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ABSTRACT

Fine-tuning large-scale text-to-image diffusion models for various downstream
tasks has yielded impressive results. However, the heavy computational burdens
of tuning large models prevent personal customization. Recent advances have
attempted to employ parameter-efficient fine-tuning (PEFT) techniques to adapt
the floating-point (e.g., FP16) or quantized pre-trained weights. Nonetheless,
the adaptation parameters in existing works are still restricted to FP16 arith-
metic, hindering hardware-friendly acceleration. In this work, we propose Int-
LoRA, to further push the efficiency limits by using integer type (e.g., INT4)
low-rank parameters to adapt the quantized diffusion models. By working in the
integer arithmetic, our IntLoRA offers three key advantages: (i) for fine-tuning,
the pre-trained weights are quantized, reducing memory usage; (ii) for storage,
both pre-trained and low-rank weights are in INT4 which consumes less disk
space; (iii) for inference, IntLoRA weights can be naturally merged into quan-
tized pre-trained weights through efficient integer multiplication or bit-shifting,
eliminating additional post-training quantization. Extensive experiments demon-
strate that IntLoRA can achieve performance on par with or even superior to the
vanilla LoRA, accompanied by significant efficiency improvements.

1 INTRODUCTION

Recently, large-scale text-to-image (T2I) diffusion models (Ramesh et al., 2022; Rombach et al.,
2022; Saharia et al., 2022; Podell et al., 2023) have shown promising capabilities for image gener-
ation. Taking advantage of the strong generative prior of pre-trained parameters, a range of down-
stream adaptation applications have emerged, including subject-driven generation (Ruiz et al., 2023),
style-customized generation (Sohn et al., 2023), and controllable generation (Zhang et al., 2023).
However, fully fine-tuning these large models for personalized customization poses challenges on
consumer-level GPUs, as well as the costs of storing the weight for each downstream task.

To facilitate efficient adaptation, recent advances (Qiu et al., 2023; Liu et al., 2023b) have intro-
duced parameter efficient fine-tuning (PEFT) (Hu et al., 2021; Houlsby et al., 2019; Jia et al., 2022)
that focuses on fine-tuning a limited number of parameters for downstream tasks. Despite the re-
duction in trainable parameters, current PEFT methods predominantly work on floating-point (e.g.,
FP16) arithmetic, which can be inefficient for practical applications. For instance, only loading
the FLUX.1-dev (BlackForestLabs, 2024) can consume over 23GB GPU memory, let alone subse-
quent fine-tuning. Additionally, it also costs huge disk space to store per-task fine-tuned models.
Although some PEFT methods propose weight merging to mitigate the overhead associated with
additional adapters, they still fall short in accelerated inference.

On the other hand, neural network quantization (Nagel et al., 2021; 2020; Esser et al., 2019), which
can transform the trained FP16 parameters into low-bit integer (e.g., INT4) representations, is a
prominent technique for accelerating deep learning models. Thus, integrating PEFT with quantiza-
tion techniques holds promise for enhancing the efficiency of downstream adaptations. To this end,
some pioneer works (Dettmers et al., 2024; Qin et al., 2024) attempt downstream adaptation by di-
rectly fine-tuning the quantized INT4 pre-trained weights with FP16 PEFT parameters. However,
it remains an open challenge for quantization-aware adaptation. Specifically, since the adaptation
weights are still in FP16, it is inevitable to convert the quantized pre-trained weights back to FP16
for arithmetic consistency for subsequent weight merge. As a result, it necessitates additional post-
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Figure 1: Left: (a) The arithmetic inconsistency between the pre-trained and adaptation weights
results in the merged weights still in FP16. Consequently, additional PTQ is needed for low-bit in-
ference. (b) Our approach allows PEFT to operate directly on INT4 arithmetic, ensuring the merged
weights seamlessly in INT4 format and streamlining the whole process. Right: The utilization of
PTQ on the downstream adapted weights leads to severe performance degradation under low bit-
width quantization, which makes the tuning-then-quantization paradigm less general.

training quantization (PTQ) to quantize the merged weights for practical employment, which is
pipeline-complicated and incurs a performance drop when the bit-width is low (see Fig. 1).

To some extent, the primary technical bottleneck in bridging PEFT and quantization arises from
the arithmetic inconsistency between the quantized pre-trained weights and the adaptation weights.
Specifically, the FP16 adaptation weights necessities the conversion of the quantized pre-training
weights from INT4 to FP16 for the subsequent weight fusion. To address this inconsistency, a po-
tential solution is to also transfer the adaptation weights to integer arithmetic. In this way, all weights
during fine-tuning are quantized, allowing to store only INT4 weights, as well as convenient weight
merging during inference. Despite these promising properties, it is non-trivial to accurately quantize
the adaptation weights for satisfactory performance. For example, while zero initializing low-rank
weights are advantageous for fine-tuning (Hu et al., 2021), it poses quantization challenges due to
substantial quantization errors from small values. Furthermore, the additive form of the original
LoRA forces the pre-trained and adaptation weights to share the same quantizer for subsequent
weight merging, which restricts the available parameter space for adaptation.

To address the above challenges, we propose IntLoRA, which employs integral low-rank parame-
ters to adapt the quantized diffusion models. In detail, we introduce the Adaptation-Quantization
Separation (AQS) technique, which employs a task-agnostic auxiliary matrix to enable quantization-
friendly low-rank parameters without disrupting the gradient trajectory of the original LoRA. Addi-
tionally, we present the Multiplicative Low-rank Adaptation (MLA), which reformulates the math-
ematical structure of LoRA from addition to multiplication. This remains mathematically equiva-
lent to the original but allows for independent optimization of adaptation weights, eliminating the
need to share the same quantizer as the pre-trained weights. Furthermore, we develop the Variance
Matching Control (VMC) mechanism that aligns variances of the pre-trained and auxiliary matrices,
controlling the adaptation distribution for more efficient log2-quantization. For implementation,
we provide two versions of IntLoRA, i.e., IntLoRAMUL, and IntLoRASHIFT. The IntLoRAMUL

learns quantized low-rank parameters and can be seamlessly merged with quantized pre-trained
weight through integer multiplication, while IntLoRASHIFT introduces log2-quantization and oper-
ates by bit-shifting the quantized pre-trained weights for downstream adaptation. We evaluate our
IntLoRA on prevalent T2I adaptation tasks, including subject-driven generation (Ruiz et al., 2023),
style-customized generation (Sohn et al., 2023) and controllable generation (Zhang et al., 2023).
Extensive experiments demonstrate that IntLoRA represents a novel diffusion fine-tuning paradigm
with impressive efficiency and favorable performance.

The contribution of this work can be summarized as follows: (i) we introduce IntLoRA, which
achieves integer PEFT to address the arithmetic inconsistency, thereby advancing the efficiency
of diffusion model adaptations; (ii) we propose the adaptation-quantization separation to facilitate
quantization-friendly pre-trained weights, and further develop the multiplicative low-rank adapta-
tion for independent quantizers, complemented by variance matching control for effective distribu-
tion manipulation; (iii) our IntLoRA enables the adaptation of quantized diffusion models through
hardware-friendly integer multiplication or bit-shifting, resulting in significant efficiency gains in
fine-tuning, storage, and inference. Extensive experiments validate the superiority of our method.
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2 RELATED WORK

Parameter-efficient fine-tuning of diffusion models. In order to reduce the fine-tuning cost of
large models, parameter-efficient fine-tuning (PEFT) has recently gained great interests (Lian et al.,
2022; Chavan et al., 2023; Li & Liang, 2021; He et al., 2021; Jie & Deng, 2023). For example,
some pioneering work (Zaken et al., 2021) proposes to fine-tune only a fraction of the pre-trained
weights. To achieve better performance, prompt-based methods (Jia et al., 2022) append learnable
prompts to modify the input space. Adapter-based methods (Houlsby et al., 2019; Chen et al.,
2022) employ additional bottleneck structures as bypass branches for adaptation. LoRA (Hu et al.,
2021), which adopts low-rank matrices to learn weight updates for downstream tasks, has become a
popular pipeline for diffusion model adaptation. Moreover, OFT (Qiu et al., 2023) uses orthogonal
constraints to preserve the pairwise angles between neuron vectors to maintain the hypersphere
energy. COFT (Liu et al., 2023b) further uses butterfly factorization to formulate denser orthogonal
matrices using fewer parameters. In this work, we mainly focus on LoRA since it has been widely
applied and can be merged into pre-trained weights without increasing the inference cost.

