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ABSTRACT

Conventional supervised single-image dehazing methods, which are trained with
substantial synthetic hazy-clean image pairs, have achieved promising performance.
However, they often fail to tackle out-of-distribution hazy images, due to the
domain shift between source and target scenarios (e.g., between indoor and outdoor,
between synthetic and real). In this work, we observe the opportunity for improving
such dehazing models’ generalization ability without modifying the architectures
or weights of conventional models by adopting the diffusion model to transfer the
distribution of input images from target domain to source domain. Specifically, we
train a denoising diffusion probabilistic model (DDPM) with source hazy images
to capture prior probability distribution of the source domain. Then, during the
test-time the obtained DDPM can adapt target hazy inputs to source domain in the
reverse process from the perspective of conditional generation. The adapted inputs
are fed into a certain state-of-the-art (SOTA) dehazing model pre-trained on source
domain to predict the haze-free outputs. Note that, the whole proposed pipeline,
termed Diffusion-based ADaptation (DiffAD), is model-agnostic and plug-and-
play. Besides, to enhance the efficiency in real image dehazing, we further employ
the predicted haze-free outputs as the pseudo labels to fine-tune the underlying
model. Extensive experimental results demonstrate that our DiffAD is effective,
achieving superior performance against SOTA dehazing methods in domain-shift
scenarios.

1 INTRODUCTION

Hazy images often suffer from low contrast, poor visibility, and color distortion (Tan, 2008), impos-
ing a negative impact on the downstream high-level vision tasks, such as object detection, image
classification, and semantic segmentation. According to the atmospheric scattering model (ASM)
(Narasimhan & Nayar, 2002; 2003), the hazing process is commonly formulated as:

I(x) = J(x)t(x) +A(1− t(x)), (1)

where I(x) is the observed hazy image and J(x) denotes the clean image of the same scene. A and
t(x) are the global atmospheric light and the transmission map, respectively.

With the advancement of deep learning, various methods have been proposed to solve this highly
ill-posed problem (Wu et al., 2021; Chen et al., 2024). Among them, well-designed architectures
based on convolutional neural networks (CNNs) or transformers try to learn the dehazing priors from
large-scale synthetic hazy-clean pairs and reach state-of-the-art (SOTA) performance. Such dehazing
priors are particularly effective for synthetic hazy images with similar distribution to training data.
However, the domain shift caused by different scenarios (indoor and outdoor) or different haze modes
(synthetic and real) makes it challenging to generalize the learned dehazing priors from one specific
domain (i.e., source) to another. For example, a model trained on indoor datasets fails to achieve
desirable results in outdoor scenes as shown in Fig. 1. Previous methods (Shao et al., 2020; Chen
et al., 2021; Yang et al., 2022; Yu et al., 2022) attempt to bridge this domain gap via generative
adversarial networks (GANs) or unsupervised losses. These methods struggle to produce visually
pleasing results. On one hand, GANs are difficult to train and may generate artifacts in the results.
On the other hand, when the handcrafted priors (that unsupervised losses rely on) fail, the dehazing
results may be biased. Moreover, these methods achieve domain adaptation by updating parameters

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

O
-H

A
ZE (PSN

R)

DAD

Ours

PSD

D4

RIDCP

(d) Real-World Dehazing Performance

(a) Real Hazy Input (b) AECRNet (c) AECRNet-DiffAD

Using Dehazing Model Pre-trained on Indoor Scenes (i.e., ITS)

Using Dehazing Model Pre-trained on Synthetic Scenes (i.e., OTS)

(a) Unseen Hazy Input (b) AECRNet (c) AECRNet-DiffAD

Figure 1: Left top: a model trained on indoor datasets fails to achieve desirable results in outdoor
scenes, Left bottom: a model trained on synthetic datasets fails to achieve desirable results in real
hazy scenes, Right: our DiffAD-FT outperforms SOTA dehazing models in real-world scenes.

during the training phase, which to some extent undermines the dehazing priors learned from the
source domain. These dehazing priors have not received sufficient and deserved attention. How to
effectively leverage such dehazing priors in another unseen domain (biased from source domain)
remains unexplored.

Recently, diffusion probabilistic models (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020)
have gradually surpassed GANs and exhibited great success in various tasks, such as image gen-
eration (Dhariwal & Nichol, 2021), image editing (Meng et al., 2022) and image restoration (Fei
et al., 2023; Özdenizci & Legenstein, 2023). Given the powerful capacity for modeling complicated
data distributions and generating high-quality images, DDPM can achieve domain translation by
adding Gaussian noise and then gradually denoising (Meng et al., 2022; Su et al., 2022; Peng et al.,
2023). Such property inspires a new research direction for effectively leveraging the learned dehazing
prior in another unseen domain. One intuitive and feasible idea is to project hazy images from the
target domain to the source domain by DDPM, and then perform dehazing through the dehazing
model trained on the source domain. Since the weights are frozen after training, the dehazing priors
encapsulated in the dehazing model remain intact and can be fully leveraged. However, as a kind
of generative model, DDPM tends to slightly alter the image content during the domain translation
process, introducing cumulative errors into the subsequent dehazing model. In addition, another
drawback lies in the efficiency problem. How to maintain the fidelity after domain translation and
how to enhance the efficiency are key challenges existing in this idea.

