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A APPENDIX

B PROOF OF EQUATION (2)

As a reminder, we consider C class labels and denote by �C the C-dimensional simplex. We define
the set of distributions Q over the C class labels by

Q = {q(y|·) | 8x 2 X , q(y|x) 2 �C}.

Consider the optimization problem

min
q2Q

Ex⇠p(x) [DKL(p(y|x)kq(y|x))] (5)

whose solution is straightforwardly given by the marginal distribution x 7! q
?(y|x) = p(y|x). We

recall that the KL DKL(p(y|x)kq(y|x)) is defined by

DKL(p(y|x)kq(y|x))=
CX

j=1

pj(y|x) log
⇣
pj(y|x)

qj(y|x)

⌘
. (6)

For any x and j  C, we can rewrite the terms of the sum

pj(y|x) log
⇣
pj(y|x)

qj(y|x)

⌘

as
Ea|x⇠p(a|x)


pj(y|x,a) log

⇣
pj(y|x)

qj(y|x)

⌘�

where we have used (i) the fact that log(pj(y|x)
qj(y|x) ) does not depend on a and (ii) the definition of the

marginal distribution

pj(y|x) =
R
pj(y|x,a)p(a|x)da

= Ea|x⇠p(a|x) [pj(y|x,a)] .

Multiplying and dividing in the argument of the log by pj(y|x,a), we obtain

Ea|x⇠p(a|x)


pj(y|x,a) log

⇣
pj(y|x,a)

qj(y|x)

pj(y|x)

pj(y|x,a)

⌘�
.

Summing over j 2 {1, . . . , C} to reconstruct the KL term (6), this leads to, for any x,

DKL(p(y|x)kq(y|x)) = Ea|x [DKL(p(y|x,a)kq(y|x))]

�Ea|x [DKL(p(y|x,a)kp(y|x))] .

Since the second term above does not depend on q, minimizing (5) is equivalent to minimizing

min
q2Q

Ex

⇥
Ea|x [DKL(p(y|x,a)kq(y|x))]

⇤

= min
q2Q

E(x,a)⇠p(x,a) [DKL(p(y|x,a)kq(y|x))]

which is equal to (2) and which is, analogously to (5), minimized by the marginal distribution
x 7! q

?(y|x) = p(y|x).

C HETEROSCEDASTIC MOTIVATION

We consider a simplified special case of our framework in which the conditional model p(y|x,a)
is homoscedastic but the optimal variational distribution in the sense of Eq. 2 is heteroscedastic.
This motivates Het-TRAM, in which the variational approximations q(y|x) and q(y|x,a) are
heteroscedastic.

Suppose we have a regression dataset constructed from labels assigned by M annotators. Each
annotator has their own homoscedastic Gaussian model p(y|x, a = m) = N (µ✓m(x), 1). Here the
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Table 4: Pre-trained models used to re-label ImageNet ILSVRC12 training set and their accuracy on
that training set.

Model Training set accuracy

ResNet50V2 0.70086
ResNet101V2 0.72346
ResNet152V2 0.72738
DenseNet121 0.74782
DenseNet169 0.76184
DenseNet201 0.77344
InceptionResNetV2 0.8049
InceptionV3 0.77994
MobileNet 0.70594
MobileNetV2 0.71458
MobileNetV3Large 0.75622
MobileNetV3Small 0.68158
NASNetMobile 0.74302
VGG16 0.71178
VGG19 0.71156
Xception 0.79076

PI is a single discrete Categorical feature representing the annotator ID which takes one of M values
with equal probability, a ⇠ Cat( 1

M ).

The marginal p(y|x) is a Gaussian Mixture Model. We choose our variational family to be the
Gaussian distribution, q(y|x) = N (µ(x),�2(x)). The values of µ and �2 that minimize Eq. 2
are: µ⇤(x) =

1
M

P
m µ✓m(x) and �2

⇤(x) = (M � µ⇤(x)) +
1
M

P
m µ

2
✓m

(x) (Lakshminarayanan
et al., 2017). Crucially note that despite the conditional distribution being homoscedastic, the best
variational distribution is heteroscedastic as the variance depends on the location in X space.

