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ABSTRACT

Branch-and-bound methods are pivotal in solving Mixed Integer Linear Programs
(MILPs), where the challenge of node selection arises, necessitating the prioriti-
zation of different regions of the space for subsequent exploration. While machine
learning techniques have been proposed to address this, two crucial and open ques-
tions concerning (P1) the representation of the MILP solving process and (P2) the
qualification of nodes in node selection remain open. To tackle these challenges,
we propose a novel tripartite graph representation for the branch-and-bound search
tree, which theoretically proves to effectively encapsulate the essential informa-
tion of the search tree for node selection. Furthermore, we introduce three inno-
vative metrics for node selection and formulate a Graph Neural Network (GNN)
based model, named DQN-GNN, utilizing reinforcement learning to derive node
selection policies. Empirical evaluations illustrate that DQN-GNN markedly en-
hances the efficiency of solving MILPs, surpassing the existing human-designed
and learning-based models. Compared to other AI methods, our experiments sub-
stantiate that DQN-GNN exhibits commendable generalization to MILPs that are
substantially larger than those encountered during training.

1 INTRODUCTION

Corporate decision-making paradigms are undergoing significant transformations, transitioning
from traditional manual approaches to mathematical modeling and solver-based techniques (Zhang
et al., 2023). This transformation is notably prevalent in numerous areas that encounter problems
with integer variables, such as industrial process scheduling (Floudas & Lin, 2005), resources al-
location (Ren & Gao, 2010), and logistic operations (Paschos, 2014). This has led to an increased
focus on Mixed Integer Linear Programming (MILP), an essential type of mathematical problem
that can effectively handle these integer constraints.

Solving MILPs. However, deploying MILP in real-world scenarios unveils pronounced intricacies.
The inherent NP complexity (Paulus et al., 2022) and high dimensionality(Urbanucci, 2018) fre-
quently push computational resources to their limits, especially when solutions are needed within
stringent deadlines. Most MILP solvers (Gurobi., 2021; Bestuzheva et al., 2021; CPLEX., 2020)
rely on the branch-and-bound (B&B) algorithm (Land & Doig, 2010), which recursively divides
the search space into a tree. Through the decision tree, myriad pivotal decisions are repeatedly
made (Linderoth & Savelsbergh, 1999), including determining the node to explore, selecting the
branching variable, or even choosing the suitable heuristic for a given node (Fischetti & Lodi, 2010).
These modules dictate the overall efficiency of identifying the optimal solution (Kianfar, 2010).

Unlike variable selection, which has a theoretically optimal strategy (strong branching) (Applegate
et al., 1995), node selection lacks a universally acknowledged optimal method (He et al., 2014).
Although currently neural network models are useful for solving MILP problems, designing an
learning-based methods is still particularly challenging. It requires that neural networks have suffi-
cient power to recognize key characteristics of MILPs and the search tree.

Node Selection in B&B. The overarching goal of the entire branch-and-bound algorithm is to accu-
rately identify an integer solution and subsequently affirm its optimality (Boyd & Mattingley, 2007).
To achieve this, a meticulous exploration of the entire feasible space is indispensable (Ibaraki, 1978).

1



Under review as a conference paper at ICLR 2024

Each node signifies a specific subspace, and the decision to expand a node involves an exploration
into that subspace (Mitten, 1970). Upon the identification of an integer solution, the global lower
bound (Norkin et al., 1998) is updated correspondingly, as the optimal solution should inherently
be greater than or equal to the discovered solution. When exploring a node (a subproblem), if the
Linear Programming (LP) relaxation solution of the node (its upper bound) surpasses the global
lower bound, the node is deemed unfit for further exploration and is pruned (Yanover et al., 2006).
That is because we can conclusively infer that a solution greater than the global lower bound doesn’t
reside in this node. This systematic approach gradually narrows the gap between the upper and
lower bounds until a convergence to zero is attained (Huang et al., 2023). Efficient node selection
is crucial in accelerating this convergence process (He et al., 2014; Yilmaz & Yorke-Smith, 2020;
Labassi et al., 2022).

Goals. In this paper, we focus on the node selection process within the B&B algorithm, a critical
yet relatively less explored decision task compared to other tasks, such as variable selection (Gasse
et al., 2019; Gupta et al., 2020; Zarpellon et al., 2021; Nair et al., 2020; Etheve et al., 2020). This
paper tries to address two fundamental but open problems for node selection in MILP: (P1) how to
formulate a representation that accurately encapsulates both the inherent properties of MILP and the
insights obtained during the solving process to select appropriate nodes, and (P2) how to measure
the “goodness” of a node.

Analysis for P1. Determining what constitutes as “sufficient” information is pivotal for inferring the
optimal node for selection, a task often overshadowed by the prevailing approach that perceives each
newly expanded node as an isolated subproblem. We advocate for a perspective that perceives each
selected node as a nuanced divergence from its parent, distinguished by a newly added constraint.
This approach emphasizes the subtle distinctions between proximate nodes and minimizes redun-
dancy in representing the foundational problem. This innovative viewpoint strives to offer a holistic
representation by amalgamating inherent node information and insights acquired subsequent to node
selection. This accentuates the intrinsic interconnectedness of the subproblem with the overarching
problem. A more detailed exploration of this perspective is delineated in Section 3.

Analysis for P2. To address this point, we reexamine the primary objective of node selection:
minimizing the overall solving time (He et al., 2014). The solver concludes its process once the
global gap reaches zero, thus accelerating gap convergence is our primary objective. However,
solely relying on the gap for training is insufficient as the gap only changes when a new feasible
solution is discovered (Mahmoud & Chinneck, 2013). To address this, we incorporate a second
guiding principle: leveraging the path to the historical optimal solution, a strategy proven effective
in previous works (He et al., 2014; Yilmaz & Yorke-Smith, 2020; Labassi et al., 2022). Additionally,
the time spent in the node selection process is also a significant factor to consider. A crucial, yet
often overlooked aspect in node selection is the transition from the current focus node to the newly
selected one. We delve into these questions in detail in Section 4.

Contributions. Our main contributions are summarized as follows:

• Novel Representation. We have introduced a novel tripartite graph representation for the branch-
and-bound search tree, addressing the significant issue of inadequate representation of the MILP
intermediate solving process. This representation is theoretically proven to encapsulate sufficient
information of the search tree, enabling effective node selection in the solving process.

• Metrics and Model Development. We have proposed three innovative metrics for node selection
and developed a DQN-GNN model. This model employs reinforcement learning to learn node
selection policies in MILP solving.

• Empirical Validation. We design and conduct experiments that demonstrate the efficacy of the
DQN-GNN model in enhancing the efficiency of solving MILPs. The model has demonstrated
significant improvement over existing human-designed and learning-based benchmarks.

2 PRELIMINARIES

In this section, we present concepts and definitions that will be used throughout this paper. We first
describe how to represent an MILP with a weighted bipartite graph, then we define the branch-and-
bound process with strict mathematical definitions.
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MILP as Weighted Bipartite Graph. A general MILP problem is defined by a set of decision
variables, where a subset or all variables are required to be integers. The objective is to maximize a
linear function under a series of linear constraints, as formulated below:

max c⊤x

s.t. Ax ≥ b,x ∈ RN ,

xj ∈ Z,∀j ∈ I,
(1)

For simplicity, we assume that the objective of the MILP problems discussed in this paper is to seek
the maximum value.

Prior to developing graph representations for MILPs, we commence by defining the specific type
of graph to be employed subsequently: a weighted bipartite graph. The weighted bipartite graph
G = (V ∪ C,E) consists of a vertex set V ∪ C that are divided into two groups variable vertex
set V and constraint vertex set C with V ∩ C = ∅, and a collection E of weighted edges, where
each edge connects exactly one vertex in V and one vertex in C. There is an edge between a
variable vertex and a constraint vertex if the variable has a nonzero coefficient in the constraint.
Note that there is no edge connecting vertices in the same vertex group. E can also be viewed
as a function E : V × C → Re, where e denotes the dimension of the edge attributes. We use
Gl,m to denote the collection of all weighted bipartite graphs G = (V ∪ C,E) with |V | = l and
|C| = m. We always write V = {v1, v2, . . . , vl} , C = {c1, c2, . . . , cm} , and Ei,j = E(vi, cj), for
i ∈ {1, 2, . . . , l}, j ∈ {1, 2, . . . ,m} .

