Pixab_CAM python implementation

October 5, 2021

1 Pixab-CAM visual explanation map
1.1 Setup

[1]: | import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import tensorflow as tf
import skimage.io
import skimage.transform
import requests
from PIL import Image
from io import BytesIO
import os
from itertools import combinations_with_replacement

1.2 Prepare the pretrained model and the elements to create a visual explanation map
You can change these to another model.

[2]: ## Black boxz model pretrained on the ImagelNet
model_builder = tf.keras.applications.inception_v3.InceptionV3
decode_predictions = tf.keras.applications.inception_v3.decode_predictions
model = model_builder(weights="imagenet")

You can get "last convolution layer" & "classifier layer" & "input size" from,
—". summary ()"

print (model . summary ())

last_conv_layer_name = "mixed10"

classifier_layer_names = ["avg_pool", "predictions"]

input_size = (299, 299)

Model: "inception_v3"

Layer (type) Output Shape Param # Connected to

input_1 (Inputlayer) [(None, 299, 299, 3) 0

conv2d (Conv2D) (None, 149, 149, 32) 864 input_1[0] [0]
batch_normalization (BatchNorma (None, 149, 149, 32) 96 conv2d[0] [0]
activation (Activation) (None, 149, 149, 32) 0

batch_normalization[0] [0]

conv2d_1 (Conv2D) (None, 147, 147, 32) 9216
activation[0] [0]

activation_1 (Activation) (None, 147, 147, 32) O
batch_normalization_1[0] [0]

conv2d_2 (Conv2D) (None, 147, 147, 64) 18432
activation_1[0] [0]

activation_2 (Activation) (None, 147, 147, 64) O
batch_normalization_2[0] [0]

max_pooling2d (MaxPooling2D) (None, 73, 73, 64) 0
activation_2[0] [0]

conv2d_3 (Conv2D) (None, 73, 73, 80) 5120
max_pooling2d[0] [0]

activation_3 (Activation) (None, 73, 73, 80) 0

batch_normalization_3[0] [0]

conv2d_4 (Conv2D) (None, 71, 71, 192) 138240
activation_3[0] [0]

activation_4 (Activation) (None, 71, 71, 192) O
batch_normalization_4[0] [0]

max_pooling2d_1 (MaxPooling2D) (None, 35, 35, 192) O
activation_4[0] [0]

conv2d_8 (Conv2D) (None, 35, 35, 64) 12288
max_pooling2d_1[0] [0]

activation_8 (Activation) (None, 35, 35, 64) 0
batch_normalization_8[0] [0]

conv2d_6 (Conv2D) (None, 35, 35, 48) 9216
max_pooling2d_1[0] [0]

conv2d_9 (Conv2D) (None, 35, 35, 96) 55296
activation_8[0] [0]

batch_normalization_6 (BatchNor (None, 35, 35, 48) 144 conv2d_61[0] [0]
batch_normalization_9 (BatchNor (None, 35, 35, 96) 288 conv2d_9[0] [0]
activation_6 (Activation) (None, 35, 35, 48) 0

batch_normalization_6[0] [0]

activation_9 (Activation) (None, 35, 35, 96) 0

batch_normalization_9[0] [0]

average_pooling2d (AveragePooli (None, 35, 35, 192) 0
max_pooling2d_1[0] [0]

conv2d_5 (Conv2D) (None, 35, 35, 64) 12288
max_pooling2d_1[0] [0]

conv2d_7 (Conv2D) (None, 35, 35, 64) 76800
activation_6[0] [0]

conv2d_10 (Conv2D) (None, 35, 35, 96) 82944
activation_9[0] [0]

conv2d_11 (Conv2D) (None, 35, 35, 32) 6144
average_pooling2d[0] [0]

batch_normalization_5 (BatchNor (None, 35, 35, 64) 192 conv2d_5[0] [0]
B;{Zﬂ:;;;g;{{;;;{;n_7 (BatchNor (None, 35, 35, 64) 192 conv2d_7[0] [0]
QQEEQ:QS;QQEZQQEESn_1o (BatchNo (None, 35, 35, 96) 288 conv2d_10[0] [0]
gg;gﬂ:;;;;;ig;;gggn_ll (BatchNo (None, 35, 35, 32) 96 conv2d_11[0] [0]
activation_5 (Activation) (None, 35, 35, 64) 0

batch_normalization_5[0] [0]

activation_7 (Activation) (None, 35, 35, 64) 0
batch_normalization_7[0] [0]

activation_10 (Activation) (None, 35, 35, 96) 0
batch_normalization_10[0] [0]

activation_11 (Activation) (None, 35, 35, 32) 0

batch_normalization_11[0] [0]

mixed0 (Concatenate) (None, 35, 35, 256) O
activation_5[0] [0]
activation_7[0] [0]
activation_10[0] [0]
activation_11[0] [0]

conv2d_15 (Conv2D) (None, 35, 35, 64) 16384 mixed0[0] [0]
batch_normalization_15 (BatchNo (None, 35, 35, 64) 192 conv2d_15[0] [0]
activation_15 (Activation) (None, 35, 35, 64) 0

batch_normalization_15[0] [0]

conv2d_16 (Conv2D) (None, 35, 35, 96) 55296
activation_15[0] [0]

batch_normalization_13 (BatchNo (None, 35, 35, 48) 144 conv2d_13[0] [0]
batch_normalization_16 (BatchNo (None, 35, 35, 96) 288 conv2d_16[0] [0]
activation_13 (Activation) (None, 35, 35, 48) 0

