, SCG achieves optimal
behavior with the lowest constraint violation regret in constrained RL environments Section 6.

2 RELATED WORK

Curriculum learning for RL. Automated curriculum generation in RL aims to accelerate conver-
gence to optimal policies by changing the environment configuration according to agent performance.
A typical curriculum is a sequence of distributions over such configurations. Florensa et al. (2017)
propose generating distributions over initial states where, early on during the training, the agent starts
nearby the goal. Other works focus on goal states by optimizing for value disagreement (Zhang et al.,
2020), intrinsic motivation (Baranes & Oudeyer, 2010; Portelas et al., 2020), feasibility and coverage
of goal states (Racaniere et al., 2020), and intermediate task difficulty (Florensa et al., 2018; Tzan-
netos et al., 2023). Dennis et al. (2020) propose unsupervised level design as an alternative curriculum
learning paradigm and an approach that adversarially generates environment configurations while
avoiding infeasible ones. Jiang et al. (2021b;a) study generating distributions over levels, namely,
environment instances, that allow the agent to have high learning potential. Due to its recent success,
we study self-paced RL, a method adopted from supervised learning to order training samples in
increasing complexity (Kumar et al., 2010; Jiang et al., 2015). Eimer et al. (2021) generate sequences
of tasks with a high capacity for value improvement. Ren et al. (2018) minimizes coverage penalty
by generating sequences of environment interactions. Klink et al. (2020a;b; 2021; 2022); Koprulu &
Topcu (2023); Koprulu et al. (2023); Huang et al. (2022) formulate the curriculum generation problem
as interpolations between task distributions. In contrast, Chen et al. (2021) proposes a gradient-based
exploration method via variational inference to expand the task distribution to the entire task space.

Curriculum learning for safety during training. Most curriculum learning approaches overlook
the safety aspect of RL. Nevertheless, there are methods akin to curriculum learning to increase
safety during training. Song & Schneider (2022) propose a genetic algorithm to generate curricula
that improve robustness but does not consider an explicit notion of cost nor study environments that
highlight the misalignment between performance and safety. Wang et al. (2022) develop a curriculum-
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guided RL approach for real-time bidding systems that relaxes cost constraints to incentivize safe
policies during training. Eysenbach et al. (2018) learn a reset policy that interferes with the training
to prevent the agent from entering dangerous states. Similarly, Turchetta et al. (2020) learn a
curriculum policy that chooses an intervention that takes the agent to a safe state if it enters a trigger
state. Eysenbach et al. (2018)’s approach trains the reset policy and the RL agent together, whereas
Turchetta et al. (2020) consecutively train multiple students to learn an optimal curriculum policy. In
comparison, existing curriculum learning methods do not interfere with the interactions between the
student and the environment but only assume that a teacher can set the environment configuration
for which the agent learns an optimal behavior (Florensa et al., 2017; 2018; Portelas et al., 2020;
Jiang et al., 2021a;b; Klink et al., 2020a;b; 2021; 2022). Similarly, SCG does not assume control over
environment dynamics, even when the student violates the constraint. Tomilin et al. (2025) propose a
new benchmark for constrained RL and shows the benefits of using a handcrafted curriculum.

Constrained RL. Constrained RL studies safety-critical settings where errors during exploration may
cause constraint violations (Kendall et al., 2019; Roy et al., 2022; Kamran et al., 2022). Therefore, a
constrained RL approach aims to achieve safe behavior during and after training (Müller et al., 2024;
Simão et al., 2021). Constrained RL approaches that guarantee zero safety violation during training
propose using Gaussian processes as transition models (Sui et al., 2015; Berkenkamp et al., 2017;
Turchetta et al., 2019; Wachi & Sui, 2020), Lyapunov functions for ensuring global constraints (Chow
et al., 2018), or formal methods (Junges et al., 2016; Alshiekh et al., 2018; Jansen et al., 2020). To
address high dimensional state and action spaces, Achiam et al. (2017); Tessler et al. (2019); Yang
et al. (2020); Hogewind et al. (2022) develop safe policy search algorithms with soft guarantees of
not violating the constraints, whereas Achiam & Amodei (2019) integrates a Lagrangian approach
into popular RL algorithms. Similar to our setting of interest, Lin et al. (2024) addresses constrained
contextual MDPs, where the context determines the dynamics, yet the reward and cost functions are
fixed. Furthermore, Lin et al. (2024) focuses on the safety aspect of offline RL and does not study
curriculum learning. Another line of work introduces a framework where dynamics, reward, and cost
functions remain the same, yet safety thresholds vary (Yao et al., 2023; Günster et al., 2024).

3 BACKGROUND AND PROBLEM STATEMENT

We formulate the environments of interest as contextual constrained Markov decision processes to
model a constrained multi-task setting given a distribution over target contexts.

3.1 CONTEXTUAL CONSTRAINED MDPS

Definition 3.1. We define a contextual constrained Markov decision process (CCMDP) M =
⟨S,A,X ,M, D, γ⟩ with a state space S , an action space A, a context space X ⊆ Rn for n ∈ Z+, a
mapping from context space to constrained Markov decision process parameters M, a safety threshold
D ∈ R≥0, and a discount factor γ ∈ [0, 1].

A CCMDPM represents a family of constrained MDPs parameterized by their contexts x ∈ X . A
context x provides a constrained MDP M(x) = ⟨S,A, px, rx, cx, p0,x, γ⟩, where S, A, and γ are
the same as inM, but its probabilistic transition function px : S × A → ∆(S), reward function
rx : S ×A → R, cost function cx : S ×A → R≥0, and initial state distribution p0,x ∈ ∆(S) depend
on its context x. A policy π : S ×A×X → ∆(A) defines the behavior of an agent in a CCMDPM
as a probability simplex over the action space A given s ∈ S and x ∈ X . Note that the agent
observes the context x. Following policy π, an agent collects a trajectory τx = {(st,at, rt, ct)}Tt=0
of length T with an initial state s0 ∼ p0,x, states st+1 ∼ px(·|st,at), actions at ∼ π(·|st,x), rewards
rt = rx(st,at), and costs ct = cx(st,at) at time steps t ∈ [T ], resulting in a discounted cumulative
reward and cost Gr(τx) =

∑T
t=0 γ

trt and Gc(τx) =
∑T

t=0 γ
tct, respectively.

Given a CCMDPM and a target context distribution φ, i.e., a probability simplex ∆(X ), contextual
constrained RL aims to maximize expected return subject to a cost constraint:

π∗ .
= argmax

π
Eφ[V

π
r (x)], s.t. Eφ [V π

c (x)] ≤ D, (1)

where V π
r =Eπ,px,p0,x[Gr(τx)] andV π

c =Eπ,px,p0,x[Gr(τx)] are the expected discounted cumulative
reward and cost, respectively, induced by policy π in context x drawn from φ.
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Figure 2: Safety-maze.

Fig. 2 shows safety-maze, a constrained version of maze (Klink et al.,
2022) with simple dynamics on 2D state and action spaces, namely, the
agent’s coordinates and its displacement, respectively. Starting from the
bottom left corner (green), the agent must reach a goal while avoiding
the hazards (red), where it collects cost. The context specifies the goal
position and tolerance, i.e., the Euclidean distance to the goal for success.
The agent can move freely over the white areas but cannot access the
walled sections in black. Note that the goal can be positioned over the
walls. Safety threshold D determines how much the agent needs to avoid
the hazards. An episode terminates when the agent reaches the goal. The
target context distribution is uniform over the top white horizontal area.

3.2 CONTEXTUAL CONSTRAINED RL

Contextual-constrained RL (CCRL) is an online multi-task-constrained RL framework that does not
assume access to the transition, reward, and cost functions. As the optimal policy maximizes the
expected discounted return while satisfying a cost constraint, a CCRL algorithm should focus on
sample efficiency as well as safety. One metric to measure safety is constraint violation regret, the
difference between the safety threshold and the value of a learned policy (Efroni et al., 2020). Given
that a CCRL algorithm Λ runs for L-many episodes during training, we define the training regret as

Regtr(L, {ϱl}Ll=1, D)
.
=

∑
l∈[L]

[Eϱl
[V πl

c (x)]−D]+ , (2)

where [y]+ = max{y, 0}, πl refers to the policy at the lth episode, and ϱl is the context distribution
from which x is drawn at episode l. The regret is non-zero only when the expected discounted
cumulative cost exceeds the safety threshold D. Thus, training regret Regtr only considers the safety
violations of an algorithm Λ with respect to context distributions {ϱl}Ll=1. Once Λ converges to an
optimal policy, its training regret also converges. Our problem is learning an optimal policy and
achieving it with the minimum constrained violation regret. Section 4.2 describes how naive designs
of Λ fail in this problem due to misaligned objectives of curriculum learning and constrained RL.