One can equip each vertex and edge with a feature vector. Throughout this paper, we denote hV
i ∈

HV as the feature vector of vertex vi ∈ V , hC
j ∈ HC as the feature vector of vertex cj ∈ C,

and hE
k ∈ HE as the feature vector of edge ek ∈ E, where HV ,HC ,HE are feature spaces. Then

we define HV
l := (HV )l, HC

m := (HC)m and concatenate all the vertex features together as
HV = (hV

1 , h
V
2 , . . . , h

V
l ) ∈ HV

l , HC = (hC
1 , h

C
2 , . . . , h

C
m) ∈ HC

m. Finally, a weighted bipartite
graph with vertex features is defined as a tuple (G,HV , HC) ∈ Gl,m ×HV

l ×HC
m.

With the concepts described above, one can represent an MILP as a bipartite graph (Nair et al., 2020;
Gasse et al., 2019): Each vertex in V represents a variable in MILP and each vertex in C represents
a constraint.

Branch-and-Bound Algorithm. The B&B algorithm, a well-regarded tree search method, is com-
monly used to solve MILP problems. The strategy behind B&B involves a divide-and-conquer
approach, breaking down the search space by branching on variable values. During the solving pro-
cess, a search tree T is constructed. Each node in the tree corresponds to a subproblem of the original
MILP but with additional constraints. The nodes which we have not explored are called open nodes.
Our attention is firmly directed towards the node selection policy πns : N × S → ns ∈ N , which
guides the choice of a node ns from the open node set N according to the search tree state space S.
Then, the LP relaxation of this node can be solved, where all variables are treated as continuous. Ef-
ficient algorithms such as the simplex method can be utilized to solve this equation, and the optimal
solution xns thus obtained provides a lower bound f(xns) for the original MILP problem.

If the LP relaxation solution xns of the selected node violates the original integrality constraints,
the problem “branches” into two new subproblems (child nodes) by adding constraints that compel
the fractional variable to round up or down. Specifically, the leaf node is added with constraints
xi ≤ ⌊(xns)i⌋ and xi ≥ ⌈(xns)i⌉, respectively, where xi denotes the i-th variable, (xns)i denotes
the i-th entry of vector xns, and ⌊⌋ and ⌈⌉ denote the floor and ceil functions. In contrast, if the
solution xns is integer (and feasible for the original MILP as per Equation 1), and its objective value
surpasses the current best integer feasible solution, it is designated as the new global lower bound.
Alternatively, if the objective value f(xns) (i.e., the node upper bound) is lower than the global
lower bound, or if the LP problem is infeasible, the node is pruned.

3 PROPOSED REPRESENTATION OF BRANCH-AND-BOUND TREE

In this section, we initially elucidate our motivation and define the structure of the tripartite graph,
subsequently demonstrating our findings on why the information encapsulated within the tripartite
graph suffices for effective node selection.
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Figure 1: Example of tripartite graph representation. The root node (red) is conceptualized as a
bipartite graph, consisting of variable and constraint vertices, while the leaf nodes (grey) embody
sets of newly incorporated constraints. The features of the edges, which connect the variable vertices
to the node constraint vertices, delineate the constraint space of the leaf nodes.

3.1 MOTIVATION

In addressing the critical question (P1), we focus on how to refine the representation of newly
explored information in MILP problems, particularly within the branch-and-bound (B&B) process.
An essential aspect of this exploration is determining what information to preserve and represent at
each stage of the search tree.

Node Information for Selection. To provide a more nuanced measure of a node’s exploration
potential, we introduce the concept of node information, denoted as I(N). This concept captures all
relevant knowledge gained following the selection of node N , which is instrumental in steering the
search process effectively. It consists of two principal components: (1) Inherent Information, I1(N):
This component comprises the set of constraints that are explicitly associated with node N , which
are the direct result of the specific branching decisions taken to reach N from the root of the search
tree. Immediately upon selection, I1(N) is available, which delineates the search path of N and
indicates its intrinsic potential within the search space. (2) Derived Information, I2(N): Following
node selection, I2(N) emerges from solver computations and heuristic algorithms, offering dynamic
updates to the bounds.

The Limitations of the Bipartite Graph Model. Previous studies, notably by Labassi et al. (2022),
have adopted a bipartite graph model to represent nodes in the B&B tree, treating each as an inde-
pendent subproblem with its own set of variables and constraints. While this approach offers a
comprehensive view of each node, especially in terms of I1(N), it also introduces significant in-
formational redundancy. This is because many nodes share a large portion of their constraints and
variables. Such redundancy can obscure the subtle, yet critical, differences between closely related
nodes that arise from distinct branching decisions.

From Subproblems to Constraints. We observe that subproblems in MILP do not arise in isolation;
they are developed step-by-step through a series of branching decisions. Each branching operation
introduces new constraints, subtly altering the problem space. These incremental changes are critical
for AI to learn the distinctions between nodes, which is often lost in traditional representations. To
address these limitations, we propose a tripartite graph model. This model maintains the root node’s
complete bipartite graph representation, capturing the original problem’s full scope. For subsequent
nodes, however, we shift our focus to the constraints added through branching.

3.2 REPRESENTING B&B TREES WITH TRIPARTITE GRAPHS FOR NODE SELECTION

Although we have seen each node in the tree as a set of constraints, we have left two issues un-
addressed: whether these nodes are equally important and whether there is a need to represent all
of them explicitly. We respond to these questions by introducing two theorems. The first theorem
proves that the information of a node can be encompassed by the information of its expanded child
nodes, which also provides an answer to the second question. Subsequently, we present the second
theorem, asserting that the information from the root problem and the leaf nodes is indeed sufficient
for node selection. The full proof is presented in the Appendix B.1.
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Theorem 3.1. Given a node N0 and its two child nodes N1 and N2, it holds that I(N0) ⊆ I(N1)∪
I(N2), where I(N) denotes the information of the node N .

This theorem demonstrates that the information of a node can be encompassed by the information
of its expanded child nodes. With Theorem 3.1 served as a foundation, we can prove that the
information from the root problem and the leaf nodes is indeed sufficient for node selection.
Theorem 3.2. Given a B&B search tree T , the entirety of its information pertinent to node selection
can be encapsulated by the constraint and variable information of its root node, coupled with the
constraint, upper bound, and lower bound information of the leaf nodes within the tree.

The information encompassed within the search tree is twofold: it includes the original problem,
represented by the root node, and the information from the explored nodes. As established in Theo-
rem 3.1, the information contained within a parent node can be derived from the information within
its child nodes. Consequently, for a given search tree, all explored information can be represented
exclusively by the collection of its leaf nodes.

Then an MILP solving search tree can be represented as a tripartite graph. The root node, which
embodies the original problem, is formulated as a bipartite graph, following the approach in Labassi
et al. (2022), consisting of vertices for variables and constraints. In the search tree, each leaf node is
a subproblem created through branching, where each branch adds a new constraint. To represent this
in our tripartite graph, we use ’node constraint vertices’ to represent the leaf nodes. A series of edges
connect these vertices to ’variable vertices,’ collectively representing the sequence of constraints that
have been added throughout the branching process. We present the search tree in an MILP instance
solving process and its corresponding tripartite graph in Figure 1.

3.3 TRIPARTITE GRAPH REPRESENTATION

Building upon the existing bipartite graph representation of the MILP root node problem, we extend
this representation to encapsulate not only the inherent problem structure but also the intermediate
exploration process during the solution. The node constraint is articulated as a set of constraints
added to the root problem: {xi ≤ zi|i ∈ I, zi ∈ Z} or {xi ≥ zi|i ∈ I, zi ∈ Z}. We integrate
these new node constraint vertices into the original bipartite graph, observing that these vertices
exclusively form edges with the variable vertices. As a result, we formulate a tripartite graph G =
(V ∪ C ∪ NC,EC ∪ ENC) which includes a vertex set V ∪ C ∪ NC, divided into three subsets:
the variable vertex set V , the constraint vertex set C and the node constraint vertex set NC, with
V ∩ C = V ∩NC = C ∩NC = ∅. It also encompasses a collection EC of weighted edges, each
connecting vertices from V and C, and ENC connecting vertices from V and NC. We denote the
collection of all such weighted tripartite graphs G = (V ∪C∪NC,EC∪ENC) with |V | = l, |C| =
m and |NC| = n as Gl,m,n. Further, we denote V = {v1, v2, . . . , vl}, C = {c1, c2, . . . , cm}, NC =
{nc1, nc2, . . . , ncn}. The edges are denoted as EC

i,j = EC(vi, cj) and ENC
j,k = ENC(cj , nck), with

|EC | = e1, |ENC | = e2, for i ∈ {1, 2, . . . , l}, j ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , n}.