Based on the above discussions, we propose a novel Diffusion-based ADaptation paradigm (i.e.,
DiffAD) to explore the domain shift problem in image dehazing. DiffAD acts on the input hazy
images to adjust the distribution. First, we train a DDPM with source hazy images to capture the
prior probability distribution of the source domain. A source-Gaussian-source loop is built in this
step and given a hazy image from the target domain (e.g., real-captured hazy image), we can adjust
the distribution to make it align with the source domain (e.g., synthetic hazy image). A novel loss
function is designed by considering the fidelity and quality to guide the generation during the reverse
process (preventing the generative output from structure distortion and color variation). Then, the
adapted hazy image can be directly fed into a certain SOTA dehazing model (e.g., AECRNet (Wu
et al., 2021), Dehazeformer (Song et al., 2023), and FocalNet (Cui et al., 2023)) pre-trained on source
domain to predict the haze-free output. The SOTA dehazing model is used for inference and will
not change its weights and architecture. Therefore, the crucial dehazing priors can be fully explored
and exploited. Finally, due to the absence of clean ground-truth images from target domain, we
employ the haze-free outputs from our DiffAD as pseudo labels (with some necessary modifications)
to fine-tune the underlying SOTA model. Surprisingly, the fine-tuned model no longer requires the
DDPM, leading to a significant improvement in efficiency. In summary, our main contributions are as
follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We propose a novel Diffusion-based ADaptation paradigm (i.e., DiffAD) to explore the
domain shift problem in image dehazing. To the best of our knowledge, this is the first
time that the diffusion model has been employed to transfer the probability distribution of
target domain (e.g., real-world hazy) into the source domain (e.g., synthetic hazy). DiffAD
is a plug-and-play module that acts on the input image, thus will not alter the underlying
dehazing model. The dehazing priors encapsulated in the underlying dehazing model can be
fully explored and exploited.

• To guide the generation during the reverse process, a novel loss function is devised from the
perspective of fidelity and quality. We show that the fidelity item can avoid information loss
and the quality item brings controllability, ensuring the generation of high-quality haze-free
images.

• We further take the obtained haze-free images as the pseudo labels to fine-tune the underlying
dehazing model. This updated model can be directly applied to recover real-world hazy
images with enhanced efficiency.

2 RELATED WORK

Single Image Dehazing. Early efforts (Fattal, 2008; Tan, 2008; He et al., 2010; Fattal, 2014; Zhu
et al., 2015; Berman et al., 2016) made in image dehazing relies on ASM and primarily focus on
handcraft priors observed from both hazy and haze-free images. These methods achieve promising
results but fail in scenes that do not satisfy their assumptions. The advent of deep learning has
revolutionized image dehazing by freeing it from handcrafted priors. A variety meticulously designed
architectures (Cai et al., 2016; Ren et al., 2016; Li et al., 2017; Zhang & Patel, 2018; Liu et al., 2019;
Dong et al., 2020; Dong & Pan, 2020; Qin et al., 2020; Wu et al., 2021; Guo et al., 2022; Hong et al.,
2022; Ye et al., 2022; Song et al., 2023; Zheng et al., 2023; He et al., 2023; Chen et al., 2024; Zhang
et al., 2024) has been proposed to learn image dehazing from the large-scale synthetic datasets (Li
et al., 2018; Liu et al., 2021). For example, Qin et al. (2020) introduce attention mechanisms to CNNs
and significantly improve the dehazing performance. Song et al. (2023) propose a transformer-based
architecture to further promote image dehazing. Although these learning-based methods achieve
impressive results, they tend to over-fit the training set and demonstrate poor generalization ability on
unseen hazy images.

Domain Adaptation for Image Dehazing. To address the domain shift when encountering unseen
hazy images, some studies (Li et al., 2019; Shao et al., 2020; Chen et al., 2021; Yu et al., 2022;
Li et al., 2022) attempt to improve the generalization ability of dehazing models through domain
adaptation. For instance, a representative solution (Shao et al., 2020; Li et al., 2022) involves utilizing
GANs to perform translation between the source and the target domain, followed by adapting model
to the target domain. (Li et al., 2019; Chen et al., 2021; Yu et al., 2022) start from physical priors
and adapt the dehazing model to the target domain in an unsupervised manner. However, due to the
updating of model parameters, these methods struggle to preserve the well-learned dehazing priors
from large-scale synthetic datasets.

Diffusion models. Recently, denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al.,
2015; Ho et al., 2020) have attracted widespread attention from researchers as a type of generative
model. DDPM gradually converts simple Gaussian noise to complex data distribution by a Markov
chain. Many studies have demonstrated the superiority of DDPM across various tasks (Dhariwal &
Nichol, 2021; Vahdat et al., 2021; Yin et al., 2022; Su et al., 2022; Meng et al., 2022; Gao et al., 2022;
Fei et al., 2023; Özdenizci & Legenstein, 2023; Peng et al., 2023). In image dehazing, a prevalent
way to utilize DDPM is mapping the hazy image to the clear one in a conditional manner (Özdenizci
& Legenstein, 2023; Yu et al., 2023; Wang et al., 2024). Different from previous works, in this paper,
we employ DDPM to project the hazy image from the target to the source domain, aiming to preserve
well-learned dehazing priors of the source domain.

3 PRELIMINARY

Denoising Diffusion Probabilistic Model (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020) is
a kind of generative models that transforms back and forth between complex data distribution and
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Figure 2: Overall pipeline of Diffusion-based ADaptation paradigm (DiffAD). It contains three steps:
pre-trained dehazing model, pre-trained diffusion model, and diffusion-based adaptation dehazing.

simple Gaussian distribution. A DDPM mainly consists of two processes: the diffusion process and
the reverse process.