batch_normalization_13[0] [0]

activation_16 (Activation) (None, 35, 35, 96) 0
batch_normalization_16[0] [0]

average_pooling2d_1 (AveragePoo (None, 35, 35, 256) 0 mixedO0[0] [0]
conv2d_12 (Conv2D) (None, 35, 35, 64) 16384 mixedO[0] [0]
conv2d_14 (Conv2D) (None, 35, 35, 64) 76800

activation_13[0] [0]

conv2d_17 (Conv2D) (None, 35, 35, 96) 82944
activation_16[0] [0]

conv2d_18 (Conv2D) (None, 35, 35, 64) 16384
average_pooling2d_1[0] [0]

batch_normalization_12 (BatchNo (None, 35, 35, 64) 192 conv2d_12[0] [0]
EQ%ZQ:QEQQQEZ;;EZSn_14 (BatchNo (None, 35, 35, 64) 192 conv2d_14[0] [0]
;;;;i:;;;%;i;;;;;;n_17 (BatchNo (None, 35, 35, 96) 288 conv2d_17[0] [0]
ggggi:;;;é;iz;;gggn_18 (BatchNo (None, 35, 35, 64) 192 conv2d_18[0] [0]
;;EEQ;;;;;:IQ_EAEEivation) (None, 35, 35, 64) O

batch_normalization_12[0] [0]

activation_14 (Activation) (None, 35, 35, 64) 0
batch_normalization_14[0] [0]

activation_17 (Activation) (None, 35, 35, 96) 0
batch_normalization_17[0] [0]

activation_18 (Activation) (None, 35, 35, 64) 0
batch_normalization_18[0] [0]

mixed1l (Concatenate) (None, 35, 35, 288) 0
activation_12[0] [0]
activation_14[0] [0]
activation_17[0] [0]
activation_18[0] [0]

batch_normalization_22 (BatchNo (None, 35, 35, 64) 192 conv2d_22[0] [0]

activation_22 (Activation) (None, 35, 35, 64) 0
batch_normalization_22[0] [0]

conv2d_23 (Conv2D) (None, 35, 35, 96) 55296
activation_22[0] [0]

batch_normalization_20 (BatchNo (None, 35, 35, 48) 144 conv2d_201[0] [0]
batch_normalization_23 (BatchNo (None, 35, 35, 96) 288 conv2d_23[0] [0]
activation_20 (Activation) (None, 35, 35, 48) 0

batch_normalization_20[0] [0]

activation_23 (Activation) (None, 35, 35, 96) 0
batch_normalization_23[0] [0]

average_pooling2d_2 (AveragePoo (None, 35, 35, 288) 0 mixed1[0] [0]
conv2d_19 (Conv2D) (None, 35, 35, 64) 18432 mixed1[0] [0]
conv2d_21 (Conv2D) (None, 35, 35, 64) 76800

activation_20[0] [0]

conv2d_24 (Conv2D) (None, 35, 35, 96) 82944
activation_23[0] [0]

conv2d_25 (Conv2D) (None, 35, 35, 64) 18432
average_pooling2d_2[0] [0]

batch_normalization_19 (BatchNo (None, 35, 35, 64) 192 conv2d_19[0] [0]

batch_normalization_24 (BatchNo (None, 35, 35, 96) 288 conv2d_24[0] [0]
batch_normalization_25 (BatchNo (None, 35, 35, 64) 192 conv2d_25[0] [0]
activation_19 (Activation) (None, 35, 35, 64) 0

batch_normalization_19[0] [0]

activation_21 (Activation) (None, 35, 35, 64) 0
batch_normalization_21[0] [0]

activation_24 (Activation) (None, 35, 35, 96) 0
batch_normalization_24[0] [0]

activation_25 (Activation) (None, 35, 35, 64) 0
batch_normalization_25[0] [0]

mixed2 (Concatenate) (None, 35, 35, 288) O
activation_19[0] [0]
activation_21[0] [0]
activation_24[0] [0]
activation_25[0] [0]

conv2d_27 (Conv2D) (None, 35, 35, 64) 18432 mixed2[0] [0]
batch_normalization_27 (BatchNo (None, 35, 35, 64) 192 conv2d_27[0] [0]
activation_27 (Activation) (None, 35, 35, 64) 0

batch_normalization_27[0] [0]

conv2d_28 (Conv2D) (None, 35, 35, 96) 55296
activation_27[0] [0]

batch_normalization_28 (BatchNo (None, 35, 35, 96) 288 conv2d_28[0] [0]

activation_28 (Activation) (None, 35, 35, 96) 0
batch_normalization_28[0] [0]

conv2d_29 (Conv2D) (None, 17, 17, 96) 82944
activation_28[0] [0]

batch_normalization_26 (BatchNo (None, 17, 17, 384) 1152 conv2d_26[0] [0]
batch_normalization_29 (BatchNo (None, 17, 17, 96) 288 conv2d_29[0] [0]
activation_26 (Activation) (None, 17, 17, 384) O

batch_normalization_26[0] [0]

activation_29 (Activation) (None, 17, 17, 96) 0
batch_normalization_29[0] [0]

mixed3 (Concatenate) (None, 17, 17, 768) O
activation_26[0] [0]

activation_29[0] [0]

max_pooling2d_2[0] [0]

conv2d_34 (Conv2D) (None, 17, 17, 128) 98304 mixed3[0] [0]
batch_normalization_34 (BatchNo (None, 17, 17, 128) 384 conv2d_34[0] [0]
activation_34 (Activation) (None, 17, 17, 128) O