Each vertex and edge are associated with a feature vector. Let hV
i ∈ HV , hC

j ∈ HC , and
hNC
k ∈ HNC represent the feature vectors of vertex vi ∈ V , cj ∈ C and nck ∈ NC, respectively.

Subsequently, we define HV
l := (HV )l, HC

m := (HC)m, andHNC
n := (HNC)n. We concatenate

all the vertex features to form H = (hV
1 , h

V
2 , . . . , h

V
l , h

C
1 , h

C
2 , . . . , h

C
m, hNC

1 , hNC
2 , . . . , hNC

n ) ∈
HV

l × HC
m × HNC

n . The edge features are denoted as fEC

i ∈ FEC

and fENC

j ∈ FENC

.
We then define FC

e1 := (FC)e1 and FNC
e2 := (FNC)e2 and concatenate them to obtain F =

(fEC

1 , fEC

2 , . . . , fEC

e1 , fENC

1 , fENC

2 , . . . , fENC

e2 ).

4 LEARNING NODE SELECTION VIA GNN

Node selection in the B&B tree involves a series of sequential decisions, where each choice im-
pacts the subsequent ones and the final result. Furthermore, the branch-and-bound process often
encounters delayed rewards, meaning an early decision’s consequences might only become appar-
ent after several steps. Therefore, we leverage Reinforcement Learning (RL) to learn node selection
policies. In this section, we initially address the question (P2): How to quantify the “goodness”
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of a node. Subsequently, we formulate our node selection problem as a Markov Decision Process
(MDP). Finally, we provide an exhaustive description of our proposed DQN-GNN model.

4.1 QUANTIFYING NODE GOODNESS

Before delving into the intricacies of our reinforcement learning methodology, it is pivotal to address
the crucial question (P2): How does one quantify the “goodness” of a node?

Objective 1: Acceleration of Gap Convergence. To address this, let’s revisit the primary objective
of node selection, which is to minimize the overall solving time. The solver concludes its process
once the global gap reaches zero, making the acceleration of gap convergence our first objective.

Sparsity of Gap. However, relying solely on the gap for training proves to be insufficient. This
is because the gap only undergoes changes when a new feasible solution is discovered, leading to
updates in the lower bound, or when all nodes of identical depth have been explored, causing updates
in the upper bound. Intuitively, the gap remains constant through the majority of the selection steps.
The subsequent theorem elucidates the sparsity of the gap encountered during node selection. The
detailed proof is relegated to Appendix B.2 due to space constraints.

Theorem 4.1. Consider a B&B tree T containing s0 nodes. Suppose that, at each round t, the gap
reward r(·) for the selected node at is finite, denoted as |r(·)| ≤ r0. Given an initial point x′ and
a heuristic algorithm with exploration ability δ, the algorithm can explore integer solutions in the

space {x ∈ Zn | x′
i − δ

2 ≤ xi ≤ x′
i +

δ
2 , i = 1, 2, . . . , n}. If δ ≤ n

√
ϵ−(log2 s0+1)/s0

r0·s0 , then it holds
that E [

∑
t r(at)] ≤ ϵ.

Objective 2: Historical Optimal Solution Path. The sparsity of the gap complicates the learning
process for the reinforcement model due to the lack of effective learning signals. To mitigate this, we
employ a second guiding principle: leveraging the path to the historical optimal solution, a proven
strategy in previous works (He et al., 2014; Yilmaz & Yorke-Smith, 2020; Labassi et al., 2022).
Given that each node represents a specific search space, we can determine whether this optimal
solution resides within the space of a particular node, indicating the potential of the node to lead
to the optimal solution. This method facilitates quicker discovery of feasible solutions by utilizing
historical information from similar problems.

However, we refine this approach by reducing the reward value in the early exploration stages. This
adjustment is based on the rationale that in the initial steps, due to the vastness of the search space
and the limited available information, establishing a connection between the information and the
potential to reach the optimal solution is intricate. Moreover, discerning whether a node can lead
to the optimal solution is not pivotal in the initial stages. The likelihood of the optimal solution
residing within the explored space is high, and the predictions, being based on incomplete feature
exploration, are not precise. Even if the initial selections deviate from the optimal solution path, it
is not detrimental as our objective is not solely to find the optimal solution but also to ascertain the
absence of superior solutions in other spaces. Thus, minor inaccuracies in the exploration of initial
nodes do not critically impact the overall search and verification process.

Selected Node

Focus Node

(a)

Selected Node

Focus Node

Fork Node

(b)

Figure 2: Path switching process.

Objective 3: Path Switching Cost. Our prior
discussions have centered around strategies for
accelerating gap convergence, but it’s crucial to
remember that our ultimate goal is to reduce the
overall solving time. Thus, the time spent in the
node selection process itself is also a substantial
factor. A crucial, unaddressed question in node
selection is how we transition from the current
focus node to the newly selected one. In the
branch-and-bound process, solvers (Bestuzheva
et al., 2021) navigate the path from the focus
node to the newly chosen one (path switch). As
illustrated in Figure 2, both the focus and the
newly chosen nodes repeatedly trace back to
their parent nodes until a common ancestor node is found. In certain problems such as the Weighted
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Partial MaxSAT (WPMS) dataset with n ∈ [70, 80], path switch phase averagely consumes 5.2% of
the total solving time.

Reward Function. We formulate the reward function to encompass the three objectives discussed
previously, structured in three components: (1) Gap update reward. If the gap updates, a fixed
reward, rgap, is received. If there is no update in the gap, the reward for this component is zero. (2)
Optimal solution path reward. If the optimal solution resides within the current node’s domain,
a reward, F , is assigned. The value of F is designed to be smaller in the initial steps but increases
as it reaches deeper nodes. If the optimal solution is not within the domain of the current node,
the reward for this component is zero. (3) Path switching penalty. We penalize path switching by
subtracting a term proportional to the number of backtracking steps from the total reward.

Node Selection’s Relationship with Variable Selection. A crucial point of focus is the interplay
between variable selection and node selection. The outcome of variable selection is perceived to
influence node selection and it cannot be exclusively modulated by the node selector. However, we
introduce a novel perspective, asserting that while the variable selection process shapes the tree,
the node selection strategy can independently assess the tree’s current state to determine the next
course of action. Once a specific subtree is formed, the node selection process focuses solely on this
existing state of the tree to identify the most promising node for exploration. This decision-making
process within the node selection phase does not require direct knowledge of the variable selection
policies that led to the current state of the tree, as articulated in Theorem 4.2.

Theorem 4.2. Consider a node selection policy, denoted as πns, that makes selections based on the
three objectives defined in Section 4. For any given variable selection policy πvs, we posit that the
optimal node choice, denoted as ns, does not rely on the specifics of πvs for its determination.

The detailed proof is relegated to Appendix B.3 due to space constraints. Consequently, the node
selection strategy itself does not need to factor in the specifics of the variable selection decisions.
Instead, it can effectively operate based on the current state of the tree, regardless of the variable
selection path that led to it.

4.2 REINFORCEMENT LEARNING FORMULATION

Markov Decesion Process (MDP). We formulate an MILP solver as the environment and the RL
model as the agent. We consider an MDP defined by the tuple (S,A, r, π). Specifically, we specify
the state space S, the action space A, the reward function r : S × A → R, the transition function
π, and the terminal state in the following. (1) The state space, S: As delineated in Section 3,
the core information for node selection is represented by a tripartite graph. (2) The action space
A. The action space is intended to include all nodes that are potentially selectable. However, the
dynamic nature of the selection process means the number of selectable nodes is subject to change
due to the addition of newly expanded nodes and the removal of pruned nodes. To address this
variability, we employ the heuristic node selection algorithm called Estimate in modern solvers to
pre-select nodes, choosing the top n nodes, where n is a predetermined value, to form a set of node
candidates. If the initial set of candidates is less than n, placeholders are used to fill the remaining
slots, ensuring a consistent set size. We define the action space as this set of node candidates with a
size of n. (3) The reward function r. The reward function, as previously discussed, encompasses
the gap update reward, the optimal solution path reward, and the path switching penalty. (4) The
transition function π. The transition function maps the current state s and the action a to the next
state s′, representing the ensuing search tree post the expansion of node a. (5) The terminal state.
The process reaches a terminal state when the gap attains zero or there are no remaining candidate
nodes in the set.