D EXPERIMENTAL DETAILS

D.1 DATA GENERATION PROCESS

CIFAR-10H. We use the CIFAR-10 image as the non-privileged information x. The annotator ID,
the number of prior annotations the annotator has provided and the reaction time in milliseconds of
the annotator, are used as privileged information a. For feature pre-processing the annotator ID is
one-hot encoded. The number of prior annotations and the reaction time are independently divided
into 10 equally sized quantiles and the quantile ID is one-hot encoded. The image is pre-processed
according the the standard MobileNet pre-processing (Howard et al., 2017).

As CIFAR-10H has on average more than 50 annotations per image and the labels are not particularly
noisy. We subsample the CIFAR-10H labels by the following procedure. We keep all labels by the
41 annotators that agree with the true CIFAR-10 label less than 85% of the time. We then select a
further 41 annotators from the remaining annotators. The average agreement of the bad annotators
with the CIFAR-10 label is 63.3%, in the full subset of labels: 79.2% and in the full CIFAR-10H
dataset: 94.9%. The subsampling procedure leaves 16,400 labels from 82 annotators while the full
CIFAR-10H dataset has 514,200 labels from 2,571 annotators.

ImageNet. The annotator features are the model ID used to re-label x, which is one-hot encoded
and the probability of that label being sampled. See main paper for details on the sampling procedure
and see Table 4 for the list of models used and their accuracy on the ImageNet training set. The
pre-trained models are downloaded from tf.keras.applications2.

2https://www.tensorflow.org/api docs/python/tf/keras/applications
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D.2 HYPERPARAMETERS

CIFAR-10H. For all methods �(x) (or equivalent) is a MobileNet (Howard et al., 2017) pre-trained
on ImageNet ILSVRC12, followed by a global average pooling layer and a Dense + ReLU layer with
64 units.  (x,a) is a two-layer MLP with 64 units per layer and ReLU activation. The first layer
takes only a as an input, while the second layer takes the output of the first layer concatenated with
�(x) as input.

All models are trained for 20 epochs with the Adam optimizer with base learning rate= 0.001,
�1 = 0.9, �2 = 0.999, ✏ = 1e � 07. All models are trained with L2 weight regularization with
weighting 1e� 3.

Heteroscedastic models are trained using the method of Collier et al. (2021) with 4 factors for the
low-rank covariance matrix approximation and a softmax temperature parameter of ⌧ = 3.0. Distilled
models are also trained with a softmax temperature of ⌧ = 3.0 to smooth the teacher labels and with
the distillation hyperparameter � = 0.5 which weights the losses from the soft teacher labels and
the true labels. A grid search over ⌧ 2 {1.0, 2.0, 3.0, 4.0} and � 2 {0.0, 0.25, 0.5, 0.75, 1.0} was
conducted.

ImageNet. For all methods �(x) (or equivalent) is a randomly initialized ResNet-50 (He et al.,
2016) with the output layer removed.  (x,a) is a two-layer MLP with 128 units per layer and ReLU
activation, the output of this MLP is concatenated with �(x) and then passed to the output layer. The
first layer of the  (x,a) MLP takes only a as an input, while the second layer takes the output of the
first layer concatenated with �(x) as input.

All but Het-TRAM models are trained for 90 epochs with the SGD optimizer with base learning
rate= 0.1, decayed by a factor of 10 after 30, 60 and 80 epochs. Following Collier et al. (2021),
Het-TRAM is trained for 270 epochs with the same initial learning rate and learning rate decay at 90,
180 and 240 epochs. All models are trained with L2 weight regularization with weighting 1e� 4.

Heteroscedastic models use 15 factors for the low-rank covariance matrix approximation and a
softmax temperature parameter of ⌧ = 1.5. Distilled models are trained with a softmax temperature of
⌧ = 3.0 and with the distillation hyperparameter � = 0.5. A grid search over ⌧ 2 {1.0, 2.0, 3.0, 4.0}
and � 2 {0.0, 0.25, 0.5, 0.75, 1.0} was conducted.