batch_normalization_34[0] [0]

conv2d_35 (Conv2D) (None, 17, 17, 128) 114688

activation_34[0] [0]

activation_35 (Activation) (None, 17, 17, 128) O
batch_normalization_35[0] [0]

conv2d_36 (Conv2D) (None, 17, 17, 128) 114688
activation_35[0] [0]

batch_normalization_31 (BatchNo (None, 17, 17, 128) 384 conv2d_31[0] [0]
batch_normalization_36 (BatchNo (None, 17, 17, 128) 384 conv2d_36[0] [0]
activation_31 (Activation) (None, 17, 17, 128) O

batch_normalization_31[0] [0]

activation_36 (Activation) (None, 17, 17, 128) 0
batch_normalization_361[0] [0]

conv2d_32 (Conv2D) (None, 17, 17, 128) 114688
activation_31[0] [0]

conv2d_37 (Conv2D) (None, 17, 17, 128) 114688
activation_36[0] [0]

batch_normalization_32 (BatchNo (None, 17, 17, 128) 384 conv2d_32[0] [0]
batch_normalization_37 (BatchNo (None, 17, 17, 128) 384 conv2d_37[0] [0]
activation_32 (Activation) (None, 17, 17, 128) O

batch_normalization_32[0] [0]

activation_37 (Activation) (None, 17, 17, 128) O
batch_normalization_37[0] [0]

average_pooling2d_3 (AveragePoo (None, 17, 17, 768) 0 mixed3[0] [0]
conv2d_30 (Conv2D) (None, 17, 17, 192) 147456 mixed3[0] [0]
conv2d_33 (Conv2D) (None, 17, 17, 192) 172032

activation_32[0] [0]

conv2d_38 (Conv2D) (None, 17, 17, 192) 172032
activation_37[0] [0]

conv2d_39 (Conv2D) (None, 17, 17, 192) 147456
average_pooling2d_3[0] [0]

batch_normalization_30 (BatchNo (None, 17, 17, 192) 576 conv2d_30[0] [0]
batch_normalization_33 (BatchNo (Nome, 17, 17, 192) 576 conv2d_33[0] [0]
ggg;i:;;;Q;i;;;Eggn_SS (BatchNo (None, 17, 17, 192) 576 conv2d_38[0] [0]
;gggi:;;;;;i;;;gggn_BQ (BatchNo (None, 17, 17, 192) 576 conv2d_39[0] [0]
activation_30 (Activation) (None, 17, 17, 192) 0

batch_normalization_30[0] [0]

activation_33 (Activation) (None, 17, 17, 192) O
batch_normalization_33[0] [0]

activation_38 (Activation) (None, 17, 17, 192) O
batch_normalization_38[0] [0]

activation_39 (Activation) (None, 17, 17, 192) O©

batch_normalization_39[0] [0]

mixed4 (Concatenate) (None, 17, 17, 768) O
activation_30[0] [0]
activation_33[0] [0]
activation_38[0] [0]
activation_39[0] [0]

conv2d_44 (Conv2D) (None, 17, 17, 160) 122880 mixed4[0] [0]
batch_normalization_44 (BatchNo (None, 17, 17, 160) 480 conv2d_441[0] [0]
activation_44 (Activation) (None, 17, 17, 160) O

batch_normalization_44[0] [0]

conv2d_45 (Conv2D) (None, 17, 17, 160) 179200
activation_44[0] [0]

activation_45 (Activation) (None, 17, 17, 160) O
batch_normalization_45[0] [0]

conv2d_46 (Conv2D) (None, 17, 17, 160) 179200
activation_45[0] [0]

batch_normalization_41 (BatchNo (None, 17, 17, 160) 480 conv2d_41[0] [0]
batch_normalization_46 (BatchNo (None, 17, 17, 160) 480 conv2d_46[0] [0]
activation_41 (Activation) (None, 17, 17, 160) O

batch_normalization_41[0] [0]

12

activation_46 (Activation) (None, 17, 17, 160) O
batch_normalization_46[0] [0]

conv2d_42 (Conv2D) (None, 17, 17, 160) 179200
activation_41[0] [0]

conv2d_47 (Conv2D) (None, 17, 17, 160) 179200
activation_46[0] [0]

batch_normalization_42 (BatchNo (None, 17, 17, 160) 480 conv2d_42[0] [0]
batch_normalization_47 (BatchNo (None, 17, 17, 160) 480 conv2d_47[0] [0]
activation_42 (Activation) (None, 17, 17, 160) O

batch_normalization_42[0] [0]

activation_47 (Activation) (None, 17, 17, 160) O
batch_normalization_47[0] [0]

average_pooling2d_4 (AveragePoo (None, 17, 17, 768) 0 mixed4 [0] [0]
conv2d_40 (Conv2D) (None, 17, 17, 192) 147456 mixed4[0] [0]
conv2d_43 (Conv2D) (None, 17, 17, 192) 215040

activation_42[0] [0]

conv2d_48 (Conv2D) (None, 17, 17, 192) 215040
activation_47[0] [0]

conv2d_49 (Conv2D) (None, 17, 17, 192) 147456
average_pooling2d_4[0] [0]

batch_normalization_43 (BatchNo (None, 17, 17, 192) 576 conv2d_43[0] [0]

activation_40 (Activation) (None, 17, 17, 192) O
batch_normalization_40[0] [0]