This MDP framework diverges from previous studies, which predominantly emphasized selecting
leaf nodes, akin to a Depth-First Search (DFS) strategy, where the agent typically chooses between
two child nodes. In contrast, our method contemplates a broader range of potential nodes. Within
this framework, each episode is equivalent to solving an MILP instance, with initial states repre-
senting instances sampled from a specific group. The trajectory probability τ = (s0, . . . , sT ) is
contingent upon both the node selection policy π and the other solver components, formulated as
pπ(τ) = p(s0)

∏T−1
t=0

∑
a∈A π(a|st)p(st+1|st, a).
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Figure 3: Illustration of our proposed RL framework for learning node selection policies. In this
framework, the search tree is represented as a tripartite graph, serving as the environment, and the
DQN-GNN model acts as the agent.

DQN-GNN Model. Reinforcement learning is designed to learn an approximately optimal policy: a
function that maps states to actions, such that the accumulated reward is maximized (Sutton & Barto,
2018). Figure 3 delineates the architecture of our proposed model. Our model is developed based
on the foundational work of Labassi et al. (2022). Additional details on the model architecture are
included in Appendix D. A significant advantage of this model is its ability to accommodate MILPs
with varying numbers of variables and constraints. Moreover, the model is adept at adapting to
the dynamic nature of the branch-and-bound tree, where the number of nodes is subject to change
during the solving process. This adaptability is facilitated by converting the search tree information
into a standardized graph format, allowing for the consistent training of the model regardless of the
dynamic variability in the tree’s structure.

5 EXPERIMENTS

Our experiments have two main parts: Experiment (1) Evaluate our approach on three classical
MILP problems. Experiment (2) Test whether DQN-GNN can generalize to instances significantlly
larger than those seen during training. The codes are modified from Labassi et al. (2022).

Benchmarks. We evaluate our approach on three NP-hard MILP problem benchmarks, including
Fixed Charge Multicommodity Network Flow (FCMCNF) (Hewitt et al., 2010) , Weighted Par-
tial MaxSAT (WPMS) (Ansótegui & Gabàs, 2017) and Generalized Independent Set (GISP) in-
stances (Colombi et al., 2017). We artificially generate instances following Béjar et al. (Béjar et al.,
2009); Chmiela et al. (Chmiela et al., 2021). Due to limited space, please see Appendix E.1 for
details of these datasets.

Baselines. We compare against the state-of-the-art best estimate node selection rule (Bénichou et al.,
1971; Forrest et al., 1974). This is the default method in SCIP (Bestuzheva et al., 2021). Besides, we
also report the results with a plain rule that always selects the highest-ranked node (ESTIMATE).
In addition, we compare against three machine learning approaches: the Support Vector Machine
(SVM) approach (He et al., 2014), the RankNet feedforward neural network approach (Song et al.,
2018), and the approach based on Graph Neural Networks (GNN) (Labassi et al., 2022).

Experimental Setup. Throughout all experiments, we use SCIP 8.0.4 (Bestuzheva et al., 2021)
as the backend solver, which is the state-of-the art open source solver, and is widely used in re-
search of machine learning for combinatorial optimization (Chmiela et al., 2021; Gasse et al., 2019;
Turner et al., 2022; Wang et al., 2023). Additional details on the experimental setup and hardware
specification are included in Appendix E.3.

Evaluation Metrics. We employ two widely recognized evaluation metrics: solving time (Time,
lower is better), and the branch-and-bound tree size (Nodes, lower is better). It is crucial to under-
score that in the context of solver processes, time is the paramount metric, as the temporal cost is
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highly valuable, whereas the space occupied by the search tree nodes is relatively limited. We in-
troduce the Nodes metric primarily as a supplementary measure to provide additional insights. We
assess node selection methods in terms of the 1-shifted geometric mean over the instances, accom-
panied by the geometric standard deviation.

Experiment (1): Comparative Evaluation. For each problem, machine learning models are trained
on instances of the same size as the test instances (50 instances). The results in Table 1 suggest DQN-
GNN significantly outperforms all the baselines on three MILP problems. Compared to SCIP, DQN-
GNN demonstrates notable efficiency improvements across all tested problems, being approximately
17.24% faster in FCMCNF, 17.17% in WPMS, and 3.74% in GISP.

Table 1: Comparison of Average Solving Time and B&B Tree Size (Test).
FCMCNF: n = 15 nodes. WPMS and GISP: number of nodes n ∈ [60, 70].

Methods FCMCNF WPMS GISP

Time(s) Nodes Time(s) Nodes Time(s) Nodes

SCIP 4.64 ± 1.38 28.11 ± 4.56 12.59 ± 1.70 199.97 ± 2.00 3.74 ± 1.34 84.05 ± 3.69
ESTIMATE 4.17 ± 1.36 38.40 ± 3.71 10.59 ± 1.54 199.90 ± 1.69 3.73 ± 1.38 79.03 ± 3.32

SVM 4.18 ± 1.40 33.44 ± 3.63 12.03 ± 2.09 250.07 ± 3.17 3.73 ± 1.35 89.33 ± 3.46
RankNet 3.92 ± 1.37 21.55 ± 3.39 11.52 ± 1.93 212.09 ± 2.71 3.77 ± 1.37 91.52 ± 3.25
GNN 4.03 ± 1.38 24.71 ± 3.42 12.07 ± 2.10 215.22 ± 2.76 3.79 ± 1.36 93.36 ± 3.26

DQN-GNN (Ours) 3.84 ± 1.33 29.37 ± 4.48 10.41 ± 1.95 204.70 ± 2.79 3.60 ± 1.34 78.31 ± 3.48

Experiment (2): Generalization. We evaluate the ability of DQN-GNN to generalize across larger
sizes of MILPs. We evaluate these models on the larger transfer instances (50 instances). From
Table 2, several key observations can be made. Firstly, SCIP, as a conventional method, demonstrates
superior performance in most cases, especially in terms of time and the number of nodes. This
indicates that although AI methods possess potential and extensibility in solving MILPs, they still
fall short in some aspects compared to classic methods like SCIP. However, it is pivotal to explicitly
state that among AI methods, DQN-GNN has already achieved the best extensibility compared to
other AI methods. In terms of average solving time, DQN-GNN is optimal on two of the datasets,
surpassing all other AI-based approaches. Specifically, on the WPMS dataset, DQN-GNN even
excels beyond SCIP, indicating its superiority in certain specific scenarios.

Table 2: Comparison of Average Solving Time and B&B Tree Size (Transfer).
FCMCNF: n = 20 nodes. WPMS and GISP: number of nodes n ∈ [70, 80].

Methods FCMCNF WPMS GISP

Time(s) Nodes Time(s) Nodes Time(s) Nodes

SCIP 10.70 ± 2.12 29.72 ± 7.28 24.62 ± 1.76 413.54 ± 1.24 5.99 ± 1.24 193.61 ± 1.83
ESTIMATE 16.25 ± 2.17 123.45 ± 10.75 21.87 ± 1.64 466.09 ± 1.51 6.27 ± 1.45 370.11 ± 2.08

SVM 14.47 ± 2.02 50.92 ± 7.66 20.36 ± 1.71 563.75 ± 2.04 8.36 ± 1.25 447.73 ± 1.64
RankNet 12.85 ± 1.84 32.22 ± 5.61 25.12 ± 1.70 654.55 ± 1.63 8.61 ± 1.25 415.27 ± 1.73
GNN 13.57 ± 1.77 44.14 ± 5.720 28.39 ± 1.55 841.35 ± 1.63 8.11 ± 1.29 342.94 ± 2.13

DQN-GNN (Ours) 13.55 ± 2.01 43.54 ± 6.03 19.01 ± 2.12 652.32 ± 1.82 7.16 ± 1.20 308.45 ± 2.24