Network quantization of diffusion models. Quantization (Nagel et al., 2021) is an effective tech-
nique to reduce model storage and inference costs, and can be categorized into quantization-aware
training (QAT) (Jacob et al., 2018; Li et al., 2024; 2022; Xu et al., 2023a) and post-training quanti-
zation (PTQ) (Wang et al., 2023a; Nahshan et al., 2021; Li et al., 2021; Wei et al., 2022; Liu et al.,
2023a; Huang et al., 2024a). In the context of diffusion model quantization, existing works mainly
focus on PTQ because of the significant overhead of retraining diffusion models. For example,
PTQ4DM (Shang et al., 2023) makes the first attempt to quantize diffusion models to 8 bits. Af-
ter that, Q-Diffusion (Li et al., 2023) further achieves improved performance and lower bit-width.
In addition, PTQD (He et al., 2024) eliminates quantization noise through correlated and residual
noise correction. EfficientDM (He et al., 2023) introduces LoRA to fine-tune the pre-trained model
to allow comparable performance with QAT. TFMQ-DM (Huang et al., 2024b) observes the impact
of quantization errors on the time-step representation and proposes to quantize the time-embedding
layer individually for better performance. However, the network quantization only enables efficient
inference at low bit-widths on the original task, failing to handle various downstream tasks.

Joint adaptation and quantization. The work aims to achieve both parameter-efficient adap-
tations as well as storage and inference-efficient quantization, to further push the efficiency lim-
its of diffusion model fine-tuning. However, this also poses additional challenges, such as back-
propagating gradients in quantized values and optimizing the learnable parameters with quantization
restrains. Existing related works have explored mainly LLMs, but it is still far from a satisfactory
solution. Specifically, QLoRA (Dettmers et al., 2024) proposes to quantize the LLMs before fine-
tuning the LLMs with LoRA. Despite the reduced GPU usage during training due to the import
of only the quantized model, QLoRA does not maintain quantized at inference since the quantized
weights need to be converted to FP16 again so that to add the LoRA weights. To solve this problem,
QA-LoRA (Xu et al., 2023b) develops a group-wise quantization through sharing parameters across
channels, but at the cost of impairing the adaptation ability as well as the need to store FP16 LoRA
weights. IR-QLoRA (Qin et al., 2024) analyzes the entropy loss of quantization from an information
theory view, but it also needs to convert the quantized weights back to FP16 during inference.

3 PRELIMINARY

The main idea of low-rank adaptation (LoRA) (Hu et al., 2021) comes from the fact that the learned
incremental matrix during downstream adaptation usually possesses low-rank properties. To this
end, LoRA introduces a low-rank matrix ∆W to learn the weight increments for adapting the pre-
trained weights W ∈ RCout×Cin to downstream tasks. In implementation, the ∆W is formulated
as the matrix multiplication of two low-rank matrices A ∈ RCout×d and B ∈ Rd×Cin , where the
inner dimension d is the pre-defined rank. During fine-tuning, the pre-trained weight W is frozen
and only A,B is trainable. Since d ≪ min{Cin, Cout}, the number of trainable parameters can be
very small compared to full fine-tuning. The output during the downstream fine-tuning is calculated
as y = Wx+λ·(AB)x, where λ is the LoRA scale to adjust the control strength. During inference,
the task-specific AB can be naturally merged into the pre-trained weights, i.e., W′ = W+λ ·AB,
without increasing additional computational cost.
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Figure 2: Before tuning, we propose the Adaptation Quantization Separation (AQS) to incorpo-
rate auxiliary matrix into pre-trained weights and low-rank weights to obtain zero initialized but
quantization-friendly parameters. Then, the Multiplicative Low-rank Adaptation (MLA) is used to
reformulate additive LoRA into the product of the “pre-training term” and the “adaptation term”.
At last, we introduce the Variance Matching Control (VMC) to adjust the distribution of adaptation
term by modulating the auxiliary matrix. After tuning, we use hardware-friendly integer multipli-
cation or bit shifting to directly generate quantized downstream weights without additional PTQ.

Even though the PEFT techniques can alleviate training costs, they still struggle to reduce the in-
ference latency. To allow for accelerated inference, network quantization is a common practice
that converts the floating-pointing weights to hardware-efficient low-bit integers. Formally, given a
tensor X, the target bit-width b, the quantization process can be defined as:

X̂ = s · (clip(⌊X
s
⌉+ z, 0, 2b − 1)− z) ≜ s · (Xround − z), (1)

where ⌊·⌉ is the round function, s = max(X)−min(X)
2b−1

is the scaling factor, and z = −⌊min(X)
s ⌉

is the zero-point. In short, PEFT and quantization can facilitate efficient training and inference,
respectively, and thus integrating both into one system holds great potential for further acceleration.

4 METHODOLOGY

4.1 BRIDGING EFFICIENT-ADAPTATION AND QUANTIZATION

Although parameter-efficient adaptation and network quantization each contribute to improved fine-
tuning and inference efficiency, it remains an unexplored challenge to effectively combine them.
Existing work such as QLoRA (Dettmers et al., 2024) employs the low-rank AB to fine-tune quan-
tized weights Ŵ to reduce the memory footprint of loading a full-precision model. After training,
the merging between low-rank FP16 parameters and quantized NF4 weights causes the adapted
weights W′ to revert to FP16 again. Consequently, additional PTQ on W′ is needed for inference
efficiency. When the bit width is low, e.g., 4-bit, this PTQ can significantly degrade performance.

In this work, we attribute the main difficulty in effectively marrying PEFT and quantization to the
arithmetic inconsistency. Specifically, the FP16 AB forces the quantized Ŵ to revert to FP16
during weight merging. To bridge the arithmetic gap, a feasible solution is to convert the low-rank
parameters into integer type to obtain ÂB. In this way, the same typed Ŵ and ÂB can be seam-
lessly merged during inference without additional PTQ. However, several technical challenges arise
when performing PEFT on integer arithmetic. First, the AB in the original LoRA is zero-initialized
to preserve the knowledge of the pre-trained weights. Although helpful for fine-tuning, this ini-
tialization complicates the quantization process. For instance, the all-zero distribution requires a
separately designed quantizer at the beginning of tuning, since the scaling factor s = 0 leads to
an infinite X

s in Eq. (1). Second, the vanilla LoRA merges the FP16 AB and W using addition.
When both AB and W are quantized, it is essential to ensure that they share identical quantization
parameters to enable PTQ-free weight merging. This requirement leads to constrained parameter
space, thus limiting the adaptation ability.
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4.2 INTEGRAL LOW-RANK ADAPTATION

To address the above challenges, we propose the integral low-rank adaption, dubbed IntLoRA, which
enables PEFT in integer arithmetic. The overall pipeline is shown in Fig. 2.