E RISK ANALYSIS

Generative model and notations. We assume the following

• a 2 Rm
,x 2 Rd,

• a ⇠ p(a|x) = N (µ(x)|⌃(x)) for some mean and covariance dependent on x,
• y = x

>
w

? + a
>
v
? + " with " ⇠ N (0,�2).

When considering n observations from this generative model, we use the matrix representations
y 2 Rn

,X 2 Rn⇥d, A 2 Rn⇥m and " 2 Rn. We also write the zero-mean Gaussian vector

z = (A� µ(X))v? + " 2 Rn
⇠ N (0,�2

I +⇤)

where we have defined the diagonal covariance

⇤ = ⇤(v?
,X) = Diag

�
{(v?)>⌃(xi)v

?
}
n
i=1

�
2 Rn⇥n

.

We list below some notation that we will repeatedly use

• The orthogonal projector associated with X:

⇧x = X(X>
X)�1

X
>
2 Rn⇥n

.

• Similarly, the orthogonal projector associated with A:

⇧a = A(A>
A)�1

A
>
2 Rn⇥n

.
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• The projections Xa? = (I �⇧a)X and Ax? = (I �⇧x)A.
• The matrices: H = (X>

X)�1
X

>
2 Rd⇥n and G = (A>

A)�1
A

>
2 Rm⇥n.

• The matrices above when restricted to the projections of X and A respectively, that is,
Ha? = (X>

a?Xa?)
�1

X
>
a? 2 Rd⇥n and Gx? = (A>

x?Ax?)
�1

A
>
x? 2 Rm⇥n

.

E.1 DEFINITION OF THE RISK

We will compare different estimators based on their different risks. We focus on the fixed design
analysis (Bach, 2021), i.e., we study the errors only due to resampling the noise " and the feature a.

Given a predictor ⌧(X) based on the training quantities (X,A, "), we consider y0 = Xw
?+A

0
v
?+

"
0 (where the prime is to stress the difference with the training quantities without prime) and define

the risk of ⌧ as
R(⌧(X))) = E"0⇠p("0),a0⇠p(a0|x)

⇢
1

n
ky

0
� ⌧(X)k2

�
. (7)

Expanding the square with y
0
� ⌧(X) = Xw

?
� ⌧(X) + µ(X)v? + z

0, we obtain the expression

R(⌧(X)) =
1

n
kXw

?
� ⌧(X) + µ(X)v?

k
2 +

1

n
tr(�2

I +⇤). (8)

Following common practices (Bach, 2021), to assess the risk, we finally take a second expectation
E"⇠p("),a⇠p(a|x)[R(⌧(X))] with respect to the training quantities (A, ").

Since we will mostly consider differences of risks, we omit the variance term 1
n tr(�2

I +⇤) in the
equations below.

E.2 CAPTURING THE BENEFIT OF PI WITHOUT MARGINALIZATION

We first describe when, in absence of any marginalization, ordinary least squares ignoring PI is worse
than ordinary least squares using PI with mean imputation at prediction time.
Proposition E.1. Assume that X

>
X is invertible. Moreover, assume that A

>
A and

[X,A]>[X,A] are almost surely invertible. We have that

E[R(⌧NO-PI(X))] > E[R(⌧PI(X))]

if and only if

1

n
k(I �⇧x)µ(X)v?

k
2 +

�
2
d

n
+

1

n
tr(⇧x⇤) >

�
2

n
E[kKk

2]

with K = XHa? + µ(X)Gx?. When m = 1 (i.e., A is a column vector), a sufficient condition is

1

n
k(I �⇧x)µ(X)v?

k
2 +

1

n
tr(⇧x⇤) > 2E


k⇧xAk

2 + kµ(X)k2

k(I �⇧x)Ak2

�
+
�
2
d

n
.

We provide the details of the derivation of the risk for ⌧NO-PI and ⌧PI in Section E.2.1 and Section E.2.2
respectively. Moreover, the second part of the proposition follows from an application of Lemma E.5.