In the diffusion process, the data x0 is progressively corrupted by the injection of a slight amount of
Gaussian noise over T time steps, transforming into xT :

q (x1:T | x0) =

T∏
t=1

q (xt | xt−1) , q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (2)

where t and β1:T denotes diffusion step and predefined variance schedule, respectively. Let αt =
1− βt, an intermediate xt can be sampled directly from x0:

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
, (3)

where ᾱt =
∏t

i=1 αi and ϵ ∼ N (0, I). The corresponding closed form can be written as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ. (4)

Contrary to the diffusion process, the reverse process starts from a Gaussian noise xT , aiming to
recover data x0 by denoising gradually:

pθ (x0:T−1 | xT ) =

T∏
t=1

pθ (xt−1 | xt) , pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,ΣθI) , (5)

where Σθ is the predefined (Ho et al., 2020) or learnable (Nichol & Dhariwal, 2021) variance.
µθ (xt, t) is the mean, which can be derived by applying the reparameterization technique:

µθ (xt, t) =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
, (6)

where ϵθ is a noise estimator, typically adopting U-Net (Ronneberger et al., 2015) as its architec-
ture. The training objective of DDPM is to enable µθ to accurately estimate the noise of arbitrary
intermediate image xt:

LDDPM = ∥ϵθ (xt, t)− ϵ∥2 . (7)

4 METHODOLOGY

4.1 DIFFAD PIPELINE
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We try to explore the domain shift problem for image dehazing. The detailed definition is as
follows: given a source domain S = {HSi

, CSi
}NS
i=1 comprising NS source hazy images HSi

and
corresponding source clear labels CSi

, along with the dehazing model Φ that properly learns dehazing
priors from S, we aim to improve the generality of Φ in target domain T = {HTi

}NT
i=1 (which only

contains NT unlabeled target hazy images HTi
).

Previous methods adapt models to the target domain T (Chen et al., 2021; Yu et al., 2022). However,
they neglect the useful dehazing priors encoded in Φ learned from the source domain (e.g., large-
scale synthetic datasets). On the contrary, we propose a novel framework called Diffusion-based
ADaptation (DiffAD) to perform input adaptation rather than model adaptation. The key idea of the
proposed DiffAD is to project the target hazy image HT to the source domain S by a controllable
diffusion model.

The whole pipeline is illustrated in Fig. 2. To start with, we choose a well-designed dehazing model
Φ pre-trained on the source domain S with the dehazing priors already encoded. Then, we train a
standard unconditional DDPM to capture the complicated data distribution on source hazy images
{HSi

}NS
i=1 by optimizing equation 7. With the trained DDPM, we are able to perform input adaptation

during test-time. Given a hazy image HT from the target domain T (e.g., real-world hazy image),
we project it to the source domain S (e.g., synthetic hazy image), denoted as HT →S , by adding noise
to HT and going through the reverse process. More details can be found in Sec. 4.1.1 and Sec. 4.1.2.
Finally, we dehaze the projected image HT →S by pre-trained dehazing model Φ with well-learned
dehazing priors.

4.1.1 CONDITIONAL GENERATION

Although aligning HT with the source domain S can revitalize the well-learned dehazing priors,
content changes are inevitable in the unconditional reverse process due to its generation nature. As
shown in Fig. 3 (c), aligning HT with S in an unconditional manner enables FocalNet (Cui et al.,
2023) to properly leverage learned dehazing priors. However, as indicated by the red box of Fig. 3 (c),
structural deformation and color distortion are introduced. Thus, directly recover the diffused image
through equation 5 is sub-optimal.

(a) Hazy Input (b) FocalNet (c) Unconditional Generation (d) Conditional Generation

Figure 3: (a) a hazy input, (b) dehazing result by FocalNet, (c) dehazing result by DiffAD with
unconditional generation, and (d) dehazing result by DiffAD with conditional generation.

Inspired by Dhariwal & Nichol (2021); Fei et al. (2023), we can introduce the custom loss function
L(xt, y) to control the reverse process towards the condition y at each time step t. The conditional
generation can be achieved by shifting the mean of unconditional distribution µθ (xt, t) in equation 5
by gΣθ∇xt

L (xt, y), where g is a scaling factor controlling the magnitude of guidance. In our DiffAD,
we use the hazy input HT as the condition y, since we aim to achieve higher fidelity by constraining
the projected HT →S to have similar structure and color distribution to HT . Following Fei et al.
(2023), to eliminate the impact from noise, we replace xt with x̃0 (the guidance is conditional on x̃0),
which is noise-free and can be predicted directly from xt at each time step t based on equation 4:

x̃0 =
xt√
ᾱt

−
√
1− ᾱt√
ᾱt

ϵ, (8)

We omit the time step t in x̃0 for simplification. In this way, equation 5 can be rewritten as:

pθ(xt−1 | xt, y) = N (xt−1;µθ(xt, t) + gΣθ∇xt
L(x̃0, y),ΣθI), (9)

5
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4.1.2 CUSTOM LOSS FUNCTION

The loss function L(x̃0, y) works in test time by guiding the projection from HT to HT →S in terms
of fidelity and quality. Accordingly, the total loss can be divided into two items: fidelity loss F(x̃0, y)
and quality loss Q(x̃0, y). The former contains a spatial consistency loss Lsc and a color consistency
loss Lcc. The latter contains a white balance loss Lwb and a region-aware DCP loss Lrdcp.