Problem statement. Given a CCMDPM to describe the parameterization of a set of constrained
tasks and a target context distribution φ to specify their probability of occurrence, generate a sequence
of context distributions {ϱl}Ll=1 that allow an RL agent to sample-efficiently learn an optimal policy (1)
with minimal constraint violation regret (2) by taking the misalignment phenomenon into account.

Traditionally, a curriculum learning approach generates a sequence of context distributions {ϱl}Ll=1,
while a non-curriculum approach draws contexts directly from the target context distribution. Thus,
curriculum learning approaches can choose a context distribution ϱl prioritizing contexts where the
current policy has low expected cost V πl

c (x) to minimize constraint violation regret.

4 CURRICULUM LEARNING AND CONSTRAINED RL

We present a state-of-the-art curriculum learning method and discuss its limitations in CCRL.

4.1 CURRICULA VIA OPTIMAL TRANSPORT

Curricula via Optimal Transport (CURROT, Klink et al., 2022), given a target context distribution φ,
creates a sequence of context distributions {ϱk}Kk=0 to obtain an optimal policy for a contextual MDP
M̃ = ⟨S,A,X , M̃, γ⟩ (Hallak et al., 2015). Compared to a contextual constrained MDP, a contextual
MDP M̃ does not have a cost function, as M̃(x) = ⟨S,A, px, rx, p0,x, γ⟩. An optimal policy π∗ in a
contextual MDP M̃ only maximizes the expected return, i.e., π∗ .=argmaxπ Eφ[V

π
r (x)].

At curriculum iteration k ∈ [K], CURROT draws contexts {xi}Mi=0 from context distribution ϱk−1,
and collects trajectories Dk = {τxi

}Mi=1, where τxi
= {(si,t,ai,t, ri,t, si,t+1)}

|τxi
|

t=0 . Then, an RL
algorithm updates policy πk−1 via Dk. CURROT generates the next context distribution via

argmin
ϱ

W2(ϱ, φ) s.t. ϱ(x) > 0⇒ V πk
r (x) ≥ ζ,∀x ∈ X , andW2(ϱ, ϱ+) ≤ ϵ, (3)
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whereW2(·, ·) is the Wasserstein distance and ϱ+ is a particle-based distribution based on contexts
with return Gr(τx) higher than performance threshold ζ, which a buffer of successful contexts B+
keeps. A failure buffer B− in parallel maintains the remaining contexts. CURROT estimates V πk

r
based on B− and B+. The constraint on V πk

r ensures support over contexts with sufficiently high
rewards. The Wasserstein distance constraint avoids diverging from the current successful contexts.
We investigate CURROT due to its favorable properties: 1) It poses curriculum generation as a
constrained optimization problem, enabling a natural extension to CCRL (1). 2) Interpolating context
distributions based on Wasserstein distance allows non-parametric distributions. 3) The performance
constraint enforces robustness. We refer the reader to Klink et al. (2022) for more details.

4.2 FAILURE OF CURRICULA TO ENSURE SAFETY

The state-of-the-art curriculum learning methods, e.g., CURROT focus on the standard multi-task RL
problem, i.e., maximizing Eφ[V

π
r (x)]. They fail to address CCRL due to prioritizing contexts x ∼ ϱk

where policy πk achieves high V π
r (x) but violate the constraint on V π

c (x). Imagine safety-maze with
safety threshold D = 0 and the initial easy contexts are around the bottom left corner. As the agent
improves, CURROT will generate a context distribution closer to the target distribution. However,
as CURROT minimizes Wasserstein distance, it will move its contexts over the hazards. Although
they set goals closer to the initial position, hence high V π

r , they can cause high V π
c and constraint

violations. The agent will choose to pass through the hazards or stay out. The former scenario leads
to unsafe behavior with high costs, whereas the latter yields failed conservative behavior.
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Figure 3: CURROT (left) and SCG’s (right) curricula.

Fig. 3 demonstrates curric-
ula generated by CURROT
and SCG in safety-maze.
The marked points visu-
alize the contexts, deter-
mining the goal location
and tolerance, drawn from
context distributions ϱk at
different curriculum itera-
tions/epochs. The color of
a point refers to the goal tol-
erance. CURROT moves
contexts from the bottom row toward the target context distribution. As CURROT ignores the cost, it
places the goals mostly in the red region early on, causing suboptimal behaviors. In comparison, SCG
enables goals centered on the right column, which does not yield any cost or goals with high tolerance.
Such scenarios are not unique to CURROT. They occur under curriculum learning algorithms that
overlook the constrained nature of a safety-critical setting. Therefore, to prioritize safety, a curriculum
learning algorithm should have its objective aligned with the constrained RL problem. However, by
construction, existing approaches suffer from misaligned objectives in constrained RL.

5 SAFE CURRICULUM GENERATION

We develop Safe Curriculum Generation (SCG), a curriculum learning method that minimizes
constraint violation regret and sample-efficiently learns an optimal policy (1). Algorithm 1 is a
pseudocode for SCG. At curriculum iteration k, SCG samples contexts {xi}Mi=0 from context
distribution ϱk−1 (Line 5), and collects trajectories Dk = {τxi

}Mi=1, with transitions including the
cost (Line 6). Then, a constrained RL algorithm updates policy πk−1 (Line 7). Next, based on
Dk, the UPDATESUCCESSFULCONTEXTS() function determines successful contexts (B+) according
to SCG’s three phases (Line 8): 1) prioritizing safety, 2) prioritizing performance, and 3) safely
approaching the target context distribution. Finally, SCG updates V π

r and V π
c based on B+ and B−

(Line 9) and generates the next context distribution ϱk (Line 10) via

Φφ
SCG(πk, ϱ+, D̃, ζ) = argmin

ϱ
W2(ϱ, φ) s.t. ϱ(x) > 0⇒ V πk

r (x) ≥ ζ,∀x ∈ X ,

ϱ(x) > 0⇒ V πk
c (x) ≤ D̃,∀x ∈ X ,

W2(ϱ, ϱ+) ≤ ϵ, (4)
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Algorithm 1 Safe Curriculum Generation (SCG)
Input: Target and initial context distributions φ and ϱ0
Parameters: Safety threshold D, cost threshold D̃, performance threshold ζ, Wasserstein distance
bound ϵ, number of curriculum iterations K, number of rollouts per iteration M , buffer size N
Output: Final policy πK

1: Initialize policy π0
2: B−,B+ ← (), () ▷ initialize buffers of size N
3: ISSAFE, ISPERF ← False, False ▷ to search safe and performant contexts
4: for k = 1 to K do
5: xi ∼ ϱk−1, i ∈ [M ] ▷ sample contexts
6: Dk = {τxi = (si,t,xi,ai,t, si,t+1, ri,t, ci,t)

T
t=0}Mi=1 ▷ collect rollouts via policy πk−1

7: πk ← Λ(Dk, πk−1, D) ▷ policy update via a constrained RL algorithm Λ
8: B+,B−, ϱ+, ISSAFE, ISPERF ← UPDATESUCCESSFULCONTEXTS(B+,B−, ISSAFE, ISPERF,Dk)
9: Update value functions V πk

r and V
πk
c with B+ and B−

10: ϱk ← Φφ
SCG(πk, ϱ+, D̃, ζ) ▷ new context distribution (4)

where, in contrast to CURROT, SCG imposes a constraint on V π
c to ensure that the support of the

next distribution will be over low-cost contexts to minimize safety violations. Note that constrained
RL algorithm Λ utilizes safety threshold D for the constraint on the expected cumulative cost (1),
SCG uses cost threshold D̃ for a constraint on individual contexts under the support of ϱk. For the
remainder of this section, we describe SCG’s three phases (see Appendix C for more details). SCG
does not sample contexts from ϱ+ but uses it as a source distribution to approach φ (4).

1) Prioritizing safety. Early in training, an RL agent likely collects high costs or low rewards
during exploration. In a safety-critical setting, this period can rapidly increase constraint vio-
lation regret until the agent discovers how to behave safely. Therefore, SCG initially proposes
easy contexts where the agent can behave safely without much exploration. To achieve that,
UPDATESUCCESSFULCONTEXTS() labels safe contexts as successful. A context x is safe if the
discounted cumulative cost Gc(τx) is less than the median cost Cmed of B+. SCG updates B+ with
safe contexts and generates ϱ+, a Gaussian mixture model (GMM), via ΞINIT

SAFE(B+) (5).