6 CONCLUSIONS

We addressed two pivotal and open questions concerning the inadequate representation of the MILP
intermediate solving process and the qualification of nodes during node selection. We introduce an
innovative tripartite graph representation for the branch-and-bound search tree and provide theoret-
ical evidence demonstrating that our tripartite graph can adequately represent the information of the
search tree required for effective node selection. Subsequently, we introduce three metrics for node
selection and develop a novel DQN-GNN model, leveraging reinforcement learning to acquire node
selection policies. Experimental results reveal that the DQN-GNN model markedly enhances the
efficiency of solving MILPs, outperforming both human-designed and other learning-based bench-
marks. We are confident that our proposed methodology offers fresh perspectives and insights into
learning node selection strategies, paving the way for further advancements in this domain.
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A RELATED WORK

Machine Learning for MILP. Real-world MILP problems often maintain consistent structural pat-
terns, even with minor alterations in constraints or objectives. Traditionally, these would be made
according to hard-coded expert heuristics (Achterberg, 2007) implemented in solvers (Bestuzheva
et al., 2021; CPLEX., 2020; Gurobi., 2021). Recently, however, machine learning methods have
emerged as potent solutions for MILP problems (Bengio et al., 2021). Several machine learn-
ing approaches have been explored for solving MILP problems within branch-and-bound frame-
works (Gasse et al., 2019; Lodi & Zarpellon, 2017; He et al., 2014). Leveraging the knowledge
from prior instances, AI adapts efficiently to new yet structurally similar problems. These AI-driven
methods don’t operate independently of the B&B algorithm. Instead, they work in synergy, primar-
ily by replacing manually crafted expert strategies, which ensures that decisions within the B&B
modules are more attuned to the problem’s unique structure. This line of research has shown sig-
nificant improvement on the solver performance, including node selection (He et al., 2014; Song
et al., 2018; Labassi et al., 2022; Yilmaz & Yorke-Smith, 2020), cut selection (Tang et al., 2020;
Wang et al., 2023; Paulus et al., 2022; Turner et al., 2022; Baltean-Lugojan et al., 2019), variable
selection (Khalil et al., 2016; Gasse et al., 2019; Gupta et al., 2020; Balcan et al., 2018; Zarpellon
et al., 2021), column generation (Morabit et al., 2021), and heuristics (Khalil et al., 2017; Hendel
et al., 2019; Shen et al., 2021). In this paper, we focus on node selection, which plays a significant
role in modern MILP solvers (He et al., 2014).

For node selection, He et al. (He et al., 2014) took the first strides towards leveraging machine learn-
ing for node comparison heuristics in branch-and-bound. They proposed training a support vector
machine (SVM) to emulate the diving oracle’s node comparison operator. Their work, however,
was limited to conjunction with a learned pruning model, yielding a method more akin to a primal
heuristic. Subsequently, Song et al. (Song et al., 2018) trained a multilayer perceptron RankNet
model for node comparison, introducing retrospective imitation learning. They achieved significant
improvements on specific path planning integer programs but reported less impactful results on more
complex benchmarks. Yilmaz and Yorke-Smith (Yilmaz & Yorke-Smith, 2020) proposed a limited
form of feedforward neural network node comparison operator, combined with a backtracking algo-
rithm, to provide a full node selection policy. They reported improvements in time and the number
of nodes on several benchmarks.

GNN in MILP. Graph Neural Networks (GNNs) are specialized neural networks designed for graph-
structured data and have found extensive applications across diverse domains such as recommender
systems, traffic analysis, and chemistry, to name a few (Wu et al., 2020; Zhou et al., 2020). The in-
tegration of GNNs to expedite optimization solvers has garnered increasing attention recently (Peng
et al., 2021; Cappart et al., 2023). Numerous graph-related optimization problems, including min-
imum vertex cover, traveling salesman, and vehicle routing, can be aptly represented and approx-
imately solved using GNNs, owing to their inherent problem structures (Khalil et al., 2017; Kool
et al., 2018; Joshi et al., 2019; Drori et al., 2020). Furthermore, GNNs can be instrumental in solving
general Mixed-Integer Linear Programming (MILP). Gasse et al. (2019) pioneered the representa-
tion of an MILP using a bipartite graph and leveraged a GNN to guide an MILP solver. Following
this, a myriad of approaches have emerged, utilizing GNNs to guide MILP or LP solvers (Ding
et al., 2020; Nair et al., 2020; Gupta et al., 2020; Paulus et al., 2022; Khalil et al., 2022; Shen et al.,
2021; Labassi et al., 2022). Despite the promising empirical outcomes observed, there remains a
discernible gap in the design of representations for the MILP solving process.

B THEORETICAL ANALYSIS

We enumerate our theoretical findings and provide detailed proofs to substantiate them.

B.1 THEORETICAL RESULTS FOR REPRESENTATION AND PROOFS

We commence this section by presenting the proof of Theorem 3.1, as articulated in Section 3.

Theorem B.1 (Restatement of Theorem 3.1). Given a node N0 and its two child nodes N1 and N2,
it holds that I(N0) ⊆ I(N1) ∪ I(N2), where I(N) denotes the information of the node N .
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Proof of Theorem 3.1. We categorize the information of an expanded node I(N) into two parts: the
inherent spatial attribute information I1(N) and the newly explored information I2(N). To prove
the theorem, we need to show that I1(N0) ⊆ I1(N1) ∪ I1(N2) and I2(N0) ⊆ I2(N1) ∪ I2(N2).

Inherent Spatial Attribute Information. Define C as the constraint space of the original MILP
problem, and SNi ∈ {x ∈ C|xi ≤ z, i ∈ I, z ∈ Z} ∪ {x ∈ C|xj ≥ z, j ∈ I, z ∈ Z} as the
constraint space of node Ni. The function fI1 : SNi → J1 maps the constraint space of node
Ni to a feature space J1. Given a fixed branch policy B and the search tree T , the spaces of
the child nodes, N1 and N2, are defined as SN0

∩ {x ∈ C|xi ≤ ⌊(xN0
)i⌋,B(N0|T ) = xi} and

SN0
∩ {x ∈ C|x ∈ C, xi ≥ ⌈(xN0

)i⌉,B(N0|T ) = xi}.

Consequently, we deduce that

SN1
∪ SN2

= SN0
\ (SN0

∩ {x ∈ C|⌊(xN0
)i⌋ < xi < ⌈(xN0

)i⌉,B(N0|T ) = xi}).

We establish that
SN1

∪ SN2
⊆ SN0

.

By invoking Lemma B.1, it follows that

fI1(SN1 ∪ SN2) ⊆ fI1(SN0).

Applying Lemma B.3, we deduce that

fI1({x ∈ C|⌊(xN0)i⌋ < xi < ⌈(xN0)i⌉,B(N0|T ) = xi}) = ∅.

Consequently, utilizing Lemma B.1 again, we infer that

fI1(SN0 ∩ {x ∈ C|⌊(xN0)i⌋ < xi < ⌈(xN0)i⌉,B(N0|T ) = xi}) = ∅.

By applying Lemma B.2, we conclude that

fI1(SN1
∪ SN2

) ⊇ fI1(SN0
) ∪ ∅ = fI1(SN0

).

Thus, we have proven that
fI1(SN1

∪ SN2
) = fI1(SN0

).

Newly Explored Information. In the second step, we aim to demonstrate that the newly explored
information adheres to

I2(N0) ⊆ I2(N1) ∪ I2(N2).

Regardless of whether the information originates from the infeasible integer solutions derived from
heuristic algorithms or the LP relaxation solutions, it can be interpreted as the update of the upper
and lower bounds. Consequently, the information I2(Ni) can be represented as a mapping relation-
ship

fI2 : {(LB,UB) ∈ R2|LB = max{LB1, LB2, . . .}, UB = min{UB1, UB2, . . .}} → J2,

where J2 symbolizes the feature space of the explored node information, and LBi and UBi denote
the explored lower and upper bounds within the path from the root node to the expanded node.

Given that the LP relaxation solutions of the child nodes, N1 and N2, are also solutions of the node
N0, it is established that

UB(N1) ≤ UB(N0)

and
UB(N2) ≤ UB(N0),

where UB(Ni) represents the explored LP relax solution on the node Ni.

Invoking Lemma B.4, it is inferred that the infeasible integer solution of the node N0 is also a
solution of either N1 or N2. Hence, we deduce that LB(N1) ≤ LB(N0) and LB(N2) ≤ LB(N0).