activation_43 (Activation) (None, 17, 17, 192) O
batch_normalization_43[0] [0]

activation_48 (Activation) (None, 17, 17, 192) 0
batch_normalization_48[0] [0]

activation_49 (Activation) (None, 17, 17, 192) 0
batch_normalization_49[0] [0]

mixed5 (Concatenate) (None, 17, 17, 768) O
activation_40[0] [0]
activation_43[0] [0]
activation_48[0] [0]
activation_49[0] [0]

conv2d_54 (Conv2D) (None, 17, 17, 160) 122880 mixed5[0] [0]
batch_normalization_54 (BatchNo (None, 17, 17, 160) 480 conv2d_54[0] [0]
activation_54 (Activation) (None, 17, 17, 160) O

batch_normalization_54[0] [0]

conv2d_55 (Conv2D) (None, 17, 17, 160) 179200
activation_54[0] [0]

14

activation_55 (Activation) (None, 17, 17, 160) O
batch_normalization_55[0] [0]

conv2d_56 (Conv2D) (None, 17, 17, 160) 179200
activation_55[0] [0]

batch_normalization_51 (BatchNo (None, 17, 17, 160) 480 conv2d_51[0] [0]
batch_normalization_56 (BatchNo (None, 17, 17, 160) 480 conv2d_56[0] [0]
activation_51 (Activation) (None, 17, 17, 160) O

batch_normalization_51[0] [0]

activation_56 (Activation) (None, 17, 17, 160) O
batch_normalization_56[0] [0]

conv2d_52 (Conv2D) (None, 17, 17, 160) 179200
activation_51[0] [0]

conv2d_57 (Conv2D) (None, 17, 17, 160) 179200
activation_56[0] [0]

batch_normalization_52 (BatchNo (None, 17, 17, 160) 480 conv2d_52[0] [0]
batch_normalization_57 (BatchNo (None, 17, 17, 160) 480 conv2d_57[0] [0]
activation_52 (Activation) (None, 17, 17, 160) O

batch_normalization_52[0] [0]

activation_57 (Activation) (None, 17, 17, 160) O
batch_normalization_57[0] [0]

average_pooling2d_5 (AveragePoo (None, 17, 17, 768) 0 mixed5 [0] [0]

conv2d_53 (Conv2D) (None, 17, 17, 192) 215040
activation_52[0] [0]

conv2d_58 (Conv2D) (None, 17, 17, 192) 215040
activation_57[0] [0]

conv2d_59 (Conv2D) (None, 17, 17, 192) 147456
average_pooling2d_5[0] [0]

batch_normalization_50 (BatchNo (None, 17, 17, 192) 576 conv2d_50[0] [0]
Q;Eéﬂ:ﬂggégilégglgn_ss (BatchNo (None, 17, 17, 192) 576 conv2d_53[0] [0]
g;;;i:;;;&;i;;;g;;n_58 (BatchNo (None, 17, 17, 192) 576 conv2d_58[0] [0]
batch_normalization_59 (BatchNo (Nome, 17, 17, 192) 576 conv2d_59[0] [0]
;;Ei;;;;;;:EB—EAZEivation) (None, 17, 17, 192) O©

batch_normalization_50[0] [0]

activation_53 (Activation) (None, 17, 17, 192) 0
batch_normalization_53[0] [0]

activation_58 (Activation) (None, 17, 17, 192) 0
batch_normalization_58[0] [0]

activation_59 (Activation) (None, 17, 17, 192) 0
batch_normalization_59[0] [0]

mixed6 (Concatenate) (None, 17, 17, 768) O
activation_50[0] [0]
activation_53[0] [0]

16

activation_58[0] [0]
activation_59[0] [0]

conv2d_64 (Conv2D) (None, 17, 17, 192) 147456 mixed6[0] [0]
batch_normalization_64 (BatchNo (None, 17, 17, 192) 576 conv2d_64[0] [0]
activation_64 (Activation) (None, 17, 17, 192) O

batch_normalization_64[0] [0]

conv2d_65 (Conv2D) (None, 17, 17, 192) 258048
activation_64[0] [0]

activation_65 (Activation) (None, 17, 17, 192) O
batch_normalization_65[0] [0]

conv2d_66 (Conv2D) (None, 17, 17, 192) 258048
activation_65[0] [0]

batch_normalization_61 (BatchNo (None, 17, 17, 192) 576 conv2d_61[0] [0]
batch_normalization_66 (BatchNo (None, 17, 17, 192) 576 conv2d_661[0] [0]
activation_61 (Activation) (None, 17, 17, 192) 0

batch_normalization_61[0] [0]

activation_66 (Activation) (None, 17, 17, 192) 0
batch_normalization_66[0] [0]

conv2d_62 (Conv2D) (None, 17, 17, 192) 258048
activation_61[0] [0]