ΞINIT
SAFE(B+) =

∑
xi∈B+

ωiN (x|xi, σ
2
SAFE,iI), (5)

where ωi = αkω
c
i + (1 − αk)ω

r
i , ωc

i ∝ [Cmed − Gc(τxi
)]+, ωr

i ∝ [Gr(τxi
) − Rmed]+, and

σSAFE,i = max
{
σmin, 2

Gc(τxi
)−D̃

Cmax−D̃

}
. Cmax is the maximum cost until curriculum iteration k and Rmed

is the median reward in B+. A weight ωi of this Gaussian mixture model is a weighted average of ωc
i

and ωr
i for context xi with αk ∈ [0, 1]. The idea is to tune whether a context with low cost should

have higher priority over a context with high reward. At the beginning of the search for safe contexts,
SCG sets αk to 1 and linearly anneals it to a lower pre-determined ratio unless that ratio is 1.

2) Prioritizing performance. Once Cmed is less than the cost threshold D̃, SCG focuses on per-
formant contexts. A performant context has discounted cumulative reward Gr(τx) greater than the
median reward Rmed of B+. In the first two phases, B+ and B− get updated cyclically. SCG gener-
ates ϱ+ to be a GMM centered in contexts from B+. Performance prioritizing ϱ+ differs from the
previous one in terms of two factors: 1) SCG linearly anneals αk to 0 unless it is 0. 2) The standard
deviation parameter of this GMM is σPERF,i = max

{
σmin, 2

ζ−Gr(τxi
)

ζ−Rmin

}
. Inspired by CURROT,

SCG generates ϱ+ in the first two phases as a GMM to allow for exploration in the context space.

3) Safely approaching the target context distribution. When Rmed exceeds ζ, SCG moves to the
final phase. Here, UPDATESUCCESSFULCONTEXTS() labels a context x as successful if the policy
πk−1 collects discounted cumulative reward greater than or equal to ζ and a discounted cumulative
cost less than or equal to D̃. Similar to CURROT, to update a full success buffer, SCG generates a
particle-based context distribution ϱ+(x) =

1
|B+|

∑
xi∈B+

δB+
(xi), where δB+

is a Dirac delta. Next,
it replaces contexts in B+ with new ones from a distribution that minimizes the Wasserstein distance
W2(ϱ+, φ). In contrast, B− gets updated cyclically. SCG models ϱ+ as a particle-based distribution
since exploration is not as critical, and B+ well represents where the agent is safe and performant.
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Remark: There are three novel algorithmic features that differentiate SCG from CURROT: 1) The
cost constraint in (4) accounts for safety in any context. 2) Safety-prioritization via generating
source distributions ϱ+ over safe contexts (5) avoids high constraint violation regret. 3) Annealing
mechanism to tune the prioritization ratio of safe or performant contexts in (5) and (6) allows for a
smooth transition between safety and performance prioritization phases. Section 6.3 demonstrates
how these features makes SCG a well-balanced, safe curriculum learning approach.

6 EMPIRICAL ANALYSIS

Our experiments in constrained RL domains investigate the following questions:
6.1) Can SCG obtain optimal policies while reducing safety violations?
6.2) Does SCG prioritize safe and performant contexts during training?
6.3) What is the contribution of SCG’s components to its overall performance?
6.4) How do the final policies perform in each context of the target distribution?

To assess the quantitative questions, we consider 3 metrics: 1) constraint violation regret (2) to
evaluate safety during training, 2) expected discounted cumulative cost, and 3) expected success to
assess safety and performance after training, respectively. For the qualitative questions, we visualize
the evolution of curricula across the curriculum iterations.

We consider 3 constrained RL domains: safety-maze, safety-goal, and safety-push (Figures 2 and
5a). In all domains, the agent aims to avoid hazards and reach a goal in the presence of misalignment
phenomena. We study safety-maze to showcase that a simple modification to an existing domain
(see Section 3.1) can trigger misaligned objectives. In comparison, safety-goal and safety-push
are navigation tasks with realistic sensory observations in Safety-Gymnasium (Ji et al., 2023), a
framework extensively used for constrained RL. In safety-goal, the agent has to navigate a car given
high dimensional observations, namely, LIDAR outputs for the surrounding objects. Safety-push
introduces (i) a larger observation space and more complicated dynamics, as the agent must push
a box to a goal given additional LIDAR outputs, (ii) a layout favoring multi-modal distributions
that draw goals on the left and right corridors, and (iii) a dead-end, trapping the agent and causing
high costs. In all environments, the context determines the goal’s location and tolerance. The target
context distributions are uniform distributions over goals placed in the free space on the top row
inside the walls/pillars. Appendix D.2 provides more details. We set the safety threshold D = 0 in
our environments of interest, which necessitates safe paths to goals under φ. Nevertheless, SCG is
not limited to such a constraint. The safety threshold in any other environment may be positive.

We compare SCG to 5 state-of-the-art curriculum learning methods: CURROT (Klink et al.,
2022), SPDL (Klink et al., 2021), PLR (Jiang et al., 2021b), GOALGAN (Florensa et al., 2018), and
ALP-GMM (Portelas et al., 2020) (details in Appendix B). 3 baselines provide perspective. To assess
the impact of curricula, DEFAULT draws contexts from the target context distribution and, hence, does
not generate curricula. To evaluate curricula that only consider the cost, CURROT4COST replaces
the performance constraint of CURROT with a cost constraint V π

c (x) ≤ D̃. To examine the need for
an additional cost constraint in the curriculum update (4), NAIVESAFECURROT penalizes reward
with cost and has an augmented performance constraint (V π

r (x) − V π
c (x) ≥ ζ). All approaches

use the same constrained RL algorithm, PPO-Lagrangian (Achiam & Amodei, 2019), to update the
agent’s policy. Appendix F.4 analyses other constrained RL algorithms with a DEFAULT curriculum.

6.1 CAN SCG OBTAIN OPTIMAL POLICIES WHILE REDUCING SAFETY VIOLATIONS?

Figures 4b and 4c show final policies’ average cost and success in target contexts. while Fig. 4a
illustrates the constraint violation regret (2) in training. Table 1 summarizes the results showing in
which environments the most promising methods satisfied the criteria: 1) whether it yields an optimal
policy, i.e., a policy achieving zero cost and the highest success rates in target contexts in the median.
If so, it assesses 2) safest training, i.e., lowest constraint violation regret, and 3) sample efficiency
against DEFAULT in terms of number of interactions to reach zero cost or the highest success rate
(Appendix F.1 provides the corresponding learning curves).

SCG yields zero cost and the highest success rate in all environments. In detail, SCG and
CURROT achieve the lowest costs, zero, in all domains, whereas the rest of the approaches achieve
higher costs in multiple training runs in at least one domain. Note that the safety threshold D (1) is zero
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Table 1: Condensed analysis evaluates a method in safety-maze (M), safety-goal (G), and safety-
push (P) based on three criteria. We strike through domains where a method violates a criterion, and
‘*’ indicates failure in a run(s). We check the second and third criteria only if the first is satisfied.

Method Optimal policy Safest training Sample-efficient vs DEFAULT

SCG M G P M G P M G P
CURROT M G P M M
NAIVESAFECURROT M* G P M M
CURROT4COST M G P
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(c) Final success
Figure 4: Safety-maze (top), safety-goal (middle) and safety-push (bottom) from 10, 5, and 5 seeds,
respectively. a) Constraint violation regret in training. b-c) Average discounted cumulative cost and
success of the final policies in target contexts, respectively. Box plots show the min, first quartile,
median, third quartile, and max, from bottom to top. We use CRT for CURROT, NSCRT for
NAIVESAFECURROT, DEF for DEFAULT, ALP for ALP-GMM, and GGAN for GOALGAN.

for all domains; hence any method yielding non-zero cost is considered unsafe. Although CURROT
attains 100% success in safety-maze, it fails to compete in other domains. NAIVESAFECURROT
and CURROT4COST either cannot achieve the highest median success or have high variance among
training runs. In all environments, at least one curriculum learning method outperforms DEFAULT,
no curriculum baseline, in terms of final cost and success, evidencing that automated curricula can
boost final performance/safety. However, ALP-GMM, PLR, SPDL, and GOALGAN fall behind.

In all domains, SCG reaches the lowest constraint violation regret among methods that achieve
zero cost and highest success rates. Although some seem safer during training, they fail to learn op-
timal policies. For example, in safety-maze (top row), NAIVESAFECURROT and CURROT4COST
yield similar or lower constraint violation regret than SCG, but they have varying success rates.
CURROT achieves zero cost and 100% success, yet it yields high constraint violation regret in
safety-maze, as it suffers from misaligned objectives. One can make similar arguments for the other
domains. On a side note, DEFAULT either attains the lowest (safety-maze) or one of the highest
constraint violation regrets while failing to learn optimal policies consistently. This may be because
DEFAULT either causes the agent to be conservative yet suboptimal or to collect high costs.

SCG consistently yields optimal policies. In safety-maze, CURROT and NAIVESAFECURROT
achieve the highest success rates in the median, yet they fail to learn optimal policies in other domains.
Both are sample-efficient compared to DEFAULT, but CURROT causes higher constraint violation
regret so it is not the safest. CURROT4COST and the rest of the approaches learn suboptimal policies.
Thus, we do not evaluate them in terms of safety or sample efficiency.