Therefore, we have

(LB(N0), UB(N0)) ⊆ (LB(N1), UB(N1)) ∪ (LB(N2), UB(N2)).
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By applying Lemma B.1, we conclude that

fI2((LB(N0), UB(N0))) ⊆ fI2((LB(N1), UB(N1)) ∪ (LB(N2), UB(N2))).

Utilizing Lemma B.2, we further deduce that

fI2((LB(N0), UB(N0))) ⊆ fI2((LB(N1), UB(N1))) ∪ fI2((LB(N2), UB(N2))).

Thus, we have established that

I2(N0) ⊆ I2(N1) ∪ I2(N2).

The lemmas related to Theorem3.1 are listed below:
Lemma B.1. The mappings fI1 : SNi → J1 and fI2 : {(LB,UB) ∈ R2|LB =
max{LB1, LB2, . . .}, UB = min{UB1, UB2, . . .}} → J2 is monotonically increasing. A map-
ping f has monotonicity, meaning that if A ⊆ B, then it holds that f(A) ⊆ f(B) (increasing) or
f(B) ⊆ f(A) (decreasing).

Proof of Lemma B.1. The mapping fI1 denotes the information of node space. If A ⊆ B, then A
has a more extensive space to explore compared to B, leading to the conclusion that f(A) ⊆ f(B).

The mapping fI2 signifies the information of the lower and upper bounds. If (LB1, UB1) ⊆
(LB2, UB2), it holds that LB1 ≤ LB2 and UB1 ≥ UB2. Notes that here (LB,UB) do not
represent a linear interval. In the latter, the larger lower bound can be utilized to prune more nodes,
and the lower upper bound can be employed to update the global gap. Thus, it is established that
f((LB1, UB1)) ⊆ f((LB2, UB2)).

Lemma B.2. The Mappings fI1 : SNi
→ J1 and fI2 : {(LB,UB) ∈ R2|LB =

max{LB1, LB2, . . .}, UB = min{UB1, UB2, . . .}} → J2 have finite additivity. A mapping f
has finite additivity, then it holds that

f(A) ∪ f(B) ⊆ f(A ∪B).

Proof of Lemma B.2. The mapping fI1 denotes the information of node space. If we explore the
space A ∪B, we must explore the space both A and B, leading to the conclusion that

f(A ∪B) ≥ f(A) ∪ f(B).

The mapping fI2 signifies the information of the lower and upper bounds. It holds that

(LB1, UB1) ∪ (LB2, UB2) = (max{LB1, LB2},min{UB1, UB2}).

Notes that here (LB,UB) do not represent a linear interval. Thus, it is established that

f((LB1, UB1) ∪ (LB2, UB2)) = f((max{LB1, LB2},min{UB1, UB2}))
⊆ f((LB1, UB1)) ∪ f((LB2, UB2)). (2)

Lemma B.3. Let S be a space defined as S ∈ {x ∈ C|xi ≤ z, i ∈ I, z ∈ Z} ∪ {x ∈ C|xj ≥ z, j ∈
I, z ∈ Z}. If S ∩ {x ∈ RN |xj ∈ Z,∀j ∈ I} = ∅, then it holds that:

fI1(S) = ∅.

Proof of Lemma B.3. Consider the original MILP problem with its associated constraints, denoting
the constraint space as C. If S ∩ C = ∅, it can be established that the mapping fI1(S) = ∅. This is
attributed to the problem’s exclusive focus on solutions within the original constraint space C.

Given that {x ∈ RN |xj ∈ Z,∀j ∈ I} ⊆ C, it follows that

S ∩ C = ∅.

Consequently, the assertion fI1(S) = ∅ is substantiated.
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Lemma B.4. Given a node N0 and its two child nodes N1 and N2, any infeasible integer solution
of node N0 is also an infeasible solution of either N1 or N2.

Proof of Lemma B.4. Suppose there exists an infeasible integer solution x of node N0 that is not an
infeasible solution of either child nodes, N1 or N2.

Let SN0
, SN1

, and SN2
represent the constraint spaces of nodes N0, N1, and N2, respectively. By

assumption, x ∈ SN0
but x /∈ SN1

∪ SN2
.

Given that N1 and N2 are child nodes of N0, we can express the constraint spaces of N1 and N2 as

SN1
= SN0

∩ {x ∈ C|xi ≥ z + 1, z ∈ Z}

and
SN2

= SN0
∩ {x ∈ C|xi ≤ z, z ∈ Z}.

Thus, x must belong to the set difference SN0
\ (SN1

∪ SN2
), which is equivalent to

SN0
∩ {x ∈ C|z < xi < z + 1, z ∈ Z}.

However, since x is an integer solution, it cannot belong to the set {x ∈ C|z < xi < z + 1, z ∈ Z},
leading to a contradiction. Therefore, any infeasible integer solution of node N0 must also be an
infeasible solution of either N1 or N2.

After we proof Theorem 3.1, we can prove Theorem 3.2.

Theorem B.2 (Restatement of Theorem 3.2). Given a branch-and-bound search tree T , the entirety
of its information pertinent to node selection can be encapsulated by the constraint and variable
information of its root node, coupled with the constraint, upper bound, and lower bound information
of the leaf nodes within the tree.

Proof of Theorem 3.2. The information within the search tree is bifurcated: it encompasses the orig-
inal problem, embodied by the root node, and the information from the nodes explored. Let’s denote
the nodes as N ∈ T and the information of the node N as I(N). The set of the leaf nodes is denoted
as L.

Our goal is to demonstrate that ⋃
N∈T

I(N) =
⋃
N∈L

I(N).

Since
⋃

N∈L I(N) ⊆
⋃

N∈T I(N) is self-evident, we focus on proving⋃
N∈T

I(N) ⊆
⋃
N∈L

I(N).

We categorize all nodes in the tree by their depths, denoting the set of nodes at depth h as Nh. If the
deepest node has a depth of h0, then⋃

N∈T

I(N) =
⋃

h=0,1,...,h0

⋃
N∈Nh

I(N).

As established in Theorem 3.1, for each N ∈ Nh, if it has child nodes, we denote the set of its child
nodes as CN , and we have

CN ⊆ Nh+1.

Following this logic, except for nodes without child nodes, the information of each node can be
represented by Nh0

. The nodes in Nh0
must be leaf nodes, and nodes without children must also be

leaf nodes.

Consequently, for a given search tree, all explored information can be represented exclusively by the
collection of its leaf nodes.
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B.2 SPARSITY OF GAP

In this section, we provide detailed proofs for the results presented in Theorem 4.1.
Theorem B.3 (Restatement of Theorem 4.1). Consider a B&B tree T containing s0 nodes. Suppose
that, at each round t, the gap reward r(·) for the selected node at is finite, denoted as |r(·)| ≤ r0.
Given an initial point x′ and a heuristic algorithm with exploration ability δ, the algorithm can
explore integer solutions in the space {x ∈ Zn | x′

i − δ
2 ≤ xi ≤ x′

i +
δ
2 , i = 1, 2, . . . , n}. If

δ ≤ n

√
ϵ−(log2 s0+1)/s0

r0·s0 , then it holds that E [
∑

t r(at)] ≤ ϵ.

Proof of Theorem 4.1. Given that the gap reward r(·) of the selected node at at each round t is finite,
we can assume |r(·)| ≤ r0. The gap changes r(at) > 0 only when a new feasible solution is found
(lower bound updates) or when all nodes of the same depth are explored (upper bound updates).

Firstly, we consider the lower bound updates. The lower bound updates when (1) the LP relaxed
solution of at is integer or (2) a heuristic algorithm finds an integer solution when applied to this
node. For (1), the placement of the LP solution is related to the problem attribute. For simplicity,
we assume this can be uniformly found in the solving space. We denote the set of all integers in the
solving space as E. From Theorem B.4, the integer set has measure zero. Thus, we have:

E[
∑
t

r(at)|at ∈ E] ≤ s0 · r0 ·m(E) ≤ s0 · r0 · 0 = 0,

where m(E) represents the Lebesgue measure of set E.

For (2), most heuristic algorithms are based on two major methods: the Large Neighborhood Search
(LNS) and Feasibility Pump (FP). Both methods have an initial point x′ and try to search for the
solution in a region R around the initial point. Assume that the heuristic algorithms explore the
integer solution in the space

{x ∈ Zn | x′
i −

δ

2
≤ xi ≤ x′

i +
δ

2
, i = 1, 2, . . . , n}.