Fidelity Loss. We design the fidelity loss F(x̃0, y) from the perspective of preventing both structure
deformation and color distortion to ensure the fidelity of the projected image HT →S . In general
circumstances, we don’t need to consider the issue of fidelity, since constraints have been imposed
by image distance losses (e.g., MSE). However, in our DiffAD pipeline, MSE may fail the image
adaptation (x̃0 and y should exhibit distinct distributions). Thus, we adopt the spatial consistency
loss Lsc from Guo et al. (2020), which encourages spatial coherence of HT →S through preserving
the structural gradient (rather than intensity) between x̃0 and y:

Lsc =
1

N

N∑
i=1

∑
j∈Ω(i)

(|x̃i
0 − x̃j

0| − |yi − yj |)2, (10)

where N denotes the number of pixels, Ω(i) represents the four adjacent pixels (top, down, left and
right) centered at the pixel i. Similarly, a color consistency loss Lcc is designed to encourage color
coherence of HT →S through preserving the relative color (between channels) between x̃0 and y.

Lcc =
1

N

N∑
i=1

∑
∀(j,k)∈ε

(|x̃i,j
0 − x̃i,k

0 | − |yi,j − yi,k|)2, ε = {(R,G), (R,B), (G,B)}, (11)

where ε denotes the color channel pairs 1. To the best of our knowledge, this is the first time that color
consistency loss Lcc is proposed to align the color information. The fidelity loss can be formulated as
the weighted sum of Lsc and Lcc:

F(x̃0, y) = λscLsc + λccLcc, (12)
where λsc and λcc are weight coefficients.

Quality Loss. In addition to fidelity loss, we propose the controllable quality loss Q(x̃0, y) that
users can adjust white balanced effect and extent of dehazing. For varicolored hazy scenes, we
revise the color constancy loss from Guo et al. (2020) and re-name it to white balance loss Lwb. It
eliminates the color cast of x̃0 based on the Gray-World Assumption (Buchsbaum, 1980). According
to equation 1, regions with dense haze demonstrate increased sensitivity to atmospheric light with
color shift. Therefore, we introduce haze density D(y) estimated by dark channel prior (DCP) (He
et al., 2010) as the spatial weights. The white balance loss Lwb can be formulated as:

Lwb =
∑

∀(i,j)∈ε

(
µi(D(y) · x̃0)− µj(D(y) · x̃0)

)2
, ε = {(R,G), (R,B), (G,B)}, (13)

where µ(·) ∈ RC is the mean value computed across spatial dimensions for each color channel. Our
Lwb can be regarded as the enhanced version of the color constancy loss.

DCP loss (Golts et al., 2020; Li et al., 2020) is widely used in real image dehazing. However, DCP
tends to fail in the sky region (He et al., 2010). We revise the original DCP loss (Li et al., 2020) and
re-name it to region-aware DCP loss Lrdcp. Accordingly, we exclude the sky region with a mask
Msky generated by Zou et al. (2022) to avoid potential inaccurate calculation of DCP. The Lrdcp is
optimized over z = Φ(x̃0), and we employ D(z) as the spatial weights. We formulate Lrdcp as:

Lrdcp = Msky · D(z) · J (z), (14)
where J (·) denotes the original DCP loss (Li et al., 2020). The quality loss can be formulated as:

Q(x̃0, y) = λwbLwb + λdcpLrdcp, (15)
where λwb and λdcp are weight coefficients which are adjustable (refer to supplemental material).

Total Loss. The total loss L(x̃0, y) can be formulated by combining fidelity loss and quality loss:
L(x̃0, y) = F(x̃0, y) +Q(x̃0, y) (16)

1Both of the spatial consistency loss and the color consistency loss can be calculated on local regions.
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Figure 4: Overview of our fine-tune pipeline. We design a fully automatic pipeline to generate the
pseudo labels for fine-tuning the underlying dehazing model.

4.2 DIFFAD FOR REAL IMAGE DEHAZING

Due to the difficulty in obtaining a large-scale hazy-clean image pairs under real-world scenarios,
improving the model’s (pre-trained on synthetic hazy-clean pairs) generalization ability is a promising
research direction. A typical application of our DiffAD is to remove the haze of real-captured images,
which are unlabeled. Although DiffAD provides an effective solution for domain shift problem in
real image dehazing, it is highly time-consuming due to the iterative reverse process. To enhance the
efficiency, we collect some real hazy images and generate corresponding high-quality pseudo labels
with a pre-trained SOTA dehazing model Φ and our DiffAD.

As illustrated in Fig. 4, we design a fully automatic pipeline to generate the pseudo label J . The
output J∗ of the pre-trained dehazing model Φ is also embedded to avoid catastrophic forgetting.
Specifically, a high-quality pseudo label must satisfy simultaneously with (a) visibility within dense
haze regions, and (b) artifact-free. Benefiting from the controllable nature of our DiffAD, we can
easily obtain pseudo label J̃ that satisfy property (a) by adopting relatively larger λdcp. To further
fulfill the property (b), we find the the output J∗ of the pre-trained dehazing model Φ quite fits. As
illustrated in Fig. 5, we first compute the weight map W by adding the sky mask WS and depth map
WD estimated from J∗. Then, the W is utilized to fuse J̃ and J∗ in a weighted addition manner to
generate the refined pseudo label J . In our implementation, the methods described in (Zou et al.,
2022) and (Yang et al., 2024) are adopted to estimate WS and WD, respectively.