6.2 DOES SCG PRIORITIZE SAFE AND PERFORMANT CONTEXTS DURING TRAINING?

Fig. 3 and Fig. 5 show CURROT’s and SCG’s curricula in different epochs. Overall, SCG prioritizes
safe and performant contexts as it resolves the misalignment between curriculum learning
and constrained RL. In safety-maze, SCG initially prioritizes goals with high tolerance over the
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Figure 5: SCG and CURROT’curricula in safety-goal (top) and safety-push (bottom). The first
column shows environment snapshots. The second and third columns demonstrate the curricula
generated by CURROT and SCG, respectively. In safety-goal and safety-push, we draw contexts
from distributions ϱk at iterations/epochs k ∈ {5, 20, 50, 120} and k ∈ {5, 40, 75, 150}, respectively.
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(c) Final success
Figure 6: Ablation study in safety-push to investigate the impact of SCG’s main components: Phase 1,
which prioritizes safety (PS), Phase 2, which prioritizes performance (PP), and annealing (Ann).

bottom white row since they are easy. Eventually, SCG moves goals over the right white column
with decreasing tolerances. The goals SCG places in red and black areas have a high tolerance
and can be reached outside both regions. CURROT moves contexts through the hazardous area,
causing safety violations. Similarly, in safety-goal SCG prioritizes contexts on the right side, as
they allow the agent to learn how to reach the target contexts by avoiding the hazards. In contrast,
safety-push’s map favors multi-modal distributions with the hazards in the middle. SCG recognizes
that and prioritizes contexts on the left and right corridors. However, CURROT moves contexts
through the hazards, causing high constraint violation regret (see Fig. 4a). See Appendix F.5 for the
progression of curricula generated by the rest of the approaches.

6.3 WHAT IS THE CONTRIBUTION OF SCG’S COMPONENTS TO ITS OVERALL PERFORMANCE?

Fig. 6 demonstrates the results in safety-push obtained by four variations of SCG: 1) SCG-NOANN
does not do annealing, 2) SCG-NOPP prioritizes safety first and then moves on to Phase 3 by
skipping performance prioritization, 3) SCG-NOPS begins training at Phase 2, hence does not
prioritize safety initially, and lastly 4) SCG-NOPPPS starts the training at Phase 3, hence does not
prioritize safety nor performance individually.

SCG and SCG-NOPP yield the lowest constraint violation regret during training (in the median,
see Fig. 6a), whereas SCG-NOPS and SCG-NOANN closely follow, and SCG-NOPPPS yields
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Figure 7: In-distribution generalization capability of SCG. A marker’s color and position demonstrate
the median cost/success and the goal location. We set the tolerance to the minimum value. We divide
the supports of target context distributions into grids and pick the goal locations in their centers.

the highest CV regret. In terms of final performance, all except SCG-NOPPPS reach the highest
success rate in median (see Fig. 6c). Although all achieve zero cost in target contexts in the median,
SCG-NOPS yields unsafe policies in multiple runs at test-time (see Fig. 6b). Also, SCG is the most
sample efficient, followed by SCG-NOPP (see Appendix F.2). Overall, PS provides lower constraint
violation regret, yet the learning progress slows down when not combined with PP and annealing. In
addition, Appendix F.3 provides an ablation study for several SCG parameters.

6.4 HOW DO THE FINAL POLICIES PERFORM IN EACH CONTEXT UNDER THE TARGET
DISTRIBUTION?

The CCRL problem (1) averages the expected return and cost across the target contexts according to
the target distribution (φ). Thus, we evaluate the policies learned in the individual contexts in terms
of success and cost (Fig. 7). We set the goal tolerance of these contexts to the minimum value to
escalate difficulty. The results evidence that SCG yields policies that act safely, that is, they receive
zero cost, and succeed in all target contexts except for some goals placed just above the hazardous
area in safety-goal. In summary, although we consider an average across the contexts, the policies
learned are still safe and performant in individual contexts.

7 CONCLUSION

In this work, we study safe automated curriculum generation in multi-task cost-constrained settings
with distributions over target tasks. We propose a safe curriculum generation approach (SCG)
developed for constrained RL to minimize constraint violation regret and accelerate learning. SCG
initially prioritizes tasks with low costs over high-reward ones, to ensure that the agent learns a policy
that satisfies the cost constraint. Next, SCG proposes tasks where the agent can collect high rewards.
Finally, SCG takes safety and performance jointly into account. Our empirical evaluation evidences
that state-of-the-art curriculum learning approaches fail to learn optimal behavior in a safe and stable
way, as these approaches suffer from misaligned objectives with constrained RL. In contrast, SCG
obtains optimal behavior with the lowest constraint violation regret in domains with low or high
dimensional state spaces and complicated dynamics and task structures.

Limitations and future work. While SCG can reduce the constraint violation regret while preserving
the benefits of curriculum learning in boosting learning speed, it does not provide any guarantees
for the constraint violation regret that is achieved at the end of the training. Combining SCG with
constrained RL algorithms that guarantee safety could mitigate this issue while keeping a good
learning speed. Furthermore, SCG inherits a dependency on the initial context distribution from
automated curriculum generation. Thus, if the support of the initial context distribution is unsafe, it
might take multiple iterations to find safe contexts.
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REPRODUCIBILITY STATEMENT

For all the hyperparameters and detailed settings of the experiments, please refer to Appendix D.
We put the core code of SCG in the supplementary details. The code includes instructions to install
necessary software, reproduce the experiments and target contexts where we evaluate trained policies
to obtain the experimental results.

ACKNOWLEDGMENTS

This work is supported by the Office of Naval Research (ONR) under grant numbers N00014-24-1-
2797 and N00014-22-1-2254, and the European Research Council (ERC) under the starting grant
101077178 (DEUCE).

REFERENCES

Joshua Achiam and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning,
2019. URL https://cdn.openai.com/safexp-short.pdf.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
ICML, pp. 22–31. PMLR, 2017.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In AAAI, volume 32, 2018.

Eitan Altman. Constrained Markov decision processes. Routledge, 1999.

Adrien Baranes and Pierre-Yves Oudeyer. Intrinsically motivated goal exploration for active motor
learning in robots: A case study. In IROS, pp. 1766–1773, 2010.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. NeurIPS, 30, 2017.

Jiayu Chen, Yuanxin Zhang, Yuanfan Xu, Huimin Ma, Huazhong Yang, Jiaming Song, Yu Wang,
and Yi Wu. Variational automatic curriculum learning for sparse-reward cooperative multi-agent
problems. In NeurIPS, pp. 9681–9693, 2021.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A Lyapunov-
based approach to safe reinforcement learning. NeurIPS, 31, 2018.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. NeurIPS, 33:13049–13061, 2020.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained MDPs.
arXiv preprint arXiv:2003.02189, 2020.

Theresa Eimer, André Biedenkapp, Frank Hutter, and Marius Lindauer. Self-paced context evaluation
for contextual reinforcement learning. In ICML, pp. 2948–2958, 2021.

Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning to
reset for safe and autonomous reinforcement learning. In ICLR, 2018.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In CoRL, pp. 482–495. PMLR, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In ICML, pp. 1514–1523. PMLR, 2018.

Jonas Günster, Puze Liu, Jan Peters, and Davide Tateo. Handling long-term safety and uncertainty in
safe reinforcement learning. In CoRL, 2024.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual Markov decision processes. arXiv
preprint arXiv:1502.02259, 2015.

11

https://cdn.openai.com/safexp-short.pdf


Published as a conference paper at ICLR 2025

Yannick Hogewind, Thiago D Simão, Tal Kachman, and Nils Jansen. Safe reinforcement learning
from pixels using a stochastic latent representation. In ICLR, 2022.

Peide Huang, Mengdi Xu, Jiacheng Zhu, Laixi Shi, Fei Fang, and Ding Zhao. Curriculum reinforce-
ment learning using optimal transport via gradual domain adaptation. NeurIPS, 35:10656–10670,
2022.

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick Bloem. Safe rein-
forcement learning using probabilistic shields. In CONCUR, 2020.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement
learning benchmark. In NeurIPS, pp. 18964–18993. Curran Associates, Inc., 2023.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. OmniSafe: An infrastructure for accelerating safe
reinforcement learning research. JMLR, 25(285):1–6, 2024.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G. Hauptmann. Self-paced
curriculum learning. In AAAI, pp. 2694–2700. AAAI Press, 2015.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. NeurIPS, pp. 1884–1897, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In ICML, pp.
4940–4950. PMLR, 2021b.

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter Katoen. Safety-
constrained reinforcement learning for MDPs. In TACAS, pp. 130–146. Springer, 2016.