17

conv2d_67 (Conv2D) (None, 17, 17, 192) 258048
activation_66[0] [0]

batch_normalization_62 (BatchNo (None, 17, 17, 192) 576 conv2d_62[0] [0]
batch_normalization_67 (BatchNo (None, 17, 17, 192) 576 conv2d_67[0] [0]
activation_62 (Activation) (None, 17, 17, 192) O

batch_normalization_62[0] [0]

activation_67 (Activation) (None, 17, 17, 192) 0
batch_normalization_67[0] [0]

average_pooling2d_6 (AveragePoo (None, 17, 17, 768) O mixed6[0] [0]
conv2d_60 (Conv2D) (None, 17, 17, 192) 147456 mixed6 [0] [0]
conv2d_63 (Conv2D) (None, 17, 17, 192) 258048

activation_62[0] [0]

conv2d_68 (Conv2D) (None, 17, 17, 192) 258048
activation_67[0] [0]

conv2d_69 (Conv2D) (None, 17, 17, 192) 147456
average_pooling2d_6[0] [0]

batch_normalization_60 (BatchNo (None, 17, 17, 192) 576 conv2d_60[0] [0]
g;;;i:;;;;;i;;;;;;n_63 (BatchNo (Nome, 17, 17, 192) 576 conv2d_63[0] [0]
g;ggﬂ:;ggggi;;;;;;n_GS (BatchNo (Nome, 17, 17, 192) 576 conv2d_68[0] [0]
E;EZQZQEQQQEZ;;EZSn_69 (BatchNo (None, 17, 17, 192) 576 conv2d_69[0] [0]

activation_60 (Activation) (None, 17, 17, 192) 0
batch_normalization_60[0] [0]

activation_63 (Activation) (None, 17, 17, 192) O
batch_normalization_63[0] [0]

activation_68 (Activation) (None, 17, 17, 192) O
batch_normalization_68[0] [0]

activation_69 (Activation) (None, 17, 17, 192) O
batch_normalization_69[0] [0]

mixed7 (Concatenate) (None, 17, 17, 768) O
activation_60[0] [0]
activation_63[0] [0]
activation_68[0] [0]
activation_69[0] [0]

conv2d_72 (Conv2D) (None, 17, 17, 192) 147456 mixed7[0] [0]
batch_normalization_72 (BatchNo (None, 17, 17, 192) 576 conv2d_72[0] [0]
activation_72 (Activation) (None, 17, 17, 192) 0

batch_normalization_72[0] [0]

conv2d_73 (Conv2D) (None, 17, 17, 192) 258048
activation_72[0] [0]

activation_73 (Activation) (None, 17, 17, 192) 0
batch_normalization_73[0] [0]

conv2d_74 (Conv2D) (None, 17, 17, 192) 258048
activation_73[0] [0]

batch_normalization_70 (BatchNo (None, 17, 17, 192) 576 conv2d_70[0] [0]
batch_normalization_74 (BatchNo (None, 17, 17, 192) 576 conv2d_74[0] [0]
activation_70 (Activation) (None, 17, 17, 192) 0

batch_normalization_70[0] [0]

activation_74 (Activation) (None, 17, 17, 192) 0
batch_normalization_74[0] [0]

conv2d_71 (Conv2D) (None, 8, 8, 320) 552960
activation_70[0] [0]

conv2d_75 (Conv2D) (None, 8, 8, 192) 331776
activation_74[0] [0]

batch_normalization_71 (BatchNo (None, 8, 8, 320) 960 conv2d_71[0] [0]
batch_normalization_75 (BatchNo (None, 8, 8, 192) 576 conv2d_75[0] [0]
activation_71 (Activation) (None, 8, 8, 320) 0

batch_normalization_71[0] [0]

activation_75 (Activation) (None, 8, 8, 192) 0
batch_normalization_75[0] [0]

mixed8 (Concatenate) (None, 8, 8, 1280) O
activation_71[0] [0]

activation_75[0] [0]

max_pooling2d_3[0] [0]

20

activation_80 (Activation) (None, 8, 8, 448) 0
batch_normalization_80[0] [0]

conv2d_81 (Conv2D) (None, 8, 8, 384) 1548288
activation_80[0] [0]

batch_normalization_77 (BatchNo (None, 8, 8, 384) 1152 conv2d_77[0] [0]
batch_normalization_81 (BatchNo (None, 8, 8, 384) 1152 conv2d_81[0] [0]
activation_77 (Activation) (None, 8, 8, 384) 0

batch_normalization_77[0] [0]

activation_81 (Activation) (None, 8, 8, 384) 0
batch_normalization_81[0] [0]

conv2d_78 (Conv2D) (None, 8, 8, 384) 442368
activation_77[0] [0]

conv2d_79 (Conv2D) (None, 8, 8, 384) 442368
activation_77[0] [0]

conv2d_82 (Conv2D) (None, 8, 8, 384) 442368
activation_81[0] [0]

conv2d_83 (Conv2D) (None, 8, 8, 384) 442368
activation_81[0] [0]

average_pooling2d_7 (AveragePoo (None, 8, 8, 1280) O mixed8[0] [0]

conv2d_76 (Conv2D) (None, 8, 8, 320) 409600 mixed8[0] [0]
ggg;i:;;;Q;i;;;Eggn_78 (BatchNo (None, 8, 8, 384) 1152 conv2d_78[0] [0]
Q;EZH:;;;;;Z;;;EE;H_79 (BatchNo (None, 8, 8, 384) 1152 conv2d_79[0] [0]
ggggi:;;;%;ig;;;;;n_82 (BatchNo (None, 8, 8, 384) 1152 conv2d_82[0] [0]
BQEZQ:QS;QQEZQQEZSn_ss (BatchNo (None, 8, 8, 384) 1152 conv2d_83[0] [0]
conv2d_84 (ConvaD) (None, 8, 8, 192) 245760

average_pooling2d_7[0] [0]

activation_78 (Activation) (None, 8, 8, 384) 0
batch_normalization_78[0] [0]

activation_79 (Activation) (None, 8, 8, 384) 0
batch_normalization_79[0] [0]