Adaptation-quantization separation. The vanilla LoRA adopts zero initialization on AB to en-
sure the behavior of the model is similar to the pre-trained one at the beginning of training (Hu
et al., 2021). Although this initialization can improve performance, the all-zero distribution is not
quantization-friendly, as validated in Sec. 4.1 and Sec. 5.3. To allow accurate quantization while
maintaining the correct gradient, we propose the Adaptation-Quantization-Separation (AQS) strat-
egy. The key observation is that the adaptation requires gradients from zero-initialized weights while
the quantization does not. Therefore, we can split the non-zero initialized adaptation weights into
the gradient-aware zero part and the gradient-free nonzero part. Formally, let R be the non-zero
auxiliary matrix, Q be the quant-dequant operator, then our AQS can be formulated as:

W′ = Q[W − sg(R)] + sg(R) +AB, (2)
where sg(·) denotes the stop gradient operation. Thanks to the AQS, the AB can be zero-initialized
for the same gradient as the original LoRA, while sg(R) + AB facilitate subsequent quantization
by specifically designing the auxiliary matrix R as discussed in Sec. 5.3. In the following part, we
will ignore the sg(·) notation for clarity.

Multiplicative low-rank adaptation. The vanilla LoRA employs additive form W + AB for
weight merge. However, it is difficult to seamlessly fuse the quantized Ŵ and ÂB when they are
quantized by independent quantizers. To this end, we propose Multiplicative Low-rank Adaptation
(MLA) to rewrite the form of the original LoRA into a quantization-friendly multiplication form.
Specifically, denote the quant-dequant results as Q(W − R) = s · (Wround − z), then the MLA
can be derived as follows:

W′ = Q(W −R) +R+AB

= s · (Wround − z) +R+AB

= [s · I+ 1

Wround − z
⊙ (R+AB)]⊙ (Wround − z),

(3)

where the task-specific adaptation term is trainable and will be quantized, and the pre-trained term is
already in integer type and is shared across tasks. I is an all-one matrix. The operator ⊙ denotes the
Hadamard product of two matrices. The proposed MLA is mathematically equivalent to its additive
counterpart, while is more quantization-friendly since it avoids the shared quantizer of pre-trained
and adaptation weights. It is noteworthy that the adaptation term is still in FP16, and we will detail
its quantization strategies in Sec. 4.3.

Variance matching control. One opportunity brought from the multiplicative form in Eq. (3) is
that we can apply the log2-quantization on the adaptation term, thus allowing hardware-efficient bit-
shifting on the pre-trained term for adaptation. However, log2-quantization is usually more difficult
than common uniform quantization (Nagel et al., 2021) and requires appropriate distribution prop-
erties, e.g., most values concentrated around zero to allow for the utilization of as many quantization
bins as possible on the logarithmic scale. Here, we revisit the adaptation term in Eq. (3) aiming to
find useful mathematical insights. Given the AB is orders of magnitude smaller than R (the justi-
fication is shown in Appendix L), we approximate the adaptation term in Eq. (3) by removing AB
from it, namely,

s · I+ R

Wround − z
= s · I+ s ·R

s · (Wround − z)
≈ s · I+ s ·R

W −R
=

s ·W
W −R

. (4)

From this derivation, it follows that the auxiliary matrix R is crucial for controlling the distribution
of the adaptation term. However, there exists a dilemma in choosing an appropriate distribution for
R. On the one hand, it is desirable for the values in R to be larger (which are controlled by the
variance of R) as it leads to a zero-mean adaptation term, namely,

E
[

lim
σR→∞

(s · I+ R

Wround − z
)

]
= E

[
lim

σR→∞

s ·W
W −R

]
= 0, (5)

where σR is the standard deviation of R. On the other hand, too large values in R can also make
the term-to-be-quantized W −R uncorrelated to the useful W, namely,

lim
σR→∞

ρ(W −R,W) = lim
σR→∞

σW√
σ2
W + σ2

R

= 0. (6)
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This low correlation coefficient ρ results in significantly lossy reconstruction of W from the W −R
using the estimator W ≈ Q(W −R)+R. Thus, the sampling values of R cannot be too large. We
also give the visualization of this choice dilemma in Fig. 6. Due to the contradictory aspects of the
desired properties, it becomes non-trivial to select a proper variance for R. To this end, we propose
the Variance Matching Control (VMC) mechanism to adjust the distribution of R. Specifically, we
first multiply R by the variance ratio r = σW

σR
∈ RCout for rough alignment from R to the scale of

W. After that, we further introduce a scalar α as an exponent of r, i.e., rα, to fine-grain the search for
the optimal R∗. As a result, the variance-matched auxiliary matrix can be denoted as R∗ = rα ·R,
and we can use this to obtain the distribution suitable for log2-quantization. Since rα can be shared
across tasks, it is only of negligible cost. In addition to the σR, we observe the distribution shape
of R also has an effect on performance, and we give a detailed discussion in Sec. 5.3. It should be
noted that the R can be on-line generated during fine-tuning using the distribution parameters and
fixed random seed, thus avoiding the need to store FP16 auxiliary matrix.

4.3 IMPLEMENTATION OF INTLORA

Benefiting from the quantization-friendly weight distribution produced from the variance matching
control, we provide two variants of our IntLoRA according to different quantizers on the adaptation
term. The first variant employs the uniform quantizer on the adaptation term, thus enabling direct
weight merge between the quantized adaptation term and pre-trained weights through integer mul-
tiplication. The second variant introduces log2 quantization to achieve downstream adaptation by
bit-shifting the quantized pre-trained weights. More details are given below.

Integer multiplication form. We employ uniform affine quantization on the adaptation term, with
the scaling factor and zero-point denoted as s̄ and z̄, and the quantized results as Uround, then our
IntLoRAMUL can be formalized as:

W′ = s̄ · (Uround − z̄)⊙ (Wround − z). (7)

Bit-shifting form. Denote the adaptation term in Eq. (3) as V for clarity, we first compute the bit
shift value as follows:

shift = clip(⌊− log2 |V|⌉, 0, 2b − 1). (8)
Then the weight adaptation with IntLoRASHIFT can be represented as:

W′ = sign(V)⊙ 2−shift ⊙ (Wround − z)

= sign(V)⊙ [(Wround − z) ≫ shift]

=
1

2N
⊙ sign(V)⊙ [(Wround − z) ≪ (N − shift)]

(9)

where sign(V) ∈ {−1, 1} and N = 2b − 1. Since the direct right-shifting on Wround − z may lead
to truncation error, we thus use N − shift with a scaling factor 1

2N
to equivalently convert to the

left-shifting for error reduction.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. Since there is little work studying PEFT of quantized diffusion models in integer arith-
metic, we reproduce existing related approaches in LLMs and compare them with the proposed
IntLoRA. Specifically, we include the following baselines: i) QLoRA (Dettmers et al., 2024), which
fine-tunes the quantized model using FP16 low-rank matrix. Since the adapted weights are still in
FP16, we thus apply additional PTQ on the merged weights for a fair comparison. ii) QA-LoRA (Xu
et al., 2023b), which uses group-shared low-rank parameters for seamless weight merge, and iii) IR-
QLoRA (Qin et al., 2024), which improves the quantization with information retention as well as
information elastic connection, and we also use additional PTQ on the merged FP16 weights.

Downstream tasks. We evaluate different methods on multiple adaptation tasks, including subject-
driven generation (Ruiz et al., 2023), controllable generation (Zhang et al., 2023), and style-
customized image generation (Sohn et al., 2023). The subject-driven generation aims to generate
images of the same subject given several images of a specific subject and a text prompt. We use
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Table 1: Quantitative comparison on subject-driven generation tasks. We mark the proposed method
with a gray background. The best results are bolded.