Danial Kamran, Thiago D. Simão, Qisong Yang, Canmanie T. Ponnambalam, Johannes Fischer,
Matthijs T. J. Spaan, and Martin Lauer. A modern perspective on safe automated driving for
different traffic dynamics using constrained reinforcement learning. In ITSC, pp. 4017–4023. IEEE,
2022.

Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen,
Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In ICRA, pp. 8248–8254.
IEEE, 2019.

Pascal Klink, Hany Abdulsamad, Boris Belousov, and Jan Peters. Self-paced contextual reinforcement
learning. In CoRL, pp. 513–529. PMLR, 2020a.

Pascal Klink, Carlo D' Eramo, Jan R Peters, and Joni Pajarinen. Self-paced deep reinforcement
learning. In NeurIPS, pp. 9216–9227. Curran Associates, Inc., 2020b.

Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D’Eramo, Jan Peters, and Joni Pajarinen.
A probabilistic interpretation of self-paced learning with applications to reinforcement learning.
JMLR, 22:182:1–182:52, 2021.

Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Curriculum reinforcement
learning via constrained optimal transport. In ICML, pp. 11341–11358. PMLR, 2022.

Cevahir Koprulu and Ufuk Topcu. Reward-machine-guided, self-paced reinforcement learning. In
UAI, volume 216, pp. 1121–1131. PMLR, 2023.

Cevahir Koprulu, Thiago D. Simão, Nils Jansen, and Ufuk Topcu. Risk-aware curriculum generation
for heavy-tailed task distributions. In UAI, volume 216, pp. 1132–1142. PMLR, 2023.

M. Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In NIPS, pp. 1189–1197. Curran Associates, Inc., 2010.

Haohong Lin, Wenhao Ding, Zuxin Liu, Yaru Niu, Jiacheng Zhu, Yuming Niu, and Ding Zhao.
Safety-aware causal representation for trustworthy offline reinforcement learning in autonomous
driving. IEEE Robotics Autom. Lett., 9(5):4639–4646, 2024.

12



Published as a conference paper at ICLR 2025

Adrian Müller, Pragnya Alatur, Volkan Cevher, Giorgia Ramponi, and Niao He. Truly no-regret
learning in constrained MDPs. In ICML, pp. 36605–36653, 2024.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. JMLR, 21:
181:1–181:50, 2020.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In CoRL, pp. 835–853.
PMLR, 2020.

Sebastien Racaniere, Andrew K Lampinen, Adam Santoro, David P Reichert, Vlad Firoiu, and
Timothy P Lillicrap. Automated curricula through setter-solver interactions. In ICLR, 2020.

Zhipeng Ren, Daoyi Dong, Huaxiong Li, and Chunlin Chen. Self-paced prioritized curriculum
learning with coverage penalty in deep reinforcement learning. IEEE TNNLS, pp. 2216–2226,
2018.

Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, and Christopher J. Pal. Direct behavior
specification via constrained reinforcement learning. In ICML, pp. 18828–18843. PMLR, 2022.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. In ICLR, 2016.

Thiago D. Simão, Nils Jansen, and Matthijs T. J. Spaan. AlwaysSafe: Reinforcement learning without
safety constraint violations during training. In AAMAS, pp. 1226–1235, 2021.

Yeeho Song and Jeff Schneider. Robust reinforcement learning via genetic curriculum. In ICRA, pp.
5560–5566. IEEE, 2022.

Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization with
Gaussian processes. In ICML, pp. 997–1005. PMLR, 2015.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
ICLR, 2019.

Tristan Tomilin, Meng Fang, and Mykola Pechenizkiy. HASARD: A benchmark for harnessing safe
reinforcement learning with Doom. In ICLR, 2025.

Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration for interactive machine
learning. NeurIPS, 32, 2019.

Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe rein-
forcement learning via curriculum induction. In NeurIPS, pp. 12151–12162, 2020.

Georgios Tzannetos, Bárbara Gomes Ribeiro, Parameswaran Kamalaruban, and Adish Singla. Proxi-
mal curriculum for reinforcement learning agents. TMLR, 2023. ISSN 2835-8856.

Akifumi Wachi and Yanan Sui. Safe reinforcement learning in constrained Markov decision processes.
In ICML, pp. 9797–9806. PMLR, 2020.

Haozhe Wang, Chao Du, Panyan Fang, Shuo Yuan, Xuming He, Liang Wang, and Bo Zheng. ROI-
constrained bidding via curriculum-guided bayesian reinforcement learning. In SIGKDD, pp.
4021–4031, 2022.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Projection-based
constrained policy optimization. In ICLR, 2020.

Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constraint-conditioned policy optimization for versatile safe reinforcement learning. In NeurIPS,
pp. 12555–12568. Curran Associates, Inc., 2023.

Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value
disagreement. In NeurIPS, pp. 7648–7659. Curran Associates, Inc., 2020.

13



Published as a conference paper at ICLR 2025

A NOMENCLATURE

x Context

M Contextual constrained MDP

S, A, X State, action, and context spaces

M Mapping from contexts to constrained MDPs

s, a, r, c State, action, reward, cost

px, rx, cx Transition, reward and cost functions

p0,x Initial state distribution

π Policy

γ Discount factor

D Safety threshold

V π
r , V π

c Value function for reward and cost

ϱ, φ Context distribution and target context distribution

J(π, φ) CCRL objective function

τx Trajectory in context x

Gr, Gc Discounted cumulative reward and cost in a trajectory

Regtr Constraint violation regret during training

Λ CCRL algorithm

L Number of episodes during CCRL training

l, T A CCRL episode and its length

D̃, ζ, ϵ Cost, performance and divergence thresholds in SCG

D Trajectory set

Φφ
SCG SCG function

ω GMM weight

σSAFE,i, σPERF,i GMM’s standard deviations for safe/performant context xi

σmin Minimum standard deviation in GMM

ωr, ωc GMM weights for discounted cumulative reward and cost

αk GMM weight ratio

Cmed, Cmax Median and maximum cost in buffer

Rmed, Rmin Median and minimum reward in buffer

ΞINIT
SAFE, ΞINIT

PERF, ΞMAIN Phase 1, 2 and 3 update functions in SCG

B+, B−, BTEMP
+ , N Success, failure and temporary success buffers and its size

ϱ+ Distribution over successful contexts

UPDATESUCCESSFULCONTEXTS() Update function for successful contexts

k, K Curriculum iteration and total number of iterations

M Number of rollouts per curriculum iteration
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B AUTOMATED CURRICULUM GENERATION ALGORITHMS

In this section, we provide short descriptions of the state-of-the-art curriculum learning methods
evaluated in the experiments.

• CURROT (Klink et al., 2022): We propose SCG based on Curriculum RL via Constrained
Optimal Transport, which we describe and discuss in Sections 4.1 and 4.2.

• SPDL (Klink et al., 2021): Self-paced Deep Reinforcement Learning formulates the auto-
mated curriculum generation problem similarly to CURROT, except that SPDL generates
context distributions that minimize the KL divergence to the target context distribution.
The constraints in the optimization problem solved in SPDL are on minimum expected
discounted cumulative reward and maximum KL divergence to the previous context distribu-
tion. SPDL does not include an initial search procedure and generates context distributions
as Gaussian distributions. SPDL generates parametric context distributions and does not
provide the robustness that CURROT achieves via a performance constraint on individual
constraints. Therefore, we can highlight why CURROT is better for building SCG.

• PLR (Jiang et al., 2021b): Prioritized Level Replay is a curriculum learning method de-
veloped for procedural context generation environments, where a level corresponds to a
task, i.e., an environment instance. PLR prioritizes levels that have a high average mag-
nitude of generalized advantage estimate (Schulman et al., 2016), namely, the discounted
sum of temporal-difference errors. PLR is a popular curriculum learning approach, yet
it is unsuitable for continuous context spaces, as it assumes that contexts are discrete and
unidimensional. In addition, PLR assumes uniform target context distributions.

• GOALGAN (Florensa et al., 2018): Goal Generative Adversarial Network is a curriculum
learning approach developed for goal-conditioned RL. GOALGAN trains a goal discrimina-
tor to classify goals that are at the intermediate difficulty for the policy of the RL agent and a
goal generator to generate goals at that difficulty to boost learning performance. GOALGAN
is among the first automated curriculum generation approaches that pose curriculum as a
sequence of distributions. Yet, GOALGAN does not interpolate as in CURROT and SPDL.
Similar to PLR, GOALGAN assumes uniform target context distributions.

• ALP-GMM (Portelas et al., 2020): Absolute Learning Progress with Gaussian Mixture
Models uses the absolute learning progress of a task to measure whether a task would
improve the learning process of an RL agent. ALP-GMM learns a Gaussian mixture model
over the absolute learning progress where a multi-armed bandit samples a Gaussian as an
arm based on its utility, which is the absolute learning progress. The Gaussian distribution
that the arm corresponds to draws a task, namely, the context in our setting. ALP-GMM
also generates a sequence of context distributions, but similar to GOALGAN, it does not
interpolate them. In addition, it also assumes that the target context distribution is uniform.

