
Skill
Pick-and-place (includes reorienting objects in place)
Pushing objects
Wiping (e.g., wiping the table with a cloth)
Sweeping (e.g., sweeping beans into a pile)
Stacking
Folding cloths
Opening and closing drawers
Opening and closing doors
Opening and closing cardboard box flaps
Twisting knobs
Flipping switches
Zipping and unzipping
Turning levers

Table 6 The full set of skills in BridgeData V2. We define a skill to be a group of trajectories that
require similar motions from the robot but may include different objects and start/end positions.

Over-the-Shoulder,
Randomized, Depth, Wrist (852)

Over-the-Shoulder,
Randomized, Wrist (2,315)

Over-the-Shoulder,
Randomized, Depth (4,250)

Over-the-Shoulder,
Randomized (13,234)

Over-the-Shoulder
Only (33,245)

Figure 6 Breakdown of the entire dataset, including the autonomously collected data, by what
camera views are included. “Over-the-shoulder” refers to the primary fixed camera, and “random-
ized” refers to the two alternative camera views that are randomized by the data collectors every
50 trajectories. “Depth”, when present, is from the same perspective as the primary fixed camera.
“Wrist” refers to the wide-angle wrist-mounted camera. More cameras were added to the hardware
setup throughout data collection, so the majority of the data only includes the primary fixed camera
view, and very little data currently includes all 4 views. However, now that the hardware is in place,
more and more data will include all 4 views as the dataset continues to grow.

A Data statistics410

We provide a full list of the skills in our dataset (following our definition of skill in Section 3.3) in411

Table 6. We provide a breakdown of which portions of the dataset include which sensors in Figure412

6.413

B Learning method implementation details414

Below we list relevant implementation details for each method. The complete set of evaluation tasks415

is shown in Figure 7.416

All the goal-conditioned methods take in both an observation and goal. The observation and goal are417

stacked channel wise before being passed into a ResNet image encoder. During training, the goal418

associated with an observation is selected by uniformly sampling an observation from the future419

timesteps in the trajectory.420

12



Seen Tasks

Unseen Tasks

Figure 7 The complete set of evaluation tasks. The seen tasks are (clockwise): sweeping beans
into a pile, putting a corn cob in a pot, opening a drawer, putting an eggplant in a pot, stacking a
block, flipping a pot upright, folding a cloth, and putting a carrot on a plate. The unseen tasks are
(left to right): putting a marker in a bowl, sweeping rice into a pile, folding a thick cloth, putting a
mushroom in a pot, putting a spoon on a cloth, and wiping the table with a cloth.

.

B.1 Goal-conditioned behavior cloning421

Our goal-conditioned policy uses 3 256-unit fully connected layers to transform the image encoding422

of the observation and goal into a robot action.423

B.2 Diffusion goal-conditioned behavior cloning424

In our implementation, we adopt the behavior cloning with diffusion strategy from the IDQL [41].425

However, we do not learn a value function. IDQL proposes an architecture using a Layer-426

Norm+ResNet backbone, designed to enhance modeling within continuous spaces. This approach427

improves behavior cloning by boosting model expressivity and mitigating outliers. We use the428

DDPM (Denoising Diffusion Probabilistic Models) style objective as introduced by Ho et al. [44].429

B.3 Action Chunking with Transformers430

We use the same ACT hyperparameters as the original paper [17] except tuning the chunk size.431

The original ACT has chunk size 100 to accommodate for high-frequency control (50Hz) and long432

trajectories (1000 steps), while in our case the trajectory is much shorter at around 50-100 steps.433

We therefore reduce chunk size to 5 and noted better performance. In addition, ACT was originally434

proposed as a single task method; we modify ACT to make it goal-conditioned. The ACT policy is435

trained on a consumer grade workstation with 1x Nvidia 2080Ti GPU for 3 days.436

B.4 Contrastive RL437

Our implementation of contrastive RL mostly follows the design decisions described in [47] except438

for the following changes. First, given the observation and goal images, we feed them separately439

through a ResNet-34 encoder instead of a 3-layer CNN image encoder to get output encodings.440

Those image encodings then pass through two MLPs to get representations of the observation and the441

goal. Second, we share the ResNet-34 encoder between the value function and the policy. Intuitively,442

this encourages sharing of the causal information learned by the representations and speeds up443

learning. This ResNet backbone helps the method to consume large amounts of training data. Third,444

we increase the GCBC regularization coefficient to 0.2 to avoid sampling out-of-distribution actions445

and use the same batch size as other methods to make fair comparisons. Our contrastive RL objecive446

retains the temporal-difference (TD) style used in [46].447

B.5 Language-conditioned behavior cloning448

Our implementation of LCBC uses a ResNet-34 with FiLM conditioning. The language instruction449

is first encoded with a frozen MUSE encoder and passed through 2 fully connected layers. The image450

observation is then passed into the ResNet, which is conditioned on the language embedding using451

FiLM layers. FiLM layers are applied at the end of every ResNet block to condition on language452

throughout the network. Finally, the image encoding is passed into a fully connected network to453

13



predict the action distribution. We predict a multivariate Gaussian for the action with fixed standard454

deviations.455

The policy is trained on batch sizes of 128 and using the Adam optimizer with a learning rate of456

3e-4. We use a linear warmup schedule with 2000 steps and train for 100k steps.457

B.6 RT-1458

We use the same hyper-parameters as the original RT-1 paper, except for increasing the sequence459

length of the transformer from 6 to 15, to accommodate for the longer episode length. We scale each460

action dimension to range -1 and 1 and use a vocabulary size of 256 to tokenize the actions. All461

other design choices and hyper-parameters remain the same as in the RT-1 paper.462

C Hardware setup463

We use an Intel RealSense D435 RGBD camera as a fixed over-the-shoulder camera view and464

two Logitech C920 webcams to capture alternative camera views that are randomized during data465

collection. For the wrist camera, we designed a custom 3D printed mount to attach a Raspberry Pi466

camera module to the gripper. We used a Meta Quest 2 VR headset to teleoperate the robot.467

14


	Data statistics
	Learning method implementation details
	Goal-conditioned behavior cloning
	Diffusion goal-conditioned behavior cloning
	Action Chunking with Transformers
	Contrastive RL
	Language-conditioned behavior cloning
	RT-1

	Hardware setup