In the LNS, the initial point is a feasible integer solution, i.e., x′ ∈ Zn. In the FP, the initial
point is the LP relaxation solution of this MILP. Since the heuristic algorithms are called after some
exploration, we assume that the space it explores, S, is finite, i.e., m(S) is finite. We denote that if
the heuristic algorithms at round t are called, Ht = 1, if not, Ht = 0. We have

E

[∑
t

r(at)
∣∣at /∈ E

]
≤ E

[∑
t

r(at)
∣∣at /∈ E,Ht = 1

]
Pr[Ht = 1]

+ E

[∑
t

r(at)
∣∣at /∈ E,Ht = 0

]
Pr[Ht = 0]

= E

[∑
t

r(at)
∣∣at /∈ E,Ht = 1

]
Pr[Ht = 1]

≤ r0 · s0 · Pr[Ht = 1].

Due to Lemma B.5,

Pr[Ht = 1] ≤ Pr[x′ ∈
⋃

z∈Zn∩S

{
x ∈ S | zi −

δ

2
≤ xi ≤ zi +

δ

2
, i = 1, 2, . . . , n

}
].

Consider the expansion of space S. If there exists an integer point z in S such that{
x ∈ S | zi −

1

2
≤ xi ≤ zi +

1

2
, i = 1, 2, . . . , n

}
/∈ S,

then we expand the space S to be Ŝ to include these sets. Since δ ≤ 1, we have⋃
z∈Zn∩S

{
x ∈ S | zi −

δ

2
≤ xi ≤ zi +

δ

2
, i = 1, 2, . . . , n

}
=

⋃
z∈Zn∩Ŝ

{
x ∈ Ŝ | zi −

δ

2
≤ xi ≤ zi +

δ

2
, i = 1, 2, . . . , n

}
.
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Thus, we have

Pr[Ht = 1] ≤ δn · |Ŝ ∩ Z|
m(Ŝ)

.

Through Lemma B.6, we have Pr[Ht = 1] ≤ δn.

Secondly, we examine upper bound updates. The upper bound does not update until nodes of iden-
tical depth are explored. By Lemma B.7, the probability of global upper bound updates is at most
log2(s0+1)

s0
.

Finally, we obtain E[
∑

t r(at)] ≤ δn · r0 · log2(s0+1)
s0

and simplify to derive the result.

The lemmas and theorems related to Theorem4.1 are listed below:

Theorem B.4 (The set of integers has measure zero (Bruckner et al., 1997)). In the set of real
numbers R, the set of integers Z is a set of measure zero, denoted as m(Z) = 0. This means that
for every ϵ > 0, there exists a collection of open intervals {Ik}∞k=1, such that Z ⊂

⋃∞
k=1 Ik and∑∞

k=1 |Ik| < ϵ.

Lemma B.5. Let C be a MILP solving space and x′ ∈ C be an initial point. Heuristic algorithms
cannot find a solution if x′ is not in the space⋃

z∈Zn∩C

{
x ∈ C | zi −

δ

2
≤ xi ≤ zi +

δ

2
, i = 1, 2, . . . , n

}
.

Proof of Lemma B.5. The heuristic algorithms explore the integer solution in the space

{x ∈ Zn | x′
i −

δ

2
≤ xi ≤ x′

i +
δ

2
, i = 1, 2, . . . , n}.

Assume that we find an integer solution z∗, and

x′ /∈
⋃

z∈Zn∩C

{x ∈ C | zi −
δ

2
≤ xi ≤ zi +

δ

2
, i = 1, 2, . . . , n}.

Thus, we have x′
i − δ

2 ≤ z∗i ≤ x′
i +

δ
2 . This implies that x′

i ≤ z∗i + δ
2 and x′

i ≥ z∗i − δ
2 . However,

this contradicts the assumption that x′ is not in the specified union of spaces, thus completing the
proof.

Lemma B.6. Given a finite space S ∈ Rn, the number of points in the space S ∩ Zn is denoted as
|S ∩ Zn|. For any z ∈ S ∩ Zn, we have

{
x ∈ S | zi − 1

2 ≤ xi ≤ zi +
1
2 , i = 1, 2, . . . , n

}
⊆ S. It

holds that:
m(S) ≥ |S ∩ Zn|.

Proof of Lemma B.6. Let

Ak =
⋃

z∈Zn∩S

{
x ∈ S | zi + 1/2− 1

2k
≤ xi ≤ zi − 1/2 +

1

2k
, i = 1, 2, . . . , n

}
.

Let |I| = |Zn ∩ S|, we have m(Ak) = (1− 1/k)n · |I|.
Since Ak ⊆ S, we have

m(S) ≥ m(Ak) = (1− 1/k)n · |I|.
By letting k approach infinity, we conclude that m(S) ≥ |I|.

Lemma B.7. Given a search tree with s0 nodes, the number of global upper bound updates cannot
exceed log2(s0 + 1).

Proof of Lemma B.7. Given the tree structure, if the tree has no leaf nodes and its height is denoted
as h, then we have:

1 + 21 + . . .+ 2h−1 < s0 ≤ 1 + 21 + . . .+ 2h.
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This implies:
2h ≤ s0 ≤ 2h+1 − 1.

Consequently, we deduce that:
h ≤ log2(s0 + 1).

Since the number of global upper bound updates cannot exceed the height h of the search tree, the
lemma is proven.

B.3 INDEPENDENCE FROM VARIABLE SELECTION

In this section, we provide detailed proofs for the results presented in Theorem 4.2.

Theorem B.5 (Restatement of Theorem 4.2). Consider a node selection policy, denoted as πns, that
makes selections based on the three objectives defined in Section 4. For any given variable selection
policy πvs, we posit that the optimal node choice, denoted as ns, does not rely on the specifics of
πvs for its determination.

Proof of Theorem 4.2. Let’s denote the three objectives as o1, o2, and o3, and our reward function
as R. This reward function is a composition of these objective functions, each being a mapping from
N × S → R, where S represents the space of the search tree state and N is the set of open nodes.

Our aim is to prove that πns(ns, st|R(ns, st|πvs)) = πns(ns, st|R(ns, st)).

Given that πns(st|πvs, ns = argmaxR(st,N )) = ns, it suffices to prove that R(ns, st|πvs) =
R(ns, st).

Since R(ns, st|πvs) is a combination of o1, o2, and o3, we need to establish that oi(ns, st|πvs) =
oi(ns, st),∀i = 1, 2, 3.

For o1, the objective is solely concerned with the gap updates. Once the set of open nodes is defined,
their potential to find a feasible solution and their LP relaxation solutions remain invariant. Hence,
o1(ns, st|πvs) = o1(ns, st).

For o2, the objective is to align with the historically optimal solution, x∗. This solution is predefined
and is independent of the branch variable policy. Given the set of open nodes, it is only necessary to
determine whether the space of each node encompasses the solution x∗. Therefore, o2(ns, st|πvs) =
o2(ns, st).

For o3, the objective is to select a node that is proximate to the current focus node, chosen in
the preceding round. Regardless of which variable the policy πvs selects, the expanded node re-
mains a child of its parent node, and the number of path switch steps is unaltered. Consequently,
o3(ns, st|πvs) = o3(ns, st).

C MORE DETAILS OF NODE SELECTION PROCESS

Graph representation. Having sufficient information is crucial to infer the optimal node for se-
lection. But what qualifies as “sufficient” in this context? An ideal problem representation should
be capable of incorporating information that affects node selection, which includes the inherent at-
tributes of the original problem (A, b, c) and the attributes of the explored space. Actually, such
problem has a strong mathematical structure (Chen et al., 2022). For instance, if we swap the
positions of the i, j-th variable in 1, elements in vectors b, c and columns of matrix A will be re-
ordered. The reordered features (Â, b̂, ĉ) actually represent an exactly equivalent MILP problem
with the original one (A, b, c). Such property is named as permutation invariance. If we do not
explicitly restrict ML models with a permutation invariant structure, the models may overfit to the
variable/constraint orders of instances in the training set. Motivated by this point, we adopt the graph
representation that are permutation invariant naturally in Section3.

Node selection process. Algorithm 1 details a general procedure for node selection within this MDP
formulation. It describes the primary operations carried out by the node selector in the B&B process.
Specific implementation details might vary depending on the node selection strategy used, but the
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essential idea remains the same - select a node according to the strategy, evaluate it and update its
bounds, possibly prune it, and branch the tree to continue the process.