C DETAILS OF SCG

To support Section 5, here we provide a closer look into how the UPDATESUCCESSFULCONTEXTS()
function in SCG works (See Algorithm 2 for a pseudocode).

1) Prioritizing safety. Initially, SCG sets FOUNDSAFEXS and FOUNDPERFXS to false to enable the
UPDATESUCCESSFULCONTEXTS() function to search for safe contexts first. Lines 2-3 indicate that
a successful context in this phase yields a discounted cumulative cost less than or equal to the median
cost Cmed in success buffer B+. Cyclically, B+ gets updated with the successful contexts in trajectory
set Dk, as B− gets updated with the rest of the contexts. Then, UPDATESUCCESSFULCONTEXTS()
generates ϱ+ as a Gaussian mixture model using B+ (Line 4) (see (5) in Section 5). SCG searches
for such safe contexts until Cmed is less than or equal to cost threshold D̃ (Line 5).

2) Prioritizing performance. Once the contexts in Dk satisfy the safety condition,
UPDATESUCCESSFULCONTEXTS() switches its focus to finding performant contexts. Similarly,
SCG begins by updating B+ with contexts where the discounted cumulative reward is greater than or
equal to the performance threshold ζ (Lines 7-8). Then, SCG uses ΞINIT

PERF(B+) to generate ϱ+, which
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Algorithm 2 UPDATESUCCESSFULCONTEXTS()
Input: B+,B−, ISSAFE, ISPERF,Dk

Parameters: Cost threshold D̃, performance threshold ζ
Output: B+,B−, ϱ+,Dk, ISSAFE, ISPERF

1: if not FOUNDSAFEXS then
2: Add {xi|Gc(τxi) > Cmed)} to B−
3: Add {xi|Gc(τxi) ≤ Cmed} to B+
4: ϱ+ ← ΞINIT

SAFE(B+) ▷ prioritize safety
5: FOUNDSAFEXS ← Cmed ≤ D̃
6: else if not FOUNDPERFXS then
7: Add {xi|Gr(τxi) < Rmed} to B−
8: Add {xi|Gr(τxi) ≥ Rmed} to B+
9: ϱ+ ← ΞINIT

PERF(B+) ▷ prioritize performance
10: FOUNDPERFXS ← Rmed ≥ ζ
11: else
12: Add {xi|Gr(τxi) < Rmed or Gc(τxi) > Cmed} to B−
13: BTEMP

+ ← {xi|Gr(τxi) ≥ Rmed and Gc(τxi) ≤ Cmed}
14: B+, ϱ+ ← ΞMAIN(BTEMP

+ ,B+, φ) ▷ main phase
15: return B+,B−, ϱ+, ISSAFE, ISPERF,Dk

differs from ΞINIT
SAFE(B+) in terms of GMM weights ωr and standard deviation σPERF,i (Line 9).

ΞINIT
PERF(B+) =

∑
xi∈B+

ωiN (x|xi, σ
2
SAFE,iI), where ωi = αkω

c
i + (1− αk)ω

r
i , (6)

ωc
i ∝max{0, Cmed −Gc(τxi

)}, ωr
i ∝ max{0, Gr(τxi

)−Rmed}, and

σPERF,i =max

{
σmin, 2

ζ −Gr(τxi)

ζ −Rmin

}
.

Note that Rmin is the minimum reward until curriculum iteration k. SCG prioritizes performant
contexts until Rmed is greater than or equal to ζ (Line 10). During the initial search, SCG updates B+
and B− in a cyclic fashion.

3) Safely approaching the target context distribution. Section 5 already provides information
about how the last phase of SCG works. This phase operates similarly to the main phase of CURROT.
For a detailed description, we refer the reader to Klink et al. (2022).

D EXPERIMENTAL DETAILS

We discuss the process of hyperparameter selection for the curriculum learning approaches evaluated
in this work and additional details about the constrained RL environments in the experiments.

D.1 ALGORITHM HYPERPARAMETERS

SCG has five main parameters: performance threshold ζ, cost threshold D̃, Wasserstein distance
threshold ϵ, number of curriculum iterations K and number of rollouts per curriculum updates
M . CURROT and NAIVESAFECURROT share the same parameters except the cost threshold
D̃, whereas CURROT4COST shares all except the performance threshold ζ. We chose ζ to be
approximately the midpoint between the minimum and maximum possible discounted cumulative
reward or success rate. To select the Wasserstein distance threshold ϵ, we ran a grid search over
{0.25, 0.5} for safety-goal, and over {1.0, 1.25} for safety-maze. For the number of rollouts per
curriculum updates M , we ran grid searches over {20, 40} for all settings. Although SPDL shares ζ ,
K, and M , it has a KL divergence threshold ϵKL, for which we ran a grid search over {0.25, 0.5}
in all environments. Table 2 provides all parameter values. The initial search procedure in SCG
has three hyperparameters: ratio αk and minimum standard deviation σmin for the Gaussian mixture
model, and lastly the number steps to anneal αk. In all settings, we examined linearly annealing
αk from 1 to 0.75 for searching safe contexts and 0.75 to 1.0 for performant contexts in 10 or 20
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Table 2: Parameters used for SCG, CURROT, NAIVESAFECURROT, and CURROT4COST.

Environment ζ D̃ ϵKL ϵ K M
Safety-maze 0.6 0.25 0.25 1.25 500 40
Safety-goal 0.6 1 0.25 0.5 150 20
Safety-passage 0.6 1 0.25 0.5 200 20
Safety-push 0.6 1 0.25 0.25 300 40

Table 3: Selected values for parameters of PLR, GOALGAN and ALP-GMM

Environment ρ β p δnoise nGG
rollout psuccess prand nAG

rollout sbuffer
Safety-maze 0.45 0.15 100 0.1 200 0.2 0.2 200 500
Safety-goal 0.45 0.15 100 0.1 200 0.2 0.2 200 500
Safety-passage 0.45 0.15 100 0.1 200 0.2 0.2 200 500
Safety-push 0.45 0.15 100 0.1 200 0.2 0.2 200 500

curriculum iterations. We did not anneal αk for safety-maze and safety-goal, but annealed αk in 10
iterations for safety-push and safety-passage. We fix σmin = 0.001 as in CURROT.

As parameters to tune, PLR has the score temperature β, the staleness coefficient ρ, and the replay
probability p. We ran a grid search over (ρ, β, p) ∈ {0.15, 0.45} × {0.15, 0.45} × {0.55, 0.85}.
GOALGAN has three parameters: the number of rollouts between curriculum updates nGG

rollout, the
random noise on drawn contexts δnoise, and the percentage of contexts to draw from the success buffer
psuccess. We ran a grid search over (δnoise, n

GG
rollout, psuccess) ∈ {0.05, 0.1} × {100, 200} × {0.1, 0.2}.

ALP-GMM has three parameters: the buffer size sbuffer, the number of rollouts between curriculum
updates nAG

rollout, and the probability of randomly sampling contexts prand. We ran a grid search over
(prand, n

AG
rollout, sbuffer) ∈ {0.1, 0.2} × {50, 100} × {500, 1000}. Table 3 shows the final parameter

used for PLR, GOALGAN, and ALP-GMM.

D.2 ENVIRONMENT DESCRIPTIONS

Safety-maze environment. Inspired by the maze environment (Klink et al., 2022), we design safety-
maze, where the agent receives rewards from of -1 until it reaches the goal, and costs of 0.25 when it
enters the hazardous area (Figure 2). The context space X = [−9, 9]× [−9, 9]× [0.25, 5.0] is over x
and y positions and tolerances of the goal, respectively. We train a constrained RL agent using the
PPO-Lagrangian algorithm Achiam & Amodei (2019). The implementation we integrate into our
codebase is from OmniSafe Ji et al. (2024). The parameters of the PPO-Lagrangian are fixed to their
default values in OmniSafe, except the number of steps to update the policy is 4000 and the number
of iterations to update the policy is 12.

Safety-goal environment. To evaluate SCG in more complex dynamics, we create an environment
with a high-dimensional state space in Safety-Gymnasium Ji et al. (2023). We use pillars, purple
columns, and hazards, blue circles, as objects with which the agent, a car, interacts in the environment
(see Figure 5a). The rewards and costs come from the safety-gymnasium implementation. The context
space X = [−1.5, 1.5] × [−1.5, 1.5] × [0.25, 0.75] is goal positions and tolerances, respectively.
Similar to safety-maze, we only change the parameters of PPO-Lagrangian in OmniSafe by setting
the number of steps and iterations to update the policy to 10000 and 15, respectively.