Method 8bit-bitwidth 4bit-bitwidth
DINO↑ CLIP-I↑ CLIP-T↑ LPIPS↓ DINO↑ CLIP-I↑ CLIP-T↑ LPIPS↓

LoRA-FP 0.3625 0.7431 0.2499 0.7707 0.5625 0.7431 0.2499 0.7707
QLoRA 0.3635 0.6542 0.2550 0.7959 0.1564 0.5797 0.2260 0.7824
QA-LoRA 0.3635 0.6555 0.2537 0.7952 0.3412 0.6504 0.2514 0.7950
IR-QLoRA 0.3599 0.6547 0.2542 0.7960 0.2289 0.5907 0.2307 0.7829
IntLoRAMUL 0.3929 0.6721 0.2551 0.7928 0.3479 0.6546 0.2494 0.7997
IntLoRASHIFT 0.3825 0.6641 0.2548 0.7930 0.3462 0.6478 0.2458 0.7970

QLoRA QA-LoRA IR-QLoRA Ours-MULSubject Images LoRA-FP Ours-SHIFT

"a purple [V]"Text prompt: "a purple [V]"Text prompt:

"a [V] on top of the sidewalk in a crowded street"Text prompt: "a [V] on top of the sidewalk in a crowded street"Text prompt:

"a [V] in the snow"Text prompt: "a [V] in the snow"Text prompt:

"a [V] on the beach"Text prompt: "a [V] on the beach"Text prompt:

Figure 3: Quantitative comparison on subject-driven generation tasks. More results are provided in
Fig. 14. Zoom in for better effects.

the dataset released by Dreambooth (Ruiz et al., 2023) for training and testing, which contains 25
subjects with each subject corresponding to 30 prompts. For controllable generation, we consider
three sub-tasks, i.e, segmentation map to image on ADE20K dataset (Zhou et al., 2017), face land-
mark to image on CelebA-HQ dataset (Karras, 2017), and the canny edge to image on the COCO
dataset (Lin et al., 2014). For the style-customized generation, we employ the StyleDrop (Sohn
et al., 2023) dataset, which includes 18 style images, and we use 6 text prompts for each style to
generate images with style similar to the style image and content aligned with the text prompt.

Evaluation metrics. In the subject-driven generation, we evaluate the quality of the generated im-
ages from three crucial aspects, i.e., we use the DINO (Caron et al., 2021), CLIP-I (Radford et al.,
2021) to access the subject fidelity, the CLIP-T (Radford et al., 2021) for textual prompt content
fidelity, and LPIPS (Zhang et al., 2018) for sample diversity. For controllable generation task, we
adopt both referenced and non-referenced image quality assessment metrics, namely FID (Heusel
et al., 2017), CLIPIQA (Wang et al., 2023b), and NIQE (Mittal et al., 2012) to evaluate the per-
formance of different methods. For style-customized generation, following StyleDrop (Sohn et al.,
2023), we use CLIP-I to access the similarity between style images and generated images and use
CLIP-T to evaluate the semantic fidelity between generated results and text prompts. However, as
mentioned in StyleDrop (Sohn et al., 2023), these two scores are still not a perfect metric for perfor-
mance evaluation, since even simply copying the style image as the generated results can also obtain
a high CLIP-I score. To this end, we further adopt the ratio CLIP−I

CLIP−T to comprehensively evaluate
the balance between style and content fidelity.

Implementation details. We employ the StableDiffusionV1.5 (Rombach et al., 2022) as the pre-
trained backbone for subject-driven generation and controllable generation. We further employ
larger SDXL (Podell et al., 2023) as the pre-trained model in the style-customized generation. We
use prevalent uniform affine quantization (Nagel et al., 2021) to quantize the pre-trained model
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Table 2: Quantitative comparison on controllable image generation tasks.
Segmentation-to-Image Landmark-to-Face Canny-to-ImageMethod #Bits FID↓ CLIPIQA↑ NIQE↓ FID↓ CLIPIQA↑ NIQE↓ FID↓ CLIPIQA↑ NIQE↓

LoRA FP 31.39 0.5710 4.45 37.50 0.5645 4.80 16.05 0.5582 5.37

QLoRA 8bit 31.09 0.5669 4.44 35.73 0.5639 5.77 15.68 0.5901 5.16
QA-LoRA 8bit 31.32 0.5755 4.17 38.88 0.5667 5.56 15.34 0.6001 5.32
IR-QLoRA 8bit 31.81 0.5761 4.30 36.30 0.5683 5.74 15.70 0.6005 4.72
IntLoRAMUL 8bit 31.08 0.5693 4.43 37.52 0.5686 5.67 15.26 0.6013 4.96
IntLoRASHIFT 8bit 31.38 0.5703 4.22 34.46 0.5495 5.19 15.76 0.5913 4.83

QLoRA 4bit 71.75 0.5584 4.61 117.37 0.5578 4.84 62.49 0.5728 4.70
QA-LoRA 4bit 31.51 0.5646 4.31 43.09 0.5748 5.00 16.73 0.5745 4.52
IR-QLoRA 4bit 35.83 0.5624 4.57 39.63 0.5632 5.23 18.30 0.5733 4.58
IntLoRAMUL 4bit 31.27 0.5650 4.16 33.62 0.5667 4.55 16.32 0.5746 4.55
IntLoRASHIFT 4bit 32.85 0.5693 4.57 43.64 0.5819 5.81 17.65 0.5790 4.60

QLoRA QA-LoRA IR-QLoRA Ours-MULControlOrigin
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Figure 4: Quantitative comparison on controllable generation tasks. More results are provided in
Appendix O. Zoom in for better effects.

weights. We append the trainable low-rank parameters on the Query, Key, Value, and Out projection
in the attention layers (Vaswani et al., 2017) and keep all other layers frozen and quantized. The
rank of LoRA is set to 4 for subject-driven generation and controllable generation, and 64 for style-
customized generation. For compared baselines, we control the rank to ensure a fair comparison. As
for the variance matching control, we employ the ratio of the maxima of the sampled distributions as
a fast estimator of the variance ratio. As for the training of the quantized adaptation term, we use the
Straight Through Estimator (STE) on the quantized adaptation term to allow backpropagation. Given
that backpropagation with the integer type can severely impair performance, we mainly consider
simulated quantization during fine-tuning, while keeping the standard integer format for storage and
inference purposes. Due to the page limit, we provide more details in Appendix I.

5.2 MAIN RESULTS AND EFFICIENCY

Subject driven generation. We first use our IntLoRA to fine-tune the pre-trained models on the
subject-driven generation task. This task requires a few optimization steps for fine-tuning, and the
downstream weights do not deviate too much from the pre-trained capabilities. Therefore, it can
reflect the short-term tuning ability of different methods. Tab. 1 shows the results under 8-bit and
4-bit weight quantization settings. It can be seen that the proposed methods consistently outperform
other competitors under different bit-width stetting. For instance, the IntLoRAMUL suppresses the
IR-QLoRA by 0.1190 DINO score on the 4-bit setup. Notably, the QLoRA and IR-QLoRA baseline
uses additional PTQ on the fine-tuned model, leading to a significant performance drop under the
4-bit width. In contrast, even the log2-quantization of our IntLoRASHIFT works well under 4-bit
thanks to the proposed VMC. We also give qualitative visualization in Fig. 3, where one can see that
our IntLoRA can facilitate subject-faithful and photo-realistic image generation.

Controllable image generation. We further validate the effectiveness of IntLoRA on the control-
lable image generation. Since this task requires more tuning steps for adaptation in input spaces
different from pre-training, it can represent the long-term adaptation ability of different methods.
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LoRA-FP QLoRA QA-LoRA IR-QLoRA OursStyle Images

Figure 5: Quantitative comparison on style-customized generation. The text prompt is “A friendly
robot in [V] style”, “A panda eating bamboo in [V] style”, and “The letter ‘G’ in [V] style”, respec-
tively. ‘Ours’ denotes the IntLoRASHIFT. More results are provided in Fig. 18.

Table 3: Quantitative comparison on style-
customized image generation tasks. The ratio
is CLIP−I

CLIP−T to evaluate style-content balance.