Algorithm 1 General Node Selection Procedure

Require: Node list L, parent node bounds, probability Prob of heuristic integer solution calculation
1: for each node P in L do
2: Select node P according to the node selection strategy.
3: Solve the LP relaxation of node P , getting the solution Sol1 and objective function value

Obj1.
4: Update the lower bound of P , LB(P ) = Obj1. Propagate the updated upper bound upward.
5: if Obj1 ≥ upper bound of parent node of P then
6: Prune node P .
7: else
8: if Sol1 is an integer solution then
9: Update the upper bound of P , UB(P ) = Obj1. Propagate the updated upper bounds

upward.
10: end if
11: Call the heuristic to calculate an integer solution with probability Prob, resulting in Sol2

and Obj2.
12: if Obj2 < Obj1 then
13: Update the upper bound of P , UB(P ) = Obj2. Propagate the updated upper bounds

upward.
14: end if
15: Branch at node P and add the children nodes to list L.
16: end if
17: end for

D MORE DETAILS OF MODEL ARCHITECTURE.

The features of the variable, constraint, and node constraint vertices on the tripartite graph undergo
an initial transformation via a 32-dimensional embedding layer. This layer is pivotal for normaliz-
ing and refining the input features before they traverse through three subsequent graph convolutional
layers, each with dimensions 8, 4, and 4, and each utilizing a ReLU activation function to capture
complex, non-linear relationships. Post convolution, the refined representations of the variable, con-
straint, and node constraint vectors are separately averaged, reducing dimensionality and mitigating
overfitting risks. These averaged representations are then amalgamated with the global node fea-
tures, creating a comprehensive feature vector encapsulating both localized and global information.
This amalgamated feature vector is then processed through a linear layer and a sigmoid activation
layer, culminating in a Q-value vector of predetermined dimension n. This vector quantitatively
represents the value of each node in the pre-selected candidate node set, serving as a decisive metric
for action selection. The action is determined by selecting the node corresponding to the maximum
Q-value, directing the model’s focus towards the most promising regions of the search space.

E DATASETS USED IN SECTION 5

E.1 BENCHMARK

In our evaluation process, we similarly employ three NP-hard instance families, just like Labassi et
al. in the latest node selection work (Labassi et al., 2022). These families are particularly primal-
difficult, that is, finding feasible solutions for them poses the main challenge. The first benchmark is
composed of Fixed Charge Multicommodity Network Flow (FCMCNF) instances, generated from
the code of Chmiela et al. (Hewitt et al., 2010). We train and test on instances with m = 1.5×n com-
modities. The second benchmark is composed of Weighted Partial MaxSAT (WPMS) (Ansótegui &
Gabàs, 2017) instances, generated following the scheme of Béjar et al. (Béjar et al., 2009). Our third
benchmark is composed of Generalized Independent Set (GISP) instances (Colombi et al., 2017),

21



Under review as a conference paper at ICLR 2024

generated from the code of Chmiela et al. (Chmiela et al., 2021). All these families require an under-
lying graph: we use in each case Erdős–Rényi random graphs with the prescribed number of nodes,
with edge probability p = 0.3 for FCMCNF and p = 0.6 for WPMS and GISP.

E.2 BASELINES

The SVM and RankNet methods utilize a multilayer perceptron; the latter varies for one benchmark
where they use three hidden layers, while for simplicity, we use a multilayer perceptron with a
hidden layer of 32 neurons for all benchmarks (MLP). The GNN method uniquely leverages the
structure of the graph to guide node selection. The features used in these papers are roughly similar;
again, for simplicity, we adopt the fixed-dimensional features of He et al. (He et al., 2014) for both
the SVM and RankNet method.

E.3 DETAILS OF EXPERIMENTAL SETTINGS AND HARDWARE SPECIFICATION

E.3.1 EXPERIMENTAL SETTING

We keep all the other SCIP parameters to default so as to make comparisons as fair and reproducible
as possible. We emphasize that all of the SCIP solver’s advanced features, such as presolve and
heuristics, are open, which ensures that our setup is consistent with the practice setting. For the
FCMCNF, WPMS, and GISP problem domains, we generate extensive datasets, consisting of 10,000
training samples and 1,000 test samples. From these, we randomly select 5,00 samples for training
and 50 samples for testing within each problem, providing a diverse set of scenarios for our models
to train and test effectively. We train our model on the train set, and select the best model on the train
set to evaluate on the test set. The cross-entropy loss is optimized during training with the Adam
algorithm (Kingma & Ba, 2014).

E.3.2 HARDWARE SPECIFICATION

The training process consistently applies a batch size of 16 and is conducted on a single machine
that contains eight GPU devices(NVIDIA GeForce RTX 4090) and two AMD EPYC 7763 CPUs.

E.4 RESULTS AND ANALYSIS

Tables 1 and 2 in Section 5 illustrate the results of various methods solving MILP problems.

E.4.1 ANALYSIS OF EXPERIMENT 1.

Overall Performance. The results from Table 1 underscore that DQN-GNN consistently outper-
forms all the baselines across the three MILP problems in terms of average solving time. Compared
to SCIP, DQN-GNN shows a remarkable improvement in efficiency. For instance, in the FCMCNF
problem, DQN-GNN achieves an average solving time of 3.84 ± 1.33 seconds, which is approxi-
mately 17.24% faster than SCIP’s 4.64±1.38 seconds. Similarly, in the WPMS and GISP problems,
DQN-GNN is approximately 17.17% and 3.74% faster than SCIP, respectively.

B&B tree size and solving time. Although DQN-GNN does not consistently yield the smallest tree
size, it illustrates a pivotal observation: a reduction in solving time does not invariably equate to a
decrease in the number of nodes in the search tree. This reinforces our proposition that the influence
of node selection on solving efficiency is multifaceted, intertwining with elements like the cost of
path switching, discussed in detail in Section 4.

Comparison with other AI methods. DQN-GNN not only surpasses SCIP but also demonstrates
superior performance over other AI-based methods like SVM, RankNet, and GNN. This indicates
the effectiveness of incorporating reinforcement learning with graph neural networks in solving
MILPs.

Robustness. The standard deviation in the results of DQN-GNN is relatively low, indicating the
robustness of the method across different instances of the problems.

Conclusion. The empirical evaluations substantiate the proficiency and robustness of DQN-GNN in
addressing MILPs, marking substantial enhancements in solving time while sustaining competitive
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efficacy in other dimensions. The strides made by DQN-GNN in this study highlight its viability as
a potent methodology for tackling MILPs and analogous optimization challenges.

E.4.2 ANALYSIS OF EXPERIMENT 2.

Generalization. Table 2 assesses the generalization capability of DQN-GNN across larger sizes
of MILPs, focusing on its performance on larger transfer instances. The results indicate that DQN-
GNN maintains its effectiveness and efficiency even when applied to more complex problems, show-
casing its adaptability and scalability.

Comparison with SCIP. While SCIP continues to exhibit superior performance in most scenarios,
particularly in terms of solving time and the number of nodes, DQN-GNN demonstrates commend-
able generalization ability. Specifically, on the WPMS dataset, DQN-GNN surpasses SCIP in aver-
age solving time, highlighting its potential to outperform conventional methods in certain scenarios.

Comparison with Other AI Methods. DQN-GNN continues to outshine other AI-based methods,
reinforcing the benefits of integrating reinforcement learning with graph neural networks for solving
MILPs. Its consistent superior performance across different datasets and problem sizes underscores
its reliability and effectiveness in diverse scenarios.

Robustness and Efficiency. The standard deviation in the results of DQN-GNN remains relatively
low, emphasizing the method’s robustness across different instances of the problems. Additionally,
DQN-GNN achieves competitive performance in terms of both solving time and the number of
nodes, illustrating its balanced efficiency in various aspects of MILP solving.

Conclusion. The results from Experiment 2 further validate the versatility and generalization ca-
pability of DQN-GNN in solving MILPs of varied complexities. The method not only holds its
ground against SCIP but also excels over other AI methods, especially in specific scenarios, hinting
at its potential to be a leading approach in solving MILPs and related optimization problems. The
consistent and robust performance of DQN-GNN across different problem sizes and complexities
accentuates its promise and applicability in real-world optimization challenges.
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