Figure 8: Safety-passage.

Safety-passage environment. Similar to safety-goal, we create an en-
vironment with a high-dimensional state space in Safety-Gymnasium Ji
et al. (2023). We use pillars, purple columns, and hazards, blue circles,
as objects with which the agent, a car, interacts in the environment (see
Figure 8). The rewards and costs come from the safety-gymnasium imple-
mentation. The context spaceX = [−1.5, 1.5]×[−1.5, 1.5]×[0.25, 0.75]
is goal positions and tolerances, respectively. Similar to safety-maze, we
change the parameters of the PPO-Lagrangian implementation in Om-
niSafe by setting the number of steps and iterations to update the policy
to 10000 and 15, respectively. In addition, the architecture of a policy is
a two-layered perception with 256 neurons in each.
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Safety-push environment. In addition to the objects in safety-goal, safety-push includes a box for
the agent to push to a goal while avoiding hazards (see Figure 5a). The rewards and costs come
from the safety-gymnasium implementation. Similar to safety-maze, we only change the parameters
of the PPO-Lagrangian implementation in OmniSafe by setting the number of steps and iterations
to update the policy to 10000 and 15, respectively, and the batch size to 256. The context space
X = [−1.5, 1.5] × [−1.5, 1.5] × [0.25, 0.75] is goal positions and tolerances, respectively. As in
safety-passage, the architecture of a policy is a two-layered perception with 256 neurons in each.

E COMPUTATION RESOURCES

We run our experiments on a cluster with NVIDIA RTX A5000 GPUs and an Intel(R) Xeon(R)
Gold 6226R CPU @ 2.90GHz. We utilize Omnisafe Ji et al. (2024) as our RL framework, which
uses 16 torch threads and no parallel environments in our experiments. A training run in the
experimented environments approximately takes the following number of hours: (i) safety-maze: 5.5
hours (6000 gradient steps in 2 million interactions), (ii) safety-goal: 7 hours (2250 gradient steps in
1.5 million interactions), (iii) safety-passage: 9 hours (3000 gradient steps in 2 million interactions),
and (iv) safety-push: 12 hours (4500 gradient steps in 3 million interactions).

F DETAILED ANALYSIS OF RESULTS

F.1 QUANTITATIVE RESULTS

In this section, we present figures that complement Fig. 4, which demonstrate the constraint violation
regret at the end of the training and the average cost and success of final policies in target contexts.

F.1.1 SAFETY-MAZE

Figure 9 demonstrates additional plots that provide detailed information about safety and per-
formance during and after training. We observe that SCG, CURROT, NAIVESAFECURROT,
CURROT4COST, and DEFAULT achieve optimal behavior in at least one run out of 10. However,
SCG and CURROT consistently get optimal policies with converged constraint violation regret
during training and with respect to the target context distribution. We highlight that, as SCG paces
the curriculum according to how safely the agent behaves, its constraint violation regret in φ con-
verges the last. Nevertheless, it achieves the lowest constraint violation regret in training out of
all approaches that more or so reliably learn an optimal policy. ALP-GMM, PLR, SPDL, and
GOALGAN achieve similar success rates throughout the training and they all fail in target contexts.
However, the constraint violation regret of ALP-GMM and PLR in training increases very rapidly,
with GOALGAN following behind. In contrast, the rest of the approaches have converged constraint
violation regret in training.

F.1.2 SAFETY-GOAL

The results in Figure 10 demonstrate that SCG generates curricula that achieve the highest success
rates and the lowest costs during training time and when deployment after. CURROT4COST and
DEFAULT can achieve similar success rates, but not as reliably, in target contexts. DEFAULT has
its best performance out of all three constrained environments we study because safety-goal has
a dense reward function, which eases learning without a curriculum. NAIVESAFECURROT and
CURROT4COST also yield as low constraint violation regret as SCG has at the final iteration of
the training. However, NAIVESAFECURROT is less stable at learning policies that accomplish
the task both during and after training. CURROT, ALP-GMM, SPDL, and GOALGAN follow
NAIVESAFECURROT in terms of success in target contexts. An important interpretation to make
in all three settings is that, in contrast to learning directly in target contexts, a curriculum learning
approach can cause an agent to behave unsafely if the approach does not consider the constrained
nature of the task.
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Figure 9: Safety-maze results in 10 seeds: a) Evolution of constraint violation regret during. b)
Progression of expected discounted cumulative cost in target contexts. c) Progression of expected
success rate in contexts drawn from the target context distribution. d) Constraint violation regret with
respect to the target context distribution at the final curriculum iteration. e) Progression of expected
discounted cumulative cost in contexts sampled during training. f) Progression of expected success
rate in contexts sampled during training. g) Evolution of constraint violation regret with respect to the
target context distribution. h) Expected discounted cumulative cost of the final policies in contexts
sampled during training. i) Expected success rate of the final policies in contexts sampled during
training.

F.1.3 SAFETY-PASSAGE

Similar to safety-goal, the results in Figure 11 demonstrate that SCG generates curricula that achieve
the highest success rates and the lowest costs during training time and when deployment after. In
target contexts, NAIVESAFECURROT and DEFAULT can achieve similar success rates but less
reliably. CURROT and CURROT4COST can get close but still fail in some runs. ALP-GMM,
SPDL, PLR, and GOALGAN fall behind in safety and performance by a big margin.

F.1.4 SAFETY-PUSH

Safety-push results in Figure 12 support our observations in the rest of the environments. SCG
successfully aligns the objectives of constrained RL and curriculum learning, thus yielding the lowest
constraint violation regret while achieving the lowest cost and highest success in target contexts.
Although DEFAULT, CURROT and its naively modified safe versions can get close to SCG in terms
of final success, they are not as safe during training and do not consistently yield safe agents at the
end. As in the other environments, PLR, SPDL, and GOALGAN fall behind in terms of safety and
performance, whereas ALP-GMM seems to be as performant as CURROT, but not as safe.

F.2 ABLATION STUDY FOR SCG COMPONENTS

Fig. 13 provide progression plots for average cost, success, and return in contexts generated during
training and sampled from the target context distribution. As mentioned in the main document, SCG
is the first to reach 100% success in target contexts, where SCG-NOPP closely follows. Although
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Figure 10: Safety-goal results from runs in 5 seeds: a) Evolution of constraint violation regret
during. b) Progression of expected discounted cumulative cost in contexts drawn from the target
context distribution. c) Progression of expected success rate in contexts drawn from the target context
distribution. d) Constraint violation regret with respect to the target context distribution at the final
curriculum iteration. e) Progression of expected discounted cumulative cost in contexts sampled
during training. f) Progression of expected success rate in contexts sampled during training. g)
Evolution of constraint violation regret with respect to the target context distribution. h) Expected
discounted cumulative cost of the final policies in contexts sampled during training. i) Expected
success rate of the final policies in contexts sampled during training.

SCG-NOANN and SCG-NOPS do not fall behind in terms of pace of learning, we observe that
SCG-NOPPPS is the slowest among all. In addition, SCG-NOPPPS yields high constraint violation
regret. The last four subfigures visualize the progression of curricula generated by SCG variations.

F.3 ABLATION STUDY FOR SCG PARAMETERS

We run an ablation study for three parameters of SCG: 1) target GMM weight ratio α, i.e., the
value SCG anneals αk to, 2) number of annealing iterations Kann, and 3) cost threshold D̃ in the
SCG update. Our objective is to evaluate how SCG performs in safety-push, more specifically, how
optimality at test time and safety during training change with respect to these parameters.

F.3.1 TARGET GMM WEIGHT RATIO α

Fig. 14 demonstrates the impact of target GMM weight ratio α. We experiment with α ∈
{0.75, 0.5, 0.875, 1}, which determines to what degree SCG prioritizes safe or performant con-
texts as the annealing progresses. α = 1 corresponds to no annealing, i.e., SCG constructs source
distributions ϱ+ over safe contexts only in safety-prioritization phase (5) and over performant con-
texts only in performance-prioritization phase (6). In comparison, α = 0.5 anneals the ratio to give
equal importance to safety and performance. Hence, the safety-prioritization phase begins with safe
contexts only and then anneals αk to give equal importance. The performance-prioritization phase
operates in reverse, first giving equal importance to both and then annealing it for performant contexts
only. Note that α = 0.75 is what we report in the main document. Although α ∈ {0.875, 1} provides
lower CV regret than α = 0.75 in multiple runs, α = 0.75 achieves zero-cost and 100% success in
target contexts, also yields CV regret with low variance. α = 0.5 yields the highest CV regret.
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Figure 11: Safety-passage results from runs in 5 seeds: a) Evolution of constraint violation regret
during. b) Progression of expected discounted cumulative cost in contexts drawn from the target
context distribution. c) Progression of expected success rate in contexts drawn from the target context
distribution. d) Constraint violation regret with respect to the target context distribution at the final
curriculum iteration. e) Progression of expected discounted cumulative cost in contexts sampled
during training. f) Progression of expected success rate in contexts sampled during training. g)
Evolution of constraint violation regret with respect to the target context distribution. h) Expected
discounted cumulative cost of the final policies in contexts sampled during training. i) Expected
success rate of the final policies in contexts sampled during training.

