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Supplementary Material for “Output-Constrained Decision Trees”

A PROOF OF THEOREM 1

THEOREM 1 Let the feasible set Y → Rk be convex. If the loss function is the mean squared error or
the mean Poisson deviance, then the mean of the target vectors in a node minimizes the loss.

PROOF. Suppose that the node corresponds to the subset N → D. Since Y → Rk, we have

min
y→Rk

∑

i→IN

ω(y,yi) ↑ min
y→Y

∑

i→IN

ω(y,yi)

for any loss function ω : Rk↓Rk ↔↗ R. We call the optimization model on the left as the unconstrained
problem and the one on the right as the constrained problem. Note that if the optimal solution of
the unconstrained problem is in the feasible set Y, then it should also be the optimal solution of the
constrained problem. We use the optimal solution of the unconstrained problem as the output vector
of the node and refer to it as yN . Both loss functions that we consider are separable in terms of the
target vector. Thus, we write ω(y,yi) =

∑
t→T ω(yt, yit), where T = {1, . . . , k} is the set of target

indices.

The unconstrained problems with the mean squared error and the mean Poisson deviance loss
functions are given by

min
y→Rk

1

2|IN |
∑

i→IN

∑

t→T
(yt ↘ yit)

2

and
min
y→Rk

1

|IN |
∑

i→IN

∑

t→T
(yit ln(

yit
yt

) + yt ↘ yit),

respectively. Clearly, both loss functions are differentiable and convex. Thus, the necessary-and-
sufficient optimality conditions for both problems are given by

∑

i→IN

εω(yt, yit)

εyt
= 0, t ≃ T . (7)

Solving next the conditions in (7) for both unconstrained problems leads to
∑

i→IN

εω(yt, yit)

εyt
= 0, t ≃ T =⇐ yt =

1

|IN |
∑

i→IN

yit, t ≃ T =⇐ yN =
1

|IN |
∑

i→IN

yi.

Thus, the optimal solutions is the mean vector. Because yi ≃ Y for i ≃ IN and the feasible set Y is
convex, the convex combination of yi vectors should also be feasible; that is, yN ≃ Y. Therefore, the
mean vector is also the optimal solution of the constrained problem. This shows the desired result. ↭

Remark 1 Standard multi-target regression tree implementations, like that of scikit-learn, use
the median of the target vectors in the node as prediction when the loss function is selected as the
mean absolute deviation. However, our result in Theorem 1 does not hold in this case, because the
median vector may lie outside the feasible set even if it is convex.

Figure 7 shows such an example for k = 2, where the convex feasible set is shown by the shaded
area, and the node has five feasible target vectors denoted by the black circles. The median vector,
shown as the red circle, is clearly outside the feasible set.
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Figure 7: A counter example showing that the median vector lies outside the convex feasible set.

B OPTIMIZATION MODEL OF THE scores DATASET

The optimization model imposed on the scores dataset is formulated as follows:

minimize
1

2n

n∑

i=1

k∑

t=1

(yt ↘ yit)
2

subject to yt ↑ 110bt, t = 1, . . . , k,

y2 ⇒ 50b3,

y1 + y2 ⇒ 110b1,

where n is the number of instances, k is the number of targets, yt is the prediction for the t-th target,
yit is the true value of the t-th target for the i-th instance, and bt is a binary variable indicating
whether the prediction for the t-th target is used (bt = 1) or not (bt = 0).

C DATA GENERATION AND OPTIMIZATION MODEL OF THE class DATASET

Table 1 outlines the distributions and their parameters used to generate the extended data, illustrating
how the features of the dataset are created. We should note that the feature GradePerm consists
of the permuted values of the feature Grade, created with the purpose of imposing randomness
on the data. The target values are computed by taking the equally weighted sum of the Grade
and GradeAvgPrevElec, with the addition of a uniform noise component ranging between -10
and 10 if GradeAvgPrevElec is non-zero. If GradeAvgPrevElec is zero, the target value
is determined by Grade plus a normal noise with a mean of 10.0 and a standard deviation of 2.0.
These computed values are then clipped to ensure they fall within the range of 0 to 100. Additionally,
certain target values are deliberately set to zero based on random selection according to the features.
For instance, if the Class feature is equal to one, all but a randomly chosen subset of the first
two targets’ grades are set to zero. To fit the data to our research objectives, we have imposed two
constraints on the created dataset. One constraint is created using binary decision variables to ensure
that one non-zero prediction is generated at most. Another set of constraints has been applied to each
target variable to limit the prediction based on the binary variable.
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Table 1: Features of the class dataset
Features Distribution Min Max Mean Std.Dev.

EnrolledElectiveBefore Discrete Uniform 0 1 - -
GradeAvgPrevElec Normal 0 100 60 15
Grade Normal 0 100 70 10
Major Discrete Uniform 1 3 - -
Class Discrete Uniform 1 4 - -
GradePerm Normal 0 100 70 10

The optimization model is as follows:

minimize
1

2n

n∑

i=1

k∑

t=1

(yt ↘ yit)
2

subject to
k∑

j=1

bj ↑ 1,

yt ↑ 110bt,

where n is the number of instances, k is the number of targets, yt is the prediction for the t-th target,
yit is the true value of the t-th target for the i-th instance, and bt is a binary variable indicating
whether the prediction for the t-th target is used (bt = 1) or not (bt = 0).
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