Sky 
Estimation

Depth 
Estimation

𝐽𝐽∗ 𝒲𝒲𝑆𝑆

𝒲𝒲𝐷𝐷

𝒲𝒲

𝐽𝐽∗

𝐽𝐽
Pseudo Label

𝐽𝐽

Figure 5: The refine process used in high-quality pseudo label generation.

Finally, the underlying dehazing model Φ is fine-tuned with generated pseudo labels. A depth
estimation module is added into the original architecture and the depth information is integrated
via SFT layers (Wang et al., 2018) into the encoder for better performance. Please refer to our
supplemental material for more details.

5 EXPERIMENTS

5.1 CAN DIFFAD RELIEVE THE DOMAIN SHIFT ISSUE?

Here, we consider two common types of domain shift: (1) between different scene types: apply a
model pre-trained on indoor/outdoor data to outdoor/indoor scenes, (2) between different haze types:
apply a model pre-trained on synthetic data to real-captured scenes.
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Table 1: The performance of scene type adap-
tation of our DiffAD pipeline.

OTS / SOTS-indoor ITS / SOTS-outdoor
PSNR↑ SSIM↑ PSNR↑ SSIM↑

(CVPR’21) AECRNet 22.40 0.9097 17.08 0.8475
(Ours) AECRNet-DiffAD 25.05 0.9224 20.64 0.8759

(TIP’23) Dehazeformer 24.07 0.9317 20.67 0.8827
(Ours) Dehazeformer-DiffAD 26.23 0.9356 23.88 0.9191

(ICCV’23) FocalNet 17.10 0.8280 19.81 0.8582
(Ours) FocalNet-DiffAD 24.84 0.9291 21.07 0.8865

Table 2: The performance of haze type adaptation
of our DiffAD pipeline.

ITS / I-HAZE OTS / O-HAZE Wu / O-HAZE
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

(CVPR’21) AECRNet 11.34 0.5515 16.48 0.6979 17.23 0.7637
(Ours) AECRNet-DiffAD 13.36 0.6580 17.71 0.7317 19.11 0.7911

(TIP’23) Dehazeformer 12.60 0.6078 16.38 0.6959 17.09 0.7693
(Ours) Dehazeformer-DiffAD 14.30 0.7216 17.94 0.7276 19.11 0.7979

(ICCV’23) FocalNet 10.95 0.4870 16.82 0.7136 18.01 0.7870
(Ours) FocalNet-DiffAD 13.70 0.6786 18.09 0.7424 19.28 0.7957

Hazy Input Ground TruthDehazeformer Dehazeformer-DiffAD FocalNet FocalNet-DiffAD

Figure 6: Top: qualitative result under “OTS / SOTS-indoor” setting, Bottom: qualitative result under
“ITS / SOTS-outdoor” setting.

Datasets and Evaluation Metrics. We employ three widely-used synthetic datasets as the source
domains, including ITS dataset (Li et al., 2018), OTS dataset (Li et al., 2018) and Wu’s dataset (Wu
et al., 2023). For domain shift (1), two synthetic datasets are selected for quantitative assessment:
SOTS-indoor dataset (Li et al., 2018), SOTS-outdoor dataset (Li et al., 2018). For domain shift (2),
we adopt O-HAZE (Ancuti et al., 2018a; Kar et al., 2021) and I-HAZE (Ancuti et al., 2018b; Kar
et al., 2021) datasets as target real domains. In addition, we adopt PSNR and SSIM as evaluation
metrics.

Implementation Details. As illustrated in Fig. 2, DiffAD contains three main steps. For step one, We
select AECRNet (Wu et al., 2021), Dehazeformer (Song et al., 2023), and FocalNet (Cui et al., 2023)
as our base networks. We re-train their models on source domains with public codes and default
settings if their pre-trained models are not available. In step two, we train three denoising diffusion
probabilistic models (DDPMs) from scratch on ITS (Li et al., 2018), OTS (Li et al., 2018) and Wu’s
dataset (Wu et al., 2023) (only the hazy images are employed for training). Each diffusion model
is trained for 50k iterations using the Adam optimizer with β1 = 0.9, β2 = 0.999 and learning rate
is set to 2e−5. We randomly crop images into 256× 256 patches in the training phase. Following
DDPM (Ho et al., 2020), we adopt linear noise schedule and set the number of diffusion steps as
T = 1000. In step three, we empirically set the guidance scale g to 0.8×HW for stable guidance,
where H and W denote height and width of the input image, respectively. In the reverse process, we
set k = 10, λsc = 1, λcc = 0.1, and λwb = 1 for all three DDPMs. λdcp is used to control the extent
of dehazing, and in our implementation, we set it to a fixed value (i.e., 5e−5).