activation_82 (Activation) (None, 8, 8, 384) 0
batch_normalization_82[0] [0]

activation_83 (Activation) (None, 8, 8, 384) 0
batch_normalization_83[0] [0]

activation_76 (Activation) (None, 8, 8, 320) 0
batch_normalization_76[0] [0]

mixed9_0 (Concatenate) (None, 8, 8, 768) 0
activation_78[0] [0]
activation_79[0] [0]

concatenate (Concatenate) (None, 8, 8, 768) 0
activation_82[0] [0]
activation_83[0] [0]

activation_84 (Activation) (None, 8, 8, 192) 0
batch_normalization_84[0] [0]

mixed9 (Concatenate) (None, 8, 8, 2048) 0
activation_76[0] [0]
mixed9_0[0] [0]
concatenate[0] [0]
activation_84[0] [0]

conv2d_89 (Conv2D) (None, 8, 8, 448) 917504 mixed9[0] [0]
batch_normalization_89 (BatchNo (None, 8, 8, 448) 1344 conv2d_89[0] [0]
activation_89 (Activation) (None, 8, 8, 448) 0

batch_normalization_89[0] [0]

conv2d_90 (Conv2D) (None, 8, 8, 384) 1548288
activation_89[0] [0]

batch_normalization_86 (BatchNo (None, 8, 8, 384) 1152 conv2d_86[0] [0]
batch_normalization_90 (BatchNo (None, 8, 8, 384) 1152 conv2d_90[0] [0]
activation_86 (Activation) (None, 8, 8, 384) 0

batch_normalization_86[0] [0]

activation_90 (Activation) (None, 8, 8, 384) 0
batch_normalization_90[0] [0]

conv2d_87 (Conv2D) (None, 8, 8, 384) 442368
activation_86[0] [0]

conv2d_88 (Conv2D) (None, 8, 8, 384) 442368
activation_86[0] [0]

conv2d_91 (Conv2D) (None, 8, 8, 384) 442368
activation_90[0] [0]

conv2d_92 (Conv2D) (None, 8, 8, 384) 442368
activation_90[0] [0]

average_pooling2d_8 (AveragePoo (None, 8, 8, 2048) 0 mixed9 [0] [0]
conv2d_85 (ConvaD) (None, 8, 8, 320) 655360 mixed9[0] [0]
BQEZQ:QS;QQEZQQEZSn_87 (BatchNo (None, 8, 8, 384) 1152 conv2d_87[0] [0]
ggggi:;;;;;i;;;;;;n_88 (BatchNo (None, 8, 8, 384) 1152 conv2d_88[0] [0]
;;;gﬂ:;ggg;i;;;;;;n_9l (BatchNo (None, 8, 8, 384) 1152 conv2d_91[0] [0]
E;EZQ:QEQQQEZ;;EZSn_gz (BatchNo (None, 8, 8, 384) 1152 conv2d_92[0] [0]
conv2d_93 (Conv2D) (None, 8, 8, 192) 393216

average_pooling2d_8[0] [0]

activation_87 (Activation) (None, 8, 8, 384) 0
batch_normalization_87[0] [0]

24

activation_88 (Activation) (None, 8, 8, 384) 0
batch_normalization_88[0] [0]

activation_91 (Activation) (None, 8, 8, 384) 0
batch_normalization_91[0] [0]

activation_92 (Activation) (None, 8, 8, 384) 0
batch_normalization_92[0] [0]

activation_85 (Activation) (None, 8, 8, 320) 0
batch_normalization_85[0] [0]

mixed9_1 (Concatenate) (None, 8, 8, 768) 0
activation_87[0] [0]
activation_88[0] [0]

concatenate_1 (Concatenate) (None, 8, 8, 768) 0
activation_91[0] [0]
activation_92[0] [0]

activation_93 (Activation) (None, 8, 8, 192) 0
batch_normalization_93[0] [0]

mixed10 (Concatenate) (None, 8, 8, 2048) 0
activation_85[0] [0]
mixed9_11[0] [0]
concatenate_1[0] [0]
activation_93[0] [0]

predictions (Dense) (None, 1000) 2049000 avg_pool [0] [0]

25

Total params: 23,851,784
Trainable params: 23,817,352
Non-trainable params: 34,432

1.3 Prepare image
You can change it to any image you want.

[3]: ## Path of Input Image
dir_path = './examples'
img_name = os.listdir('./examples') [3]
img_path = dir_path + '/' + img_name

[4]: | ## Prepare Input Image
Xi = skimage.io.imread(img_path)
origianl_img = Xi
origianl_img size = origianl_img.shape
print(origianl_img_size)

Reshape input image

Xi = skimage.transform.resize(Xi, input_size)
print (Xi.shape)

Xi = (Xi - 0.5) *2 # Inception pre-processing

(486, 729, 3)
(299, 299, 3)

[6]: | ## Visualization input image
fig, ax = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True)
skimage.io.imshow(Xi/2 + 0.5) # Show image before inception preprocessing
ax.axis('off")
plt.show()

26

[6]:

[7]1:

Get array of input <mage
img_array = Xi[np.newaxis, :, :, :]
img_array = img_array.astype('float32')

Prediction input tmage & Print what the top predicted class s

preds = model.predict(img_array)

print(decode_predictions(preds) [0]) # Top 5 classes

interested_class_order = 0 # The class with the 'interested_class_order'-thy

—~highest confidence

Index of the class of interest

top_pred_classes_index = preds[0].argsort() [-5:][::-1]

top_pred_classes_index # Index of top 5 classes

interested_class_index = top_pred_classes_index[interested_class_order] #.
—~Index of the class of interest