Metrics 8bit-bitwidth 4bit-bitwidth
CLIP-I CLIP-T ratio CLIP-I CLIP-T ratio

LoRA-FP 0.6010 0.2582 2.33 0.6010 0.2582 2.33
QLoRA 0.6016 0.2583 2.33 0.5466 0.2571 2.13
QA-LoRA 0.6593 0.2381 2.77 0.6086 0.2373 2.56
IR-QLoRA 0.7025 0.2198 3.20 0.5957 0.2365 2.52
Ours-MUL 0.5832 0.2596 2.24 0.5711 0.2551 2.23
Ours-SHIFT 0.6043 0.2569 2.35 0.5708 0.2566 2.22

Table 4: Efficiency comparison under SDXL
backbone 4-bit quantization setting. #param
denotes the number of trainable parameters.
N is the downstream task number.
Methods #param(M) storage(GB) PTQ weight merge

LoRA-FP 92M 9.8+0.34N ✔ FP addition
QLoRA 92M 1.2+0.34N ✔ FP addition
QA-LoRA 85M 1.2+0.34N ✘ FP addition
IR-QLoRA 85M 1.2+0.34N ✔ FP addition
IntLoRAMUL 92M 1.2+0.04N ✘ int-mul
IntLoRASHIFT 92M 1.2+0.04N ✘ bit-shift

The results, shown in Tab. 2, indicate that our method achieves comparable results against existing
strong baselines, e.g., our IntLoRAMUL outperforms the IR-QLoRA by 4.56 FID score. Fig. 4 pro-
vides the qualitative comparison on three controllable image generation tasks, and it can be seen that
the images generated by the IntLoRA-tuned model are well matched with the control signals.

Style customized generation. Tab. 3 shows the results of our IntLoRA compared with other base-
lines on the style customized generation task. Taking the ratio CLIP−I

CLIP−T of the LoRA-FP model as the
metric reference, our method achieves a similar balance ratio of style and content as the LoRA-FP.
In contrast, QA-LoRA and IR-QLoRA overfit to specific style images, reflecting excessively high
CLIP-I and low CLIP-T. We also provide visualization results in Fig. 5. It can be seen that our Int-
LoRA achieves a favorable balance between style images and text prompts, whereas some existing
approaches fail, e.g., the third row and fifth column with prompt “The letter ‘G’ in [V] style”, where
the generated images almost copy the original style image.

The efficiency of IntLoRA. Although the ultimate goal of all compared methods is the quantized
diffusion models for fast inference, our IntLoRA can achieve this target with less cost. Specifically,
as shown in Tab. 4, a clear advantage of our method lies in its seamless switch between tuning and
inference, without additional PTQ. In addition, our IntLoRA is the only one that achieves INT4 type
adaptation weights, significantly reducing the storage costs when there are many downstream tasks.
Furthermore, our methods allow for weight merge using the hardware-friendly operator, naturally
enabling the merged weights still in INT4 to facilitate the employment of edge devices.

5.3 ABLATION STUDIES

In this section, we study the effectiveness of different components in the proposed IntLoRA. The
experiments are conducted with IntLoRASHIFT on the subject-driven generation with 15 subject-
prompt pairs under 4-bit weight quantization.

Contradictory aspect of auxiliary variances. In Sec. 4.3, we have theoretically pointed out that
there is a choice dilemma for σR. Here we elaborate on its effect through distribution visualization.
Specifically, we remove the VMC and use a scaling scalar to generate a too-large or too-small
auxiliary variance, followed by the log2 quantization on the adaptation term. The results are shown
in Fig. 6. On the one hand, setting σR too large can lead to a low correlation ρ(W,W −R), which
makes it hard to reconstruct W from W −R using estimator W ≈ Q(W −R) + R. On the
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Figure 6: The distribution visualization using Kernel Density Estimate (KDE) on different weight
tensors. Left: the KDE plot of pre-trained weights and estimated weights under different σR. Right:
the KDE plot of the adaptation term and the log2 bins usage with different σR.

other hand, a too small σR prevents the expectation of adaptation term converging to zero, causing
few log bins to be used. In experiments, we find that the training of both settings fails to converge.
By contrast, the proposed VMC can precisely control σR to allow most values of the adaptation
term to be zero-neighbored, facilitating more challenging log2 quantization. Moreover, it should be
noted that the too small σR can also be regarded as an approximation of direct quantization on the
zero-initialized AB, and thus the experimental results also justify the AQS for zero-initialized AB.

Table 5: Ablation on different distribution
choices of the auxiliary matrix.

settings DINO↑ CLIP-I↑ CLIP-T↑ LPIPS↑
Guassian 0.4335 0.6956 0.2492 0.8179
Cauchy 0.1367 0.5617 0.1870 0.8067
StudentT 0.2935 0.6420 0.2587 0.8048
Laplace 0.3992 0.6680 0.2548 0.8311

Distribution selection for auxiliary matrix. In the pro-
posed IntLoRA, the auxiliary matrix R plays a crucial
role in both AQS and VMC. Therefore, the distribution
shape of R can greatly influence the performance. To this
end, we ablate different distributions as the instantiation
of R and give the corresponding performances in Tab. 5.
It can be seen that the Laplace distribution performs bet-
ter than the other options. This is because a light-tailed
distribution, such as Laplace, clusters most samples around zero, which is consistent with the re-
quirement for log2-quantization. And this accurate log2-quantization further facilitates favorable
performance. Therefore, the light-tailed distribution performs experimentally better than the heavy-
tailed counterparts. For better effects, we provide the shape of different distributions in Fig. 12.
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formance under different α.

Ablation on the smoothing factor. In order to produce
quantization-friendly adaptation term, we propose the VMC which
rescales σR by rα, where r is the variance ratio σW

σR
and α is a

hyperparameter to search for the optimal control. Given r < 1
(the distribution of r is given in Fig. 10), making α < 1 further
scales up σR, which leads to lowered correlation between W and
W −R, making it difficult to recover W from W −R. Moreover,
setting α > 1 can decrease σR, making the distribution being bi-
ased according to Eq. (5). Experiments in Fig. 7 show that setting
σR slightly smaller than σW can obtain favorable performance, in-
dicating that the information loss of W has a greater impact than a biased adaptation term. In the
implementation, we chose a moderate smoothing factor α = 1.5 for the trade-off.

6 CONCLUSION

We propose IntLoRA, a novel joint adaptation and quantization framework which can address the
arithmetic inconsistency by employing integer low-rank parameters, to push the efficiency limits of
diffusion model fine-tuning. We propose the quantization-adaptation separation to allow the coex-
istence of zero-initialized gradient and quantization-friendly distribution. We further introduce the
multiplicative low-rank adaptation to achieve a decoupled quantizer of pre-trained and adaptation
weights for PTQ-free weight merge, accompanied by the variance matching control to adjust the
channel-aware variance for accurate adaptation control. Benefiting from the elegant design, we pro-
vide two variants of IntLoRA, which either use int-multiplication or bit-shifting to adapt the quan-
tized pre-trained models. Through transferring the adaptation weights to the integer arithmetic, our
IntLoRA demonstrates its effectiveness across different pre-trained models and various downstream
tasks, while exhibiting impressive efficiency across model tuning, storage, and inference.
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APPENDIX

A EVALUATION ON NATURAL LANGUAGE

In the main paper, we mainly validate the effectiveness of our IntLoRA on the image generation
tasks. In this section, we turn our focus to the natural language to give a broader view of performance
comparison. Specifically, we apply different methods to fine-tune the Llama3-8B model (Dubey
et al., 2024) and use the MetaMathQA (Yu et al., 2023) dataset for training and GSM8K (Cobbe
et al., 2021) dataset for testing. In all experiments, we fine-tune the model using the AdamW opti-
mizer for 2 epochs with the cosine learning scheduler, and the warm-up ratio of the learning sched-
uler is set as 0.005. We follow the evaluation tools in MetaMathQA, which use the Alpaca prompt
and evaluate the model in zero-shot. Due to the GPU memory limitation, we only append the LoRA
layer to the attention query and value projection matrices. The comparison results are shown in Ap-
pendix O.1. It can be seen that our IntLoRA matins stable performance when transferring to natural
language tasks. We also provide some testing cases in Appendix O for better presentation.