Scene Type Adaptation (between indoor and outdoor). We evaluate the performance of scene type
adaptation of our DiffAD between indoor and outdoor domains. Specifically, we choose the model
pre-trained on OTS (source domain) to test the performance on SOTS-indoor (target domain). We
denote this setting as “OTS / SOTS-indoor”. “ITS / SOTS-outdoor” indicates the opposite setting. We
equip our DiffAD with three selected state-of-the-art dehazing methods (i.e., AECRNet (Wu et al.,
2021), Dehazeformer (Song et al., 2023), FocalNet (Cui et al., 2023)) to explore the domain shift
between different scene types. The quantitative results are summarized in Table 1. It can be observed
that previous methods tend to over-fit the source domain, resulting in poor generalization on the
target domain with different scene types. Our method (labeled with -DiffAD suffix) can consistently
enhance the generalization abilities of the selected models on the target domain. Especially, our
DiffAD significantly enhance FocalNet’s scene type adaptation performance on “OTS / SOTS-indoor”
by achieving 7.74 dB and 0.1011 gains in terms of PSNR and SSIM. We also provide some qualitative
results in Fig. 6.
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Haze Type Adaptation (between synthetic and real). We also evaluate the performance of haze
type adaptation of our DiffAD between synthetic and real domains. Specifically, we choose the model
pre-trained on synthetic datasets to test the performance on real datasets. We denote this setting as
“synthetic / real”. We also equip our DiffAD with three selected SOTA dehazing methods to explore
the domain shift between different haze types. The quantitative results are shown in Table 2. With the
proposed DiffAD, selected models achieve robust performance improvements.

5.2 ABLATION STUDY

We also perform ablation study to verify the effectiveness of each component in L(x̃0, y). We adopt
AECRNet (Wu et al., 2021) as the underlying model, and measure PSNR and SSIM on scene type
adaptation (i.e., “OTS / SOTS-indoor”) and haze type adaptation (i.e., “Wu / O-HAZE”).

Table 3 presents the results of different combinations of loss functions. Removing Lsc or Lcc or Ldcp

causes performance drop in terms of PSNR and SSIM, demonstrating the effectiveness of Lsc and
Lcc and Ldcp. Due to the absence of varicolored scenes in SOTS-indoor dataset, we omit the ablation
study of Lwb for “OTS / SOTS-indoor”. When excluding Lwb in varicolored scenes (e.g., O-HAZE),
dramatic performance drop can be observed, indicating its effectiveness for varicolored scenes.

Table 3: Ablation study on different components in L(x̃0, y).

Settings w/o Lsc w/o Lcc w/o Lwb w/o Ldcp AECRNet-DIffAD
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

OTS / SOTS-indoor 24.46 0.8885 25.00 0.9123 - - 22.98 0.9063 25.05 0.9224
Wu / O-HAZE 18.34 0.6815 19.07 0.7906 17.99 0.7684 18.66 0.7899 19.11 0.7911

5.3 COMPARISONS WITH REAL IMAGE DEHAZING METHODS

Datasets and Evaluation Metrics. To evaluate the real-world dehazing performance of the proposed
DiffAD, we conduct experiments on real-world datasets, including labeled dataset O-HAZE (Ancuti
et al., 2018a), I-HAZE (Ancuti et al., 2018b), NH-HAZE (Ancuti et al., 2020), and unlabeled dataset
RTTS (Li et al., 2018). For labeled datasets, we adopt PSNR and SSIM as evaluation metrics. For
unlabeled dataset, three non-reference image quality assessment (NRIQA) metrics, BRISQUE (Mittal
et al., 2012), MUSIQ (Ke et al., 2021) and CLIPIQA (Wang et al., 2023) are utilized to evaluate the
dehazing performance.

Implementation Details. We select the FocalNet (Cui et al., 2023) (pre-trained on Wu’s dataset (Wu
et al., 2023)) as our underlying model. Following (Shao et al., 2020; Chen et al., 2021), we utilize
real-captured hazy images from URHI dataset (Li et al., 2018) and generate corresponding high-
quality pseudo-labels via our DiffAD pipeline. We set k = 50 and λdcp = 1e−3 in DiffAD and use
the automatic method described in Sec. 4.2. We fine-tune FocalNet for 100 epochs with batch size
set to 16 and learning rate set to 1e−4. We denote the fine-tuned model as DiffAD-FT, and fine-tune
another light-weight model (DiffAD-S-FT) by removing depth estimation and SFT layers (Wang
et al., 2018).

Table 4: Quantitative comparisons of various dehazing methods on real-captured hazy datasets.

Method O-HAZE I-HAZE NH-HAZE RTTS
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ BRISQUE↓ MUSIQ↑ CLIPIQA↑

(CVPR’20) DAD 18.36 0.7484 18.02 0.7982 14.34 0.5564 32.37 49.88 0.2544
(CVPR’21) PSD 11.66 0.6831 13.79 0.7379 10.62 0.5246 21.62 52.81 0.2497
(CVPR’22) D4 16.96 0.7229 15.64 0.7294 12.67 0.5043 32.21 53.57 0.3401
(CVPR’23) RIDCP 16.52 0.7154 16.88 0.7794 12.32 0.5341 17.29 59.38 0.3366

(Ours) DiffAD-S-FT 19.12 0.8072 18.14 0.8429 12.95 0.5661 15.41 60.38 0.3791
(Ours) DiffAD-FT 20.02 0.8155 18.59 0.8338 14.60 0.5805 14.73 60.18 0.3717

Performance Evaluation. We compare our DiffAD-FT with state-of-the-art real-world image
dehazing methods: DAD (Shao et al., 2020), PSD (Chen et al., 2021), D4 (Yang et al., 2022) and
RIDCP (Wu et al., 2023). We summarize the quantitative results of SOTA methods in Table 4.
Our DiffAD-FT outperforms competing methods by a large margin on all of four datasets. Our

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Hazy Input GTDAD D4 RIDCP DiffAD-FT
Figure 7: Dehazing results of various methods on labeled datasets. Top: I-HAZE. Bottom: O-HAZE.