[('n02110958', 'pug', 0.15104042), ('n02123597', 'Siamese_cat', 0.061423033),
('n02808304"', 'bath_towel', 0.05276003), ('n02124075', 'Egyptian_cat',
0.031069592), ('n02108422', 'bull_mastiff', 0.014700278)]

1.4 The Pixab-CAM algorithm

Get index for interested class
cls = interested_class_index

Create a model that maps the input image to the activations of the last conu,
< layer

last_conv_layer = model.get_layer(last_conv_layer_name)

last_conv_layer_model = tf.keras.Model(model.inputs, last_conv_layer.output)

Create a model that maps the activations of the last conv layer to the final,
—class predictions
classifier_input = tf.keras.Input(shape=last_conv_layer.output.shapel[1:])
x = classifier_input
for layer_name in classifier_layer_names:
x = model.get_layer(layer_name) (x)
classifier_model = tf.keras.Model(classifier_input, x)

Compute the gradient of the top predicted class for our input image withy,
—respect to the activations of the last conv layer
with tf.GradientTape() as tape:
Compute activations of the last conv layer and make the tape watch %t
last_conv_layer_output = last_conv_layer_model (img_array)
tape.watch(last_conv_layer_output)

27

Compute class predictions

preds = classifier_model(last_conv_layer_output)
top_pred_index = tf.argmax(preds[0])
#top_class_channel = preds[:, top_pred_index]
top_class_channel = preds[:, cls]

last_conv_layer_output = last_conv_layer_output.numpy ()
Activation Tensor

activations = last_conv_layer_output.copy()
last_layer_activation = activations[-1]

activation = last_layer_activation
activation = np.expand_dims(activation, axis=0)

window_size = 1 X 1

ablation box (deletion perspective)

inv_identity = (1 - np.identity(last_layer_activation.shape[0] *,
~last_layer_activation.shape[1]))

inv_identity = inv_identity.reshape(last_layer_activation.shape[0] *
~last_layer_activation.shape[1], last_layer_activation.shapel[0],
—~last_layer_activation.shape[1])

activation_tensor = activation * inv_identityl[..., np.newaxis]

prediction = classifier_model(activation_tensor)

values = prediction[:, cls].numpy() .reshape(last_layer_activation.shapel[0],
—last_layer_activation.shape[0])

valuesl = values

reverse ablation boz (preservation perspective)
identity = 1 - inv_identity

activation_tensor = activation * identity[..., np.newaxis]

prediction = classifier_model(activation_tensor)

values = prediction[:, cls].numpy().reshape(last_layer_activation.shapel[0],
—last_layer_activation.shape[0])

reverse_valuesl = values

window_size = 2 X 1

ablation box (deletion perspective)

window_size = 2 ; padding = 1

inv_identity = (1 - np.identity((last_layer_activation.shape[0] + (2 * padding))
—~* (last_layer_activation.shape[l] + (2 * padding))))

inv_identity = inv_identity.reshape((last_layer_activation.shape[0] + (2 *
—padding)) * (last_layer_activation.shape[l] + (2 * padding)),
—(last_layer_activation.shape[0] + (2 * padding)), (last_layer_activation.
—shape[1] + (2 * padding)))

28

index_matrix = np.arange((activation.shape[1] + (2 * padding)) * (activation.
—shape[2] + (2 * padding))) .reshape((activation.shape[l] + (2 * padding)),
—(activation.shape[2] + (2 * padding)))

index_matrix[: (activation.shape[1] + (2 * padding)) - (window_size - 1),
—(activation.shape[2] + (2 * padding)) - (window_size - 1)] = 0

inv_identity = np.delete(inv_identity, np.unique(index_matrix)[1:], 0) # deletey
—second row of A

zero_loc = np.where(inv_identity == 0)
set_zero (zero_loc[0], zero_loc[1] + padding, zero_loc[2])
inv_identity[set_zero] = 0

inv_identity = inv_identity[:, padding:activation.shape[l] + padding, padding:
—activation.shape[2] + padding]

inv_identity = np.delete(inv_identity, np.where(np.sum(l - inv_identity,,
—axis=(1, 2)) == 0)[0], 0) # delete second row of 4

identity = 1 - inv_identity

activation_tensor = activation * inv_identityl[..., np.newaxis]
prediction = classifier_model (activation_tensor)

values = prediction[:, cls].numpy()[:, np.newaxis, np.newaxis]
values = identity * values

values = values.sum(axis=0) / identity.sum(axis=0)

values2 = values

reverse ablation box (preservation perspective)
inv_identity, identity = identity, inv_identity

activation_tensor = activation * inv_identityl[..., np.newaxis]
prediction = classifier_model (activation_tensor)

values = prediction[:, cls].numpy()[:, np.newaxis, np.newaxis]
values = identity * values
values = values.sum(axis=0) / identity.sum(axis=0)

reverse_values2 = values

window_size = 1 X 2

ablation box (deletion perspective)

window_size = 2 ; padding = 1

inv_identity = (1 - np.identity((last_layer_activation.shape[0] + (2 * padding))
—* (last_layer_activation.shape[l] + (2 * padding))))