F.3.2 NUMBER OF ANNEALING ITERATIONS Kann

Fig. 15 showcases the ablation results for the number of annealing iterations Kann. This parameter
specifies how many curriculum iterations the annealing of αk to α takes. Note that we anneal αk

linearly. We experiment with Kann ∈ {10, 5, 20}, where α = 10 is reported in the main document.
Kann = 10 achieves zero-cost and 100% success rates in target contexts and provides low variance
in CV regret. Decreasing or increasing the annealing pace causes a lower success rate and higher
variance in CV regret.

F.3.3 COST THRESHOLD D̃

Fig. 16 illustrates the ablation results for the cost threshold D̃. This parameter determines the
maximum expected cost SCG allows a context under the new context distribution ϱk (see equation
4). We experiment with D̃ ∈ {1, 0.5, 2}, where α = 1 is reported in the main document. Kann = 1
achieves zero-cost and 100% success rates in target contexts and provides low variance in CV regret.
Although Kann = 0.5 can achieve lower CV regret, it significantly increases the variance and causes
non-zero cost in target contexts in multiple runs.

F.4 COMPARISON OF CONSTRAINED RL APPROACHES

In our experiments, all baselines, including DEFAULT, which does not generate curricula, and existing
curriculum learning approaches use PPO-Lagrangian as the constrained RL algorithm of choice.
To further support our claim that SCG provides safer training than DEFAULT, we experiment with
three other constraint RL approaches in safety-push: 1) Constrained Policy Optimization (CPO),
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Figure 12: Safety-push results from runs in 5 seeds: a) Evolution of constraint violation regret
during. b) Progression of expected discounted cumulative cost in contexts drawn from the target
context distribution. c) Progression of expected success rate in contexts drawn from the target context
distribution. d) Constraint violation regret with respect to the target context distribution at the final
curriculum iteration. e) Progression of expected discounted cumulative cost in contexts sampled
during training. f) Progression of expected success rate in contexts sampled during training. g)
Evolution of constraint violation regret with respect to the target context distribution. h) Expected
discounted cumulative cost of the final policies in contexts sampled during training. i) Expected
success rate of the final policies in contexts sampled during training.

2) Projection-Based Constrained Policy Optimization (PCPO), and 3) First Order Constrained
Optimization in Policy Space (FOCOPS). As DEFAULT, these approaches do not generate curricula
but directly sample contexts from the target context distribution during training. Fig. 17 evidence that
similar to DEFAULT with PPO-Lagrangian, other constrained RL algorithms cause high constraint
violation regret during training and fail to yield optimal policies in multiple training runs.

F.5 CURRICULUM PROGRESSION

Figs. 18 to 24 demonstrate the progression of curricula generated by CURROT,
NAIVESAFECURROT, CURROT4COST, SPDL, PLR. ALP-GMM, and GOALGAN, re-
spectively, in safety-maze, safety-goal, safety-passage, and safety-push environments. Figure 25
demonstrates the contexts drawn from the target context distribution during training runs of DEFAULT.
NAIVESAFECURROT may have similar curricula to SCG in some settings, as it considers reward
and cost simultaneously but through a penalized reward signal, which takes away the flexibility
that SCG provides in prioritizing safe or performant contexts separately and sometimes together.
CURROT4COST takes cost into account, only, but fails to recognize that goals on the hazards in
safety-maze and safety-goal can lead to high constraint violation regret. ALP-GMM yields higher
success than SPDL in safety-passage and safety-push, due to being able to generate multi-model
distribution via Gaussian mixture models, as opposed to unimodal Gaussian distributions of SPDL.
PLR fails to prioritize safe or performant contexts.
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Figure 13: Ablation study results in safety-push from runs in 5 seeds: a) Evolution of constraint
violation regret during. b) Progression of expected discounted cumulative cost in contexts drawn from
the target context distribution. c) Progression of expected success rate in contexts drawn from the
target context distribution. d) Constraint violation regret with respect to the target context distribution
at the final curriculum iteration. e) Progression of expected discounted cumulative cost in contexts
sampled during training. f) Progression of expected success rate in contexts sampled during training.
g) Evolution of constraint violation regret in target contexts. h) Expected discounted cumulative cost
of the final policies in contexts sampled during training. i) Expected success rate of the final policies
in contexts sampled during training. j-m) Progression of curricula generated by SCG variations
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Figure 14: Ablation study for target GMM weight ratio α in safety-push from runs in 5 seeds: a)
Constraint violation regret at the final curriculum iteration. b) Expected discounted cumulative cost
of the final policies in target contexts, c) Expected success rate of the final policies in target contexts.
d) Evolution of constraint violation regret during. e) Progression of expected discounted cumulative
cost in contexts drawn from the target context distribution. f) Progression of expected success rate in
contexts drawn from the target context distribution. g) Constraint violation regret with respect to the
target context distribution at the final curriculum iteration. h) Progression of expected discounted
cumulative cost in contexts sampled during training. i) Progression of expected success rate in
contexts sampled during training. j) Evolution of constraint violation regret with respect to the target
context distribution. k) Expected discounted cumulative cost of the final policies in contexts sampled
during training. l) Expected success rate of the final policies in contexts sampled during training.
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Figure 15: Ablation study for number of annealing iterations Kann in safety-push from runs in
5 seeds: a) Constraint violation regret at the final curriculum iteration. b) Expected discounted
cumulative cost of the final policies in target contexts, c) Expected success rate of the final policies
in target contexts. d) Evolution of constraint violation regret during. e) Progression of expected
discounted cumulative cost in contexts drawn from the target context distribution. f) Progression of
expected success rate in contexts drawn from the target context distribution. g) Constraint violation
regret with respect to the target context distribution at the final curriculum iteration. h) Progression of
expected discounted cumulative cost in contexts sampled during training. i) Progression of expected
success rate in contexts sampled during training. j) Evolution of constraint violation regret with
respect to the target context distribution. k) Expected discounted cumulative cost of the final policies
in contexts sampled during training. l) Expected success rate of the final policies in contexts sampled
during training.
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Figure 16: Ablation study for cost threshold D̃ in safety-push from runs in 5 seeds: a) Constraint
violation regret at the final curriculum iteration. b) Expected discounted cumulative cost of the
final policies in target contexts, c) Expected success rate of the final policies in target contexts. d)
Evolution of constraint violation regret during. e) Progression of expected discounted cumulative
cost in contexts drawn from the target context distribution. f) Progression of expected success rate in
contexts drawn from the target context distribution. g) Constraint violation regret with respect to the
target context distribution at the final curriculum iteration. h) Progression of expected discounted
cumulative cost in contexts sampled during training. i) Progression of expected success rate in
contexts sampled during training. j) Evolution of constraint violation regret with respect to the target
context distribution. k) Expected discounted cumulative cost of the final policies in contexts sampled
during training. l) Expected success rate of the final policies in contexts sampled during training.
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Figure 17: Comparison of constrained RL algorithms in safety-push from runs in 5 seeds: a)
Constraint violation regret at the final curriculum iteration. b) Expected discounted cumulative cost
of the final policies in target contexts, c) Expected success rate of the final policies in target contexts.
d) Evolution of constraint violation regret during. e) Progression of expected discounted cumulative
cost in contexts drawn from the target context distribution. f) Progression of expected success rate in
contexts drawn from the target context distribution. g) Constraint violation regret with respect to the
target context distribution at the final curriculum iteration. h) Progression of expected discounted
cumulative cost in contexts sampled during training. i) Progression of expected success rate in
contexts sampled during training. j) Evolution of constraint violation regret with respect to the target
context distribution. k) Expected discounted cumulative cost of the final policies in contexts sampled
during training. l) Expected success rate of the final policies in contexts sampled during training.
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Figure 18: Curricula generated by CURROT.
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Figure 19: Curricula generated by NAIVESAFECURROT.
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Figure 20: Curricula generated by CURROT4COST.
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Figure 21: Curricula generated by SPDL.
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Figure 22: Curricula generated by PLR.

0.25

1.25

2.25

3.25

(a) Safety-maze

0.25

0.5

0.75

(b) Safety-goal

0.25

0.5

0.75

(c) Safety-passage

0.25

0.5

0.75

(d) Safety-push

Figure 23: Curricula generated by ALP-GMM.
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Figure 24: Curricula generated by GOALGAN.
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Figure 25: Curricula generated by DEFAULT.
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