B INTLORA WITH ACTIVATION QUANTIZATION

We further supplement the activation quantization of our IntLoRA. In detail, we employ the simple
per-tensor Uniform Affine Quantization on the activation, without using other complicated tricks,
and find it could work well on up to W4A8 quantization setting. The results of Dreambooth fine-
tuning are shown in Tab. 7. It can be seen that our IntLoRA maintains superior performance un-
der activation quantization settings. Importantly, the addition of activation quantization allows our
IntLoRA to achieve practical inference speed-up. As for the W4A4 setup, we observe both our
IntLoRA and all other baselines fail, which suggests additional techniques are needed for lower ac-
tivation quantization bits. Considering that we mainly aim to address the challenge of arithmetic
inconsistency during weight merge, we leave further 4-bit activation quantization for future work.

C INTLORA FOR DIFFUSION MODEL QUANTIZATION

Since our IntLoRA can potentially be used in diffusion model quantization as well, we also apply
our IntLoRA to the difusion model quantization experimental settings. The experimental results are
shown in Tab. 8. It can be seen that our IntLoRAMUL achieves even better performance than the
EfficientDM (He et al., 2023) on the W4A4 quantization experimental setting. It should also be
noted that our IntLoRA only need to load the quantized model during the calibration instead of the
floating-point weights in EfficientDM, thus reducing the memory cost. The above results show that
our IntLoRA can be potentially applied to the network quantization, demonstrating the generality of
the proposed method on the diffusion quantization tasks.

D COMPARISON WITH EFFICIENTDM

In this section, we compare in detail with the EfficientDM (He et al., 2023), which employs LoRA
for the diffusion network quantization task, to provide a clearer benchmark of IntLoRA’s perfor-
mance against existing methodologies with similar strategies.

Firstly, EfficientDM is more suitable for quantization, since directly quantizing the merged weights
is sufficient given quantization aims to obtain one quantized model. For downstream task adap-
tation, where multiple quantized downstream models are required, the proposed IntLoRA is more
suitable for downstream adaptation, which allows separately quantized weights and adapters as well
as seamless weight merge. Secondly, EfficientDM focuses on the quantized merged weights, and an
obvious drawback is that it still needs to load the large FP32 weights during fine-tuning, which is
not suitable for user customization on consumer-level GPUs. For example, just loading the FP32
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Table 6: Quantitative comparison on the natural language tasks of mathematical answering.

Methods LoRA-FP QLoRA QA-LoRA IR-QLoRA IntLoRAMUL IntLoRASHIFT

#praram 1.17M 1.17M 1.18M 1.18M 1.17M 1.17M
accuracy 62.24% 64.06% 63.53% 63.00% 64.23% 64.10%

Table 7: Quantitative comparison of the weight-activation quantization setting on the Dreambooth
task. We use the average results of 15 text-subject pairs for evaluation.

methods nbits(W/A) DINO↑ CLIP-I↑ CLIP-T↑ LPIPS↓
LoRA-FP W32A32 0.4828 0.6968 0.2954 0.8076

QA-LoRA W8A8 0.4156 0.6664 0.2834 0.8086
IR-QLoRA W8A8 0.4070 0.6630 0.2841 0.8110
IntLoRAMUL W8A8 0.4498 0.6882 0.2858 0.8062
IntLoRASHIFT W8A8 0.4353 0.6842 0.2841 0.8257

QA-LoRA W4A8 0.4127 0.6897 0.2700 0.8281
IR-QLoRA W4A8 0.3722 0.6719 0.2707 0.8086
IntLoRAMUL W4A8 0.4242 0.6913 0.2710 0.8181
IntLoRASHIFT W4A8 0.4039 0.6716 0.2709 0.8147

FLUX.1-dev can consumes over 23GB GPU memory. Thirdly, each downstream task needs to store
the corresponding large quantized model when using EfficientDM for adaptation, which leads to
noticeable challenge for customized model sharing among users like Civitai. As a comparison, our
IntLoRA only need to store 1 quantized pre-training weight and per-task quantized adapter weights
to reduce storage cost.

E THE SIGNIFICANCE OF ACCELERATED TRAINING

In the downstream adaptation, since the the pre-trained weights is fixed and only small adapters
are updated during fine-tuning, it naturally rises questions of the importance of the speed-up for
the training stage in our IntLoRA. Here, we would like to point out that the original LoRA (Hu
et al., 2021) only reduces the GPU memory of gradient and optimizer states during training, and
cannot benefit the model weights. Considering that the diffusion models are getting bigger, e.g.,
just importing FLUX.1-dev to cuda can take up 23.8GB, it makes sense to reduce the size of the
weights during training. Our IntloRA only needs the quantized pre-training weights during training,
further facilitates user-customized diffusion fine-tuning on consumer-level GPUs. In detail, taking
SDXL (Podell et al., 2023) as an example, full fine-tuning SDXL consumes 59GB GPU memory, of
which 13.5GB comes from the weights. Using FP32 LoRA tuning consumes 28.38GB, indicating
30.62GB reduced gradients and optimizer states. However, this LoRA tuning still maintains the
weights in FP32. Theoretically, our IntLoRA can further reduce this 13.5GB FP32 weight to
3.375GB with the INT8 quantization. Finally, efficient training is only one of the benefits of our
IntLoRA, whose another advantage is to obtain downstream quantized models without additional
PTQ for efficient inference.

F DISCUSSION ON TRAINING EFFICIENCY

We compare the training speed of our IntLoRA against other baselines in Tab. 9. It can be seen
that our IntloRA exhibits slightly larger training costs than LoRA-FP. This makes sense due to the
fact that QAT typically consumes more cost than the common training counterpart. However, the
drawback of LoRA-FP is that it is difficult to speed up in the inference phase. Moreover, comparing
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Table 8: Quantitative comparison with EfficientDM (He et al., 2023) on diffusion model quantization
tasks. We use the ImageNet 256× 256 image generation tasks, and train the ddim step=20 LDM-4
model with 500 training epochs.

methods nbits(W/A) IS↑ FID↓ sFID precision↓ recall↑
EfficientDM W4A4 178.20 13.42 26.67 0.70 0.58
IntLoRA-SHIFT W4A4 116.50 20.20 26.79 0.63 0.58
IntLoRA-MUL W4A4 199.20 10.43 24.02 0.79 0.55

Table 9: Comparison of training efficiency with other methods.We fine-tuning the Stable Diffusion
1.5 model on the Dreambooth task. The training speed is tested on one NVIDIA 3090 GPU.

setup traing-speed GPU-usage Inference acceleration Additional PTQ

Full-finetune 0.74s/img 19.4G No Yes
LoRA-FP 0.68s/img 6.7G No Yes
QLoRA(W8-only) 0.71s/img 6.9G No Yes
QLoRA(W8A8) 0.85s/img 7.2G Yes Yes
IntLoRA(W8-only) 0.72s/img 7.1G No No
IntLoRA(W8A8) 0.87s/img 7.4G Yes No

with QLoRA, our IntloRA achieves similar training complexity, but our approach does not require
additional PTQ, facilitating user-customized local deployment.

G FURTHER EXPLANATION OF THE AUXILIARY MATRIX.

In the proposed method, the auxiliary matrix R is crucial to ensure quantization-friendly distribution
and meaningful optimization trajectories. Here, we summarize two aspects of the role of R in the
proposed method. First, R can be viewed as an initialization parameter for trainable parameters
AB. Specifically, we use R without gradient in the proposed AQS to guarantee easily quantized
adaptation distributions while guaranteeing zero-initialized gradient trajectories. Second, the pres-
ence of R in the adaptation term also implies that it can be used to control the distribution of the
adaptation term, thus allowing for more challenging quantizers, such as log2 quantization. For this,
we propose the VMC, which makes the expectation of the adaptation term converge to zero, enabling
as many log-scale buckets to be used as possible. Despite this indispensable role of R, finding the
optimal shape and variance of R remains challenging. In this work, we attempt to solve this from
an engineering perspective by ablating different distributions and the variance scales. Experimental
results demonstrate the effectiveness of this solution.