29

inv_identity = inv_identity.reshape((last_layer_activation.shapel[0] + (2 *
—~padding)) * (last_layer_activation.shapel[l] + (2 * padding)),
—(last_layer_activation.shape[0] + (2 * padding)), (last_layer_activation.
—shape[1] + (2 * padding)))

index_matrix = np.arange((activation.shape[1] + (2 * padding)) * (activation.
—shape[2] + (2 * padding))) .reshape((activation.shape[l] + (2 * padding)),,
—(activation.shape[2] + (2 * padding)))

index_matrix[: (activation.shape[1] + (2 * padding)) - (window_size - 1),
— (activation.shape[2] + (2 * padding)) - (window_size - 1)] = 0

inv_identity = np.delete(inv_identity, np.unique(index_matrix)[1:], 0) # deletey
—second row of A

zero_loc = np.where(inv_identity == 0)
set_zero = (zero_loc[0], zero_loc[1], zero_loc[2] + padding)
inv_identity[set_zero] = 0

inv_identity = inv_identity[:, padding:activation.shape[l] + padding, padding:
—activation.shape[2] + padding]

inv_identity = np.delete(inv_identity, np.where(np.sum(l - inv_identity,,
—axis=(1, 2)) == 0)[0], 0) # delete second Tow of 4

identity = 1 - inv_identity

activation_tensor = activation * inv_identityl[..., np.newaxis]
prediction = classifier_model (activation_tensor)

values = prediction[:, cls].numpy()[:, np.newaxis, np.newaxis]

values = identity * values
values.sum(axis=0) / identity.sum(axis=0)

values
values3 = values

reverse ablation box (preservation perspective)
inv_identity, identity = identity, inv_identity

activation_tensor = activation * inv_identityl[..., np.newaxis]
prediction = classifier_model (activation_tensor)

values = prediction[:, cls].numpy()[:, np.newaxis, np.newaxis]

values = identity * values
values.sum(axis=0) / identity.sum(axis=0)

values
reverse_values3 = values

window_size = 2 X 2

ablation box (deletion perspective)
window_size = 2 ; padding = 1

30

inv_identity = (1 - np.identity((last_layer_activation.shape[0] + (2 * padding))
—~* (last_layer_activation.shape[l] + (2 * padding))))

inv_identity = inv_identity.reshape((last_layer_activation.shapel[0] + (2 *
—~padding)) * (last_layer_activation.shapel[l] + (2 * padding)),
—(last_layer_activation.shape[0] + (2 * padding)), (last_layer_activation.
—shape[1] + (2 * padding)))

index_matrix = np.arange((activation.shape[1] + (2 * padding)) * (activation.
—shape[2] + (2 * padding))) .reshape((activation.shape[l] + (2 * padding)),,
—(activation.shape[2] + (2 * padding)))

index_matrix[: (activation.shape[1] + (2 * padding)) - (window_size - 1),
—(activation.shape[2] + (2 * padding)) - (window_size - 1)] =0

inv_identity = np.delete(inv_identity, np.unique(index_matrix)[1:], 0) # deletey
—second row of A

zero_loc = np.where(inv_identity == 0)
for p, q in list(combinations_with_replacement(range(window_size), 2))[1:]:
set_zero = (zero_loc[0], zero_loc[1] + p, zero_loc[2] + q)
inv_identity[set_zero] = 0
if p !'= q:
set_zero = (zero_loc[0], zero_loc[1] + g, zero_loc[2] + p)
inv_identity[set_zero] = 0

inv_identity = inv_identity[:, padding:activation.shape[l] + padding, padding:
—activation.shape[2] + padding]
identity = 1 - inv_identity

activation_tensor = activation * inv_identityl[..., np.newaxis]
prediction = classifier_model(activation_tensor)

values = prediction[:, cls].numpy()[:, np.newaxis, np.newaxis]
values = identity * values

values = values.sum(axis=0) / identity.sum(axis=0)

values4 = values

reverse ablation box (preservation perspective)
inv_identity, identity = identity, inv_identity

activation_tensor = activation * inv_identityl[..., np.newaxis]
prediction = classifier_model(activation_tensor)

values = prediction[:, cls].numpy()[:, np.newaxis, np.newaxis]
values = identity * values

values = values.sum(axis=0) / identity.sum(axis=0)
reverse_values4 = values

31

average over all ablation boxzes of each perspective

values = (valuesl + values2 + values3 + values4) / 4

reverse_values = (reverse_valuesl + reverse_values2 + reverse_values3 +,
~reverse_values4) / 4

weight ratio
aero = preds.numpy() [:, cls][:, np.newaxis]
weight_ratio = ((aero - values) / aero)

reverse weight ratio
zero_tensor = np.zeros(last_conv_layer_output.shape)
reverse_preds = classifier_model(zero_tensor)

reverse_aero = reverse_preds.numpy() [:, cls][:, np.newaxis]
reverse_weight_ratio = ((reverse_values - reverse_aero) / reverse_aero)

heapmap
heatmap = weight_ratio * reverse_weight_ratio
heatmap = np.maximum(heatmap, 0) / np.max(heatmap)

1.5 Generate visual explanation map of Pixab-CAM

[8]: salience = skimage.transform.resize(heatmap, (299, 299))
plt.figure(1)
skimage.io.imshow(Xi/2 + 0.5)
plt.imshow(salience, cmap="jet", alpha=0.75)
plt.axis('off")
plt.show()

32

	Pixab-CAM visual explanation map
	Setup
	Prepare the pretrained model and the elements to create a visual explanation map
	Prepare image
	The Pixab-CAM algorithm
	Generate visual explanation map of Pixab-CAM