Hazy Input DiffAD-FTDAD PSD D4 RIDCP
Figure 8: Dehazing results of various methods on RTTS dataset.

DiffAD-S-FT also achieves promising performance. The qualitative results on labeled datasets and
the unlabeled dataset are shown in Fig. 7 and Fig. 8, respectively. It can be observed that the results
generated by our DiffAD-FT maintain higher visibility and fewer artifacts when compared with
SOTA methods.

6 LIMITATION AND CONCLUSION

Limitation. By studying our DiffAD, we observe some difficulties that are urgent to be addressed. (1)
We find it’s hard to properly evaluate the dehazing performance by current metrics, especially in real
image dehazing where the ground-truth is not available. (2) It is sub-optimal to fix hyper-parameters
when generating pseudo labels. We plan to make them input-adaptive in future.

Conclusion. In this paper, we propose a novel Diffusion-based ADaptation paradigm (i.e., DiffAD)
to explore the domain shift problem in image dehazing. We train a denoising diffusion probabilistic
model (DDPM) with source hazy images to capture the prior probability distribution of the source
domain. A source-Gaussian-source loop is built and given a hazy image from the target domain (e.g.,
real-captured hazy image), we can adjust the distribution to make it align with the source domain.
Then, the adapted hazy image can be directly fed into a certain SOTA dehazing model pre-trained on
source domain to predict the haze-free output. The proposed DiffAD can be successfully applied to
real image dehazing by employing the predicted haze-free outputs as the pseudo labels.
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A APPENDIX

A.1 VISUAL RESULTS GENERATED BY DIFFUSION MODEL

To validate that the trained diffusion model can learn the haze distribution of the source domain, we
utilize the diffusion model trained on ITS and OTS to generate 100 indoor and 100 outdoor hazy
images, respectively. For comparison, we also randomly sample 100 indoor hazy images and outdoor
hazy images from the two source domain (i.e., ITS dataset and OTS dataset), respectively. As shown
in Fig. 9 (a)-(d), generated hazy images is similar to the original hazy images of the source domains.

Furthermore, we leverage VGG19 (Simonyan & Zisserman, 2014) to extract features from these 400
hazy images and apply t-SNE for dimensionality reduction, as shown in Fig. 9 (e). It can be observed
that the generated source domain images are intertwined with the original source domain images on
the t-SNE map, while hazy images from different source domains remain separated from one another.
This further validate that our trained diffusion model can effectively capture the haze distribution of
the source domain.

ITS

OTS

Generated ITS

Generated OTS

(a) ITS Hazy Images (b) Our Generated ITS Hazy Images (c) OTS Hazy Images (d) Our Generated OTS Hazy Images (e) t-SNE Visualization

Figure 9: Q3 of Reviewer-9KzP: Visualization of hazy images generated by diffusion models trained
on different source domains.

A.2 CONTROLLABILITY OF DIFFAD

In DiffAD, quality loss Q(x̃0, y) allows user to control the reverse process from two perspectives,
i.e., color tone and dehazing effect. As shown in Fig. 10 and Fig. 11, users can adjust λwb and λdcp

to achieve the desired output according to their preferences.

Hazy Input 𝜆𝜆𝑤𝑤𝑤𝑤 = 5FocalNet 𝜆𝜆𝑤𝑤𝑤𝑤 = 0.5 𝜆𝜆𝑤𝑤𝑤𝑤 = 1 𝜆𝜆𝑤𝑤𝑤𝑤 = 2

Figure 10: Visual results of DiffAD with different λwb

Hazy Input 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑 = 1 × 10−3FocalNet 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑 = 1 × 10−5 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑 = 5 × 10−4 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑 = 1 × 10−4

Figure 11: Visual results of DiffAD with different λdcp

A.3 ADDITIONAL VISUAL RESULTS ON SCENE TYPE ADAPTATION

We include some dehazing results in synthetic dense hazy scenes in Fig. 12. The qualitative results
demonstrate that our DiffAD is also robust in dense hazy conditions.
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Hazy Input Ground TruthDehazeformer Dehazeformer-DiffAD FocalNet FocalNet-DiffAD

Figure 12: Q1 of Reviewer-yP7K: Visual results of scene type adaptation (dense hazy scenes are
selected here). Top: qualitative results under "OTS / SOTS-indoor" setting. Bottom: qualitative
results under "ITS / SOTS-outdoor" setting.

A.4 ADDITIONAL VISUAL RESULTS ON HAZE TYPE ADAPTATION

We provide the visual results of haze type adaptation in Fig. 13. Significant dehazing performance
improvement can be observed.

Hazy Input Dehazeformer Dehazeformer-DiffAD FocalNet FocalNet-DiffAD

W
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Figure 13: Q3 of Reviewer-fxe7: Visual results of haze type adaptation. Top: qualitative results
under "ITS / I-HAZE" setting. Middle: qualitative results under "OTS / O-HAZE" setting. Bottom:
qualitative results under "Wu / O-HAZE" setting.

We further adopt the real-world RTTS dataset (Li et al., 2018) to evaluate the effectiveness of our
DiffAD. Specifically, we select models trained on ITS and OTS datasets to test their performance on
RTTS dataset. The qualitative results are presented in Fig. 14.