H DIFFERENCES FROM QA-LORA

In this section, we give a detailed discussion about the differences between the proposed IntLoRA
and QALora (Xu et al., 2023b). First, one of the limitations of QA-LoRA is that it requires the
pre-trained weights and the adaptation weights to share the same quantizer, which leads to a dis-
crete parameter search space, limiting the adaptation capability for downstream tasks. In contrast,
our IntLoRA ensures a more powerful adaptation through the proposed MLA which reformulates
the form from additive to multiplicative, thus allowing independent quantizers. Second, the adap-
tation weights of QALoRA are still in FP16, leading to storage cost as well as FP16 addition for
weight merge during deployment, whereas our IntLoRA only needs to store INT4 weights while
fusing weights through hardware-efficient integer multiplication or bit shifting. Third, QALoRA
requires additional group quantization in the input channel dimensions, leading to additional GEMM
core design, while our approach uses a common quantization strategy, thus facilitating practical
deployment.
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DINO score CLIP-I CLIP-T LPIPS

rank rank rank rank

Figure 8: Ablation experiments of different LoRA ranks.

I MORE IMPLEMENTATION DETAILS

For the subject-driven generation, we use the AdamW optimizer with a weight decay of 1e-2 and
fine-tune the query, key, value, and output projection layer. The learning rate is set to 6e-5. The
batch size is set to 1, and the number of training steps is 400. The rank of the LoRA is set to 4.
We adopt the prior preservation strategy as Dreambooth (Ruiz et al., 2023) to generate 200 class
images. For the controllable generation, we fine-tune the model for 11 epochs for Canny-to-Image
tasks and 20 epochs for Landmark-to-Face and Segmentation-to-Image tasks. The learning rate is
set to 1e-5 using the AdamW optimizer. The LoRA rank is set to 4. The batch size is set to 8
and the image resolution is 512 × 512 for all three tasks. For the style-customized generation, we
fine-tune the pre-trained model using the AdamW optimizer with a learning rate of 5e-5. Since it
involves a larger SDXL, we chose a relatively large LoRA rank of 64 for all compared methods,
since there is only one style image as well as the larger pre-trained parameters. We fine-tune for
500 steps with batch size 1. Similar to StyleDrop (Sohn et al., 2023), we only use one image as
the style image and find it works well. The style images and text prompts for evaluation are given
in Appendix O. The variance ratio in the variance matching control is surrogated as the value range
ratio, i.e., r = max{|max(W)|,|min(W)|}

min{|max(R)|,|min(R)|} .

J ADDITIONAL ABLATION EXPERIMENTS

Ablation on the LoRA rank. The low-rank d in LoRA is a trade-off between performance and
efficiency. A larger rank improves the adaptation ability by training more parameters but comes
with larger training and storage costs, and vice versa. Here, we give the impact of different rank
setups on performance in Fig. 8. One can see that the performance generally improves as we
increase the rank, but the rate of growth varies. For instance, the increase speed from rank=4 to
rank=8 increases inferior to the one of from rank=2 to rank=4. Moreover, increasing the rank to 16
can generally obtain better results than its lower counterpart. In practice, considering the trade-off
between performance and efficiency, we select a moderate rate rank=4.
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Figure 9: The effects of VMC for
IntLoRAMUL.

The effects of variance matching control for IntLoRAMUL.
In this work, we propose the variance matching control to ad-
just the variance of R, so that allows the log2-quantization
of the adaptation term to obtain the IntLoRASHIFT. In other
words, the VMC is primarily introduced for IntLoRASHIFT.
Despite we also apply the VMC to IntLoRAMUL, given the
IntLoRAMUL does not require such strict constraints on the
distribution shape of the adaptation term, it is interesting to in-
vestigate the influence of variance matching control on the per-
formance of IntLoRAMUL. To this end, we adjust the smooth-
ing factor α to adjust the strength of the VMC, e.g., setting α
to zero can lead to the removal of the VMC. The results of the
IntLoRAMUL under different VMC scales are shown in Fig. 9. As one can see, despite the VMC
being initially proposed for the log2-quantization, the well-structured distribution also facilitates
uniform quantization. For example, when we set the α approaching to zero, i.e. the VMC is close
to being removed, the performance of IntLoRAMUL appears similar pattern as the IntLoRASHIFT,
which suffers a significant performance drop. Moreover, the performance gains gradually converge
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Figure 11: The value ranges of different channels in the pre-trained weights.
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Figure 12: The shape of different distributions for initialing the auxiliary matrix.
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Figure 13: The distribution visualization of the original weights W, the auxiliary matrix R, and the
learned low-rank weights AB.

when the α > 1.5. In short, the VMC can not only allow the log2-quantization to work but also
improve the performance of the uniform quantization.

Distribution shape for auxiliary matrix. In Sec. 5.3, we provided different symmetric distributions
including Gaussian, StudentT, Laplace, and Cauchy. Fig. 12 gives the results of sampling from
different distributions. The Laplace distribution possesses light tails, and the shape of the distribution
is convex, i.e., f ′′(x) > 0, x ̸= 0. This unique property makes it easy to control the value of the
adaptation term to produce distributions that are friendly to log2 quantization, i.e., most samples
are clustered around the zero to use as many bins as possible. This analysis is also verified by the
experiments in Tab. 5, which shows that the Laplace distribution achieves the best performance.

The channel-wise distribution of variance ratio 
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Figure 10: The value distribution of
the channel-wise variance ratio r

Reasons behind channel-wise control in VMC. In the
main paper, we study how to control the auxiliary matrix
to produce a compatible σR by searching for the rα. As for
the variance ratio r, it is worth noting that we adopt a per-
channel scaling factor r ∈ RCout instead of the per-tensor
one. Here we elaborate on the reasons for this. As shown
in Fig. 11, we give a boxplot of the pre-trained weight W
and it can be seen that the values for each channel exhibit
different variances. Therefore, considering that the auxil-
iary matrix has a large impact on performance, we opt for
this fine-grained channel-wise control. In addition, since r
is task-agnostic, it can be computed in advance and stored
once. Finally, we give the distribution of r, and one can see that r is generally less than 1, with a
single peak and a left-skewed distribution shape.
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K IMPACTS FROM THE AUXILIARY MATRIX

In Eq. (2) of the proposed AQS, we introduce an additional auxiliary matrix R to the original pre-
trained weight W0 to achieve adaptation-quantization separation. However, this extra R potentially
introduces outliers and thus cause quantization error for W. Here, we point out that since the
proposed VMC can control the range of R through the variance scaling factor r = σW/σR, the
introduction of R in the AQS is ensured not result in additional outliers. For validation, we also
give the distribution visualization of the original W and the VMC re-scaled R in Fig. 13. It can be
seen that the range of R is effectively controlled within the range of W, thus effectively avoiding
the detrimental effect of additional outliers.

L JUSTIFICATION FOR THE VALUE ORDERS

A key assumption in the derivation for VMC is that the learned values of low-rank parameters AB
is orders of magnitude smaller than the auxiliaty matrix R. Based on this assumption we ignore
AB as an approximation. Here, we give the specific evidence for this approximation. Specifically,
we visualize the weights of the trained AB and the distribution of R, as shown in Fig. 13. It can
be seen the range of AB is constrained to [−0.0004, 0.0004], while the range of R is [−0.08, 008].
Therefore, the experimental visualization above confirms the soundness of our approximation. Since
the AB in LoRA is zero initialized, it tends to be distributed around zero with learned small values
aiming to not disturb the pre-training weights too much.