E.2.1 ORDINARY LEAST SQUARES (NO MARGINALIZATION)

The solution of
min
w

1

2
ky �Xwk

2

is given by ŵ0 = (X>
X)�1

X
>
y = Hy. The corresponding predictions are

⌧NO-PI(X) = Xŵ0 = ⇧xy = Xw
? +⇧xµ(X)v? +⇧xz.

Plugging into (8), we obtain

R(⌧NO-PI(X)) =
1

n
k(I �⇧x)µ(X)v?

�⇧xzk
2
.

Expanding the square and using that tr(⇧x) = d, the final risk expression is

E[R(⌧NO-PI(X))] =
1

n
k(I �⇧x)µ(X)v?

k
2 +

1

n
E[k⇧xzk

2]

=
1

n
k(I �⇧x)µ(X)v?

k
2 +

�
2
d

n
+

1

n
tr(⇧x⇤). (9)
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E.2.2 ORDINARY LEAST SQUARES WITH PI AND MEAN IMPUTATION (NO MARGINALIZATION)

We focus on the solution of
min
w,v

1

2
ky �Xw �Avk

2

to construct an estimator. Using Lemma E.3, we have
ŵ1 = Ha?y and v̂1 = Gx?y.

Using Lemma E.4, we can simplify
ŵ1 = Ha?y = w

? + 0+Ha?"

and
v̂1 = Gx?y = 0+ v

? +Gx?".

Since A is not available at prediction time, we impute it instead with its mean µ(X), which is
assumed to be perfectly known. This leads to

⌧PI(X) = Xŵ1 + µ(X)v̂1 = Xw
? + µ(X)v? +K",

with
K = XHa? + µ(X)Gx?.

Plugging into (8) and taking the expectation, we obtain

E[R(⌧PI(X))] =
1

n
k0k2 +

1

n
E[kK"k

2]

=
�
2

n
E[kKk

2]. (10)

E.3 CAPTURING THE BENEFIT OF PI WITH MARGINALIZATION

We then describe when, with marginalization, ordinary least squares ignoring PI is worse than
ordinary least squares using PI.
Proposition E.2. Assume that X

>
X is invertible. Moreover, assume that A

>
A and

[X,A]>[X,A] are almost surely invertible. We have that

E[R(⌧marg. NO-PI(X))] > E[R(⌧marg. PI(X))]

if and only if

1

n
k(I �⇧x)µ(X)v?

k
2 +

�
2
d

n
>
�
2

n
kE[L]k2

with L = XHa? +AGx?. When m = 1 (i.e., A is a column vector), a sufficient condition is

1

n
k(I �⇧x)µ(X)v?

k
2
> 2E


k⇧xAk

2 + kAk
2

k(I �⇧x)Ak2

�
+
�
2
d

n
.

We provide the details of the derivation of the risk for ⌧marg. NO-PI and ⌧marg. PI in Section E.3.1 and
Section E.3.2 respectively. Moreover, the second part of the proposition follows from an application
of Lemma E.5.

E.3.1 ORDINARY LEAST SQUARES (WITH MARGINALIZATION)

Restarting from Section E.2.1, we consider the predictions marginalized with respect to A. We have
⌧marg. NO-PI(X) = Ea⇠p(a|x)[Xŵ0] = Xw

? +⇧xµ(X)v? +⇧x".

Plugging into (8), we obtain

R(⌧marg. NO-PI(X)) =
1

n
k(I �⇧x)µ(X)v?

�⇧x"k
2
.

Expanding the square and using that tr(⇧x) = d, the final risk expression is

E[R(⌧marg. NO-PI(X))] =
1

n
k(I �⇧x)µ(X)v?

k
2 +

1

n
E[k⇧x"k

2]

=
1

n
k(I �⇧x)µ(X)v?

k
2 +

�
2
d

n
. (11)
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E.3.2 ORDINARY LEAST SQUARES WITH PI AND MARGINALIZATION

Restarting from Section E.2.2, we consider the predictions marginalized with respect to A. In
particular, we do not impute A by its mean but rather directly take the expectation over A. We have

⌧marg. PI(X) = Ea⇠p(a|x)[Xŵ1 +Av̂1] = Xw
? + µ(X)v? + Ea⇠p(a|x)[L]",

with
L = XHa? +AGx?.

Plugging into (8) and taking the expectation, we obtain

E[R(⌧marg. PI(X))] =
1

n
k0k2 +

1

n
E[kEa⇠p(a|x)[L]"k2]

=
�
2

n
kEa⇠p(a|x)[L]k2. (12)

E.4 TECHNICAL LEMMAS

Lemma E.3. Assume that both X
>
X and A

>
A are invertible. Moreover, assume that both

X
>
a?Xa? and A

>
x?Ax? are invertible.

We can write the solution of

min
w,v

1

2
ky �Xw �Avk

2

as

ŵ = Ha?y and v̂ = Gx?y.

Proof. The proof follows by applying inversion formula for the block matrix

Q =


X

>
X X

>
A

A
>
X A

>
A

�

where X
>
a?Xa? and A

>
x?Ax? are the two Schur complements of X>

X and A
>
A. Under the

assumptions of the lemma, the matrix is Q is invertible.

Lemma E.4. We have the following properties

• Ha?X = (X>
a?Xa?)�1

X
>(I �⇧a)X = (X>

a?Xa?)�1(X>
a?Xa?) = I ,

• Ha?A = (X>
a?Xa?)�1

X
>(I �⇧a)A = 0.

Conversely, we have

• Gx?A = (A>
x?Ax?)�1

A
>(I �⇧x)A = (A>

x?Ax?)�1(A>
x?Ax?) = I ,

• Gx?X = (A>
x?Ax?)�1

A
>(I �⇧x)X = 0.

Lemma E.5. Assume m = 1, i.e., A is a column vector. We have

E[kKk
2]  2d+ 2E


k⇧xAk

2 + kµ(X)k2

k(I �⇧x)Ak2

�
.

Similarly, it holds that

kE[L]k2  2d+ 2E

k⇧xAk

2 + kAk
2

k(I �⇧x)Ak2

�
.

Proof. We start by splitting the term into

kKk
2
 2kXHa?k

2 + 2kµ(X)Gx?k
2
.

Notice that Ha?H
>
a? = (X>

a?Xa?)�1 and similarly Gx?G
>
x? = (A>

x?Ax?)�1.

Since kMk
2 = tr(M>

M), we have

kKk
2
 2tr((X>

X)(X>
a?Xa?)

�1) + 2tr(µ(X)>µ(X)(A>
x?Ax?)

�1).
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By definition of Ax?, when m = 1, we have

(A>
x?Ax?)

�1 =
1

k(I �⇧x)Ak2
.

For the term (X>
a?Xa?)�1, the Sherman–Morrison formula leads to

(X>
a?Xa?)

�1 = (X>
X)�1 +

1

1� b>(X>X)�1b
(X>

X)�1
bb

>(X>
X)�1

with b = 1/kAk ·X
>
A 2 Rd. Further simplifying, we obtain

tr((X>
X)(X>

a?Xa?)
�1) = tr

⇣
I +

⇧xAA
>⇧x

kAk2 � k⇧xAk2

⌘
= d+

k⇧xAk
2

k(I �⇧x)Ak2
.

For the second part of the proof, we start by applying Jensen inequality:

kE[L]k2  E[kLk
2].

The rest of the proof follows along the same arguments, replacing µ(X) by A.

F RELATED WORK TABLE

Table 5: Comparison to related work.

METHOD p(a|x) TRAINING TEST COST WEIGHT APPROXIMATE p(y|x)
REQUIRED SHARING

IMPUTATION ⇥ 1 MODEL, 1 STEP = NO PI X ⇥

DISTILLATION (LOPEZ-PAZ ET AL., 2015) ⇥ 2 MODELS, 2 STEPS = NO PI ⇥ ⇥

HET. DROPOUT (LAMBERT ET AL., 2018) ⇥ 1 MODEL, 1 STEP = NO PI X X
MIML-FCN+ (YANG ET AL., 2017) ⇥ 1 MODEL, 1 STEP = NO PI ⇥ ⇥

FULL MARGINALIZATION X 1 MODEL, 1 STEP O(S ⇤ NO PI) X X
TRAM (OURS) ⇥ 1 MODEL, 1 STEP = NO PI X X
HET-TRAM (OURS) ⇥ 1 MODEL, 1 STEP = NO PI X X
DISTILLED-TRAM (OURS) ⇥ 2 MODELS, 2 STEPS = NO PI X X

G TWO-STEP TRAM: IMAGENET SCALE REPRESENTATION LEARNING
EXPERIMENT

We conduct experiment to test two things: 1) does the one-step TRAM procedure, introduced in §3.2,
which is easier for practitioners to implement, approximate the two-step TRAM procedure well and
2) can the results of the toy represrntation learning experiment, §2.2, be replicated in a larger scale
setting.

We train a feature extractor with and without access to PI on ImageNet, following the same procedure,
architecture and dataset used in the main paper. We then freeze the feature extractor and train a single
dense/linear layer with softmax activation on top of the fixed features. We then evaluate the efficacy
of these features trained with and without PI using this “linear probe” evaluation widely used in the
representation learning literature (Chen et al., 2020).

The results are presented in Table 6. We see that the simpler single-step TRAM method approximates
the more complicated two-step TRAM method very well. In addition we see that the features learned
by the network with access to PI which are then frozen and evaluated using a linear probe protocol
perform better in terms of accuracy and log-likelihood.

H TOY EXPERIMENT: VARY ✏
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Table 6: Two-step TRAM: scaling up our toy representation learning experiment. ImageNet validation
set negative log-likelihood and accuracy. Averaged over 10 training runs ± 1 std. dev.

METHOD #NLL "ACCURACY

ONE-STEP NO PI 1.264 ± 0.007 71.7 ± 0.2
TWO-STEP NO PI 1.265 ± 0.008 71.7 ± 0.3
ONE-STEP TRAM 1.225 ± 0.006 72.5 ± 0.2
TWO-STEP TRAM 1.226 ± 0.002 72.7 ± 0.2

(a) ✏ ⇠ N (0, 0.1).
RMSE No PI to marginal: 0.0858
RMSE PI to marginal: 0.0008

(b) ✏ ⇠ N (0, 0.5).
RMSE No PI to marginal: 0.0880
RMSE PI to marginal: 0.0007

(c) ✏ ⇠ N (0, 1.0).
RMSE No PI to marginal: 0.0897
RMSE PI to marginal: 0.0027

(d) ✏ ⇠ N (0, 1.5).
RMSE No PI to marginal: 0.0841
RMSE PI to marginal: 0.0472

(e) ✏ ⇠ N (0, 2.0).
RMSE No PI to marginal: 0.0977
RMSE PI to marginal: 0.0977

Figure 4: Varying the influence of ✏ on our motivating toy experiment.

We vary the standard deviation of ✏ used in our motivating toy experiment, §2.2. The results can be
seen graphically in Fig. 4. Fig. 4 also contains the average RMSE to the true marginal across the data
points plotted. The graphical and numerical results demonstrate that even for large levels of noise PI
aids with representation learning but as expected, as the level of noise grows the advantage of using
PI diminishes as it becomes increasingly difficult to distinguish irreducible noise from noise which
can be explained away with PI.

I IMAGENET EXPERIMENT PI ABLATION

We run an ablation, removing PI feature: the probability of the label assigned by the model from the
PI set. We are thus left with just one PI feature, the one-hot encoded ID of the model that produced
the label.

We see the results in Table 7. As expected (and predicted by our theoretical analysis), removing
informative PI reduces the effectiveness of TRAM. Nonetheless, TRAM with the reduced PI feature
set still outperforms the No PI baseline, with accuracy and log-likelihood lying between the No PI
and full PI feature set TRAM methods.
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Table 7: ImageNet ablation with reduced PI feature set. ImageNet validation set negative log-
likelihood and accuracy. Averaged over 10 training runs ± 1 std. dev.

METHOD #NLL "ACCURACY

NO PI 1.264 ± 0.007 71.7 ± 0.2
TRAM WITH FULL PI SET 1.225 ± 0.006 72.5 ± 0.2
TRAM WITH REDUCED PI SET 1.246 ± 0.004 72.0 ± 0.2
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