
Adversarial Reweighting for Partial
Domain Adaptation
Supplementary Material

Xiang Gu, Xi Yu, Yan Yang, Jian Sun, and Zongben Xu
School of Mathematics and Statistics, Xi’an Jiaotong University, P.R. China

{xianggu,ericayu,yangyan92}@stu.xjtu.edu.cn
{jiansun,zbxu}@xjtu.edu.cn

Supp. A Methodology Comparisons of Feature-Adaptation-Based PDA
Methods.

In this section, we compare the methodologies of the several feature-adaptation-based partial domain
adaptation methods, as mentioned in Sect. 2. The losses of some of state-of-the-art PDA methods
(e.g., SAN [1], PADA [2], ETN [3], DRCN [9], BA3US [10], TSCDA [12] and IWAN [15]) contain
three terms, including the (reweighted) cross-entropy loss on source domain data, the conditional loss
on target domain data, and the reweighted distribution alignment loss. The PDA methods [1, 2, 3,
9, 10, 12, 15] generally use a feature extractor F to extract the features of data and a classifier C to
predict class labels. The general loss can be written as

min
F,C

1∑ns

l=1 wl

ns∑
i=1

wiJ (C(F (xs
i)), y

s
i) + Dist(S, T ;w) +

1

nt

nt∑
j=1

H(C(F (xt
j))), (S-1)

where J (·, ·) is the cross-entropy, H(·) is the conditional entropy, Dist(PS ,PT ;w) is the reweighted
distribution alignment loss for the target domain data and the reweighted source domain data, designed
based on a distribution distance metric. w = (w1, w2, · · · , wns

)T denotes the vector of the source
domain data weights. These PDA methods are different in the following four aspects, including
whether to reweight the importance of source data in the cross-entropy loss, the metric of adopted
distribution distance, the strategy to obtain the source data weights, and whether to utilize the
conditional entropy loss. The comparisons of the typical PDA methods are given in Table S-1.

Table S-1: Comparisons of losses of feature-adaptation-based partial domain adaptation methods.

Method Reweighting in CE Reweighting Strategy Distance Metric Conditional Entropy
SAN [1] ✗ Classifier JS ✓
IWAN [15] ✗ Discriminator JS ✓
PADA [2] ✓ Classifier JS ✗
ETN [3] ✓ Discriminator JS ✓
TSCDA [12] ✗ Classifier MMD ✗
DRCN [9] ✗ Classifier MMD ✗
BA3US [10] ✓ Classifier JS ✓

Distribution distance metric. The widely used distribution distances include the Maximization
Mean Discrepancy (MMD