A.5 ADDITIONAL VISUAL RESULTS OF ABLATION STUDY

We provide additional visual ablation study in Fig. 15. Removing the spatial consistency loss
Lsc (Fig. 15 (b)) introduces many artifacts in the dehazing results due to the generative nature of
the diffusion model, thus failing the preservation of structure information. Discarding the color
consistency loss Lcc (Fig. 15 (c)) hinders the preservation of original vivid local color information.
This is because the diffusion model, in the reverse process, alters not only the structural information
but also the local color information. As shown in Fig. 15 (d), the results without white balance loss
Lwb exhibit severe color casts when encountering varicolored hazy scenes. When the region-aware
DCP loss Lrdcp is absence, more haze residue in the dehazing reuslts, as indicated by Fig. 15 (e).
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Hazy Input FocalNet FocalNet-DiffAD Hazy Input FocalNet FocalNet-DiffAD

(b) OTS / RTTS(a) ITS / RTTS

Figure 14: Q2 of Reviewer-V9fx and Q2 of Reviewer-fxe7: Visual results of haze type adaptation.
Left: qualitative results under "ITS / RTTS" setting. Right: qualitative results under "OTS / RTTS"
setting.

(a) Hazy Input (f) AECRNet-DiffAD(b) w/o ℒ𝑠𝑠𝑠𝑠 (c) w/o ℒ𝑐𝑐𝑐𝑐 (d) w/o ℒ𝑤𝑤𝑤𝑤 (e) w/o ℒ𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑

Figure 15: Q2 of Reviewer-yP7K and Q2 of Reviewer-9KzP: Ablation study of each loss on RTTS
dataset.

A.6 DETAILED ARCHITECTURE OF SFT LAYER

Considering haze is highly related to the scene depth, we embed the depth imformation into the
encoder of the dehazing network to guide the dehazing process. Specifically, for hazy features Fhazy

extracted in each level of the dehazing encoder, we first utilize convolution layer to extract the depth
features Fdepth with the same dimensions from the estimated depth map. Then, we utilize SFT
layer (Wang et al., 2018) to achieve effective modulation of Fhazy and Fdepth. The structure of SFT
layer is illustrated in Fig. 16. Two groups of different convolution layers are adopted to predict scale
parameter γ and shift parameter β. Transforming the hazy features Fhazy with predicted parameters,
we can obtain the modulated features Fout:

Fout = SFT (Fhazy|γ, β) = (1 + γ) · Fhazy + β (17)

A.7 ABLATION STUDY OF DIFFAD-FT

We conduct ablation study to verify the effectiveness of each component, i.e., embedding depth and
refining pseudo labels, of the fine-tune process.
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Figure 16: Structure of SFT layer.

The qualitative results on three NTIRE datasets (Ancuti et al., 2018a;b; 2020) are summarized in
Table 5. It can be observed that both embedding depth information and refining pseudo label play
important roles in fine-tune process. Furthermore, we presents visual results in Fig. 17. On the one
hand, without depth information, the fine-tuned model struggles to model haze density perfectly,
resulting in residual haze in the dehazed result (Fig. 17 (b)). On the other hand, skipping refinement
when generating pseudo labels leads to over-enhancement in sky regions (Fig. 17 (c)).

Table 5: Ablation study of DiffAD-FT on NTIRE datasets (Ancuti et al., 2018a;b; 2020)

Settings O-HAZE I-HAZE NH-HAZE
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

w/o Depth 19.12 0.8072 18.14 0.8429 12.95 0.5661
w/o Refine 19.68 0.8134 15.65 0.7888 13.89 0.5651
DiffAD-FT 20.02 0.8155 18.59 0.8338 14.60 0.5805

(a) Hazy Input (b) w/o Depth (c) w/o Refine (d) DiffAD-FT

Figure 17: Visual results of the ablation study on DiffAD-FT

A.8 EFFICIENCY ANALYSIS OF DIFFAD-FT

DiffAD can effectively reduce the domain shift, but struggles to be applied in real-world due to
limited efficiency. To this end, we propose DiffAD-FT and its light-weight version DffAD-S-FT
to improve the efficiency while maintaining good generalization ability. The runtime comparisons
between fine-tuned models and DiffAD are summarized in Table 6. Compared to DiffAD, DiffAD-FT
and DiffAD-S-FT achieve significant improvement in runtime.

Table 6: Runtime comparisons. The runtime is measured on 512×512 images using a single NVIDIA
RTX 3090 GPU.

Methods DiffAD DiffAD-FT DiffAD-S-FT
k = 10 k = 50

Runtime (ms) 2344 11147 121.57 17.82

A.9 ADDITIONAL VISUAL RESULTS

More visual results on RTTS (Li et al., 2018) are shown in Fig. 18 and Fig. 19. We also provide
some visual results on Fattal’s dataset (Fattal, 2014) in Fig. 20. We can observe that our DiffAD-FT
achieves more visual pleasing results in terms of less artifacts and haze residue when competing with
other SOTA methods. We also provide results of our DiffAD-FT on dense hazy scenes in Fig. 21.
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Hazy Input DiffAD-FTDAD PSD D4 RIDCP

Figure 18: Dehazing results of various methods on RTTS dataset. Please zoom in on screen for a
better view.
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Hazy Input DiffAD-FTDAD PSD D4 RIDCP

Figure 19: Dehazing results of various methods on RTTS dataset. Please zoom in on screen for a
better view.

Hazy Input DiffAD-FTDAD PSD D4 RIDCP

Figure 20: Dehazing results of various methods on Fattal’s dataset. Please zoom in on screen for a
better view.
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Figure 21: Q1 of Reviewer-yP7K: Visual results of our DiffAD-FT on dense hazy scenes.
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