M ADVANTAGE DISCUSSION OF INTLORA

Here, we would like to discuss the advantages of our InLoRA, to highlight the contribution of this
work. First, since the downstream fine-tuning is performed on the quantized pre-trained weights,
and thus the adaptation pipeline with our IntLoRA only needs to load the quantized weights, reduc-
ing memory footprint from FP16 weights. Second, transferring the adaptation parameters to also
the INT4 arithmetic allows all weights of the model can be stored in INT4 format, reducing the
disk space for storage. Thirdly, thanks to the designed multiplicative adaptation form, our IntLoRA
enables seamless weight merge of quantized pre-trained weights and adaptation weights at test time
without additional post-training quantization, streamlining the adaptation process while alleviating
performance drop from quantization.

N LIMITATION AND FUTURE WORKS

Although the proposed IntLoRA can effectively improve the efficiency of diffusion model fine-
tuning by allowing the adaptation parameters also on the integer arithmetic, the proposed framework
can be further improved in the following aspects. First, although the trainable low-rank weights are
quantized with STE, these quantized weights are still in FP16 type during tuning to enable accurate
gradient updates. Therefore, it is promising to specifically design integer-type propagation. Despite
this seems challenging, it can further reduce the training cost and accelerate the adaptation process.
Second, although we introduce a feasible way that uses hyperparameter search of the smoothing
factor α to find a compatible σR as well as the appropriate distribution shape of R, it can be more
elegant if we can use advanced mathematical analysis techniques, such as functional analysis, to
find the statistical properties a suitable R should satisfy. Third, this work mainly focuses on the
efficient acceleration of LoRA due to its prevalence among the PEFT techniques. Applications to
other PEFT methods for hardware-efficient adaptation could be interesting future work.

O ADDITIONAL VISUALIZATION RESULTS

• Fig. 14 gives more samples on the subject-driven generation tasks.
• In Fig. 15, we give more samples of the segmentation-to-image tasks.
• In Fig. 16, we give more samples of the face landmark-to-face image tasks.
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• In Fig. 17, we give more samples of the canny edge-to-image tasks.
• Fig. 18 provides more samples of the results of the style-accustomed generation.
• In Fig. 19, we give the style images and the text prompts used for evaluation on the style

customized generation tasks.
• In Appendix O.1, we give some case studies of the mathematical question-answering task

using the fine-tuned Llama3-8B model.
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"a [V] with a city in the background"

"a [V] on the beach"

"a [V] in a chef outfit"

"a [V] with a mountain in the background"

"a [V] in a purple wizard outfit"

QLoRA QA-LoRA IR-QLoRASubject Images

QLoRA QA-LoRA IR-QLoRA Ours-MULSubject Images

"a [V] wearing a rainbow scarf"

QLoRA QA-LoRA IR-QLoRASubject Images QLoRA QA-LoRA IR-QLoRASubject Images

Ours-SHIFT

Ours-SHIFTOurs-MUL

Ours-MUL Ours-SHIFT

Figure 14: More qualitative comparison results on subject-driven generation.
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QLoRA QA-LoRA IR-QLoRA OursControlOrigin

Figure 15: More qualitative comparison results on segmentation to image task. The ‘Ours’ denotes
the IntLoRASHIFT. Zoom in for better effects.
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QLoRA QA-LoRA IR-QLoRA OursControlOrigin

Figure 16: More qualitative comparison results on landmark to face task. The ‘Ours’ denotes the
IntLoRASHIFT. Zoom in for better effects.
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QLoRA QA-LoRA IR-QLoRA OursControlOrigin

Figure 17: More qualitative comparison results on canny to image task. The ‘Ours’ denotes the
IntLoRASHIFT. Zoom in for better effects.
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LoRA-FP QLoRA QALoRA IR-QLoRA OursStyle Image

“A man riding a snow board in [V] style”

“A friendly robot in [V] style"

“The Golden Gate bridge in [V] style”

“A friendly robot in [V] style"

“A man riding a snow board in [V] style”

“The letter 'G' in [V] style”

Figure 18: More qualitative comparison results on style-accustomed generation. The ‘Ours’ denotes
the IntLoRASHIFT. Zoom in for better effects.
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"A fluffy baby sloth with a knitted hat 

trying to figure out a lap top in [V] style"

    "The Golden Gate bridge in [V] style"

  "The letter 'G' in [V] style"        "A man riding a snow board in [V] style"

"A panda eating bamboo in [V]style"

    "A friendly robot in [V] style",

Evaluation text prompt

Style images for training

Figure 19: The style images used for training and the text prompts for evaluation.
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O.1 CASES OF MATHEMATICAL QUESTION ANSWERING.

Case Study 1

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at
the farmers’ market? (Ground-truth answer is 18)

LoRA-FP Answer: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning, so she has 16 - 3 = 13 eggs left. She bakes muffins for her friends every day with
four eggs, so she has 13 - 4 = 9 eggs left. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg, so she makes 9 * $2 = $18. Therefore, Janet makes $18
every day at the farmers’ market. The answer is 18.

QLoRA Answer: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning, so she has 16 - 3 = 13 eggs left. She bakes muffins for her friends every day with
four eggs, so she has 13 - 4 = 9 eggs left. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg, so she makes 9 * $2 = $18. Therefore, Janet makes $18
every day at the farmers’ market. The answer is: 18

QA-LoRA Answer: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning, so she has 16 - 3 = 13 eggs left. She bakes muffins for her friends every day with
four, so she has 13 - 4 = 9 eggs left. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg, so she makes 9 * $2 = $18. Therefore, Janet makes $18 every day at
the farmers’ market. The answer is: 18

QA-LoRA Answer: Janet lays 16 eggs per day. She eats three for breakfast, so she has 16 -
3 = 13 eggs left. She bakes muffins with four eggs, so she has 13 - 4 = 9 eggs left. She sells
the remainder at the farmers’ market for $2 per egg, so she makes 9 * $2 = $18. Therefore,
Janet makes $18 every day at the farmers’ market. The answer is: 18

Our Answer: Janet lays 16 eggs per day. She eats three for breakfast, so she has 16 - 3 =
13 eggs left. She bakes muffins with four eggs, so she has 13 - 4 = 9 eggs left. She sells
the remainder at the farmers’ market for $2 per fresh duck egg, so she makes 9 * $2 = $18.
Therefore, Janet makes $18 every day at the farmers’ market. The answer is: 18.
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Case Study 2

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts
in total does it take? (Ground-truth answer is 3)

LoRA-FP Answer: We know that the robe takes 2 bolts of blue fiber. To find the amount
of white fiber, we can use the ratio of blue fiber to white fiber, which is 2:1. So, the amount
of white fiber is half of the blue fiber, which is 2/2 = 1 bolt. Therefore, the total number of
bolts needed is 2 + 1 = 3 bolts. The answer is 3.

QLoRA Answer: The robe takes 2 bolts of blue fiber. To find the amount of white fiber,
we can use the ratio of 1:2. Since the ratio is 1:2, we can set up the equation 1/2 * 2 = x,
where x represents the amount of white fiber. Solving for x, we get x = 1. Therefore, the
robe takes 2 bolts of blue fiber and 1 bolt of white fiber. In total, the robe takes 2 + 1 = 3
bolts of fiber. The answer is: 3

QA-LoRA Answer:The robe takes 2 bolts of blue fiber. The robe takes half that much
white fiber, which is 2/2 = 1 bolt of white fiber. So, in total, the robe takes 2 bolts of blue
fiber + 1 bolt of white fiber = 3 bolts of fiber. Therefore, the robe takes 3 bolts of fiber in
total. The answer is: 3

IR-QLoRA Answer: The robe takes 2 bolts of blue fiber. The robe takes half that much
white fiber, which is 2/2 = 1 bolt of white fiber. So, the robe takes 2 bolts of blue fiber + 1
bolt of white fiber = 3 bolts in total. The answer is: 3

Our Answer: If a robe takes 2 bolts of blue fiber, then it takes 2/2 = 1 bolt of white fiber.
So, the total number of bolts needed is 2 bolts of blue fiber + 1 bolt of white fiber = 3 bolts
in total. The answer is: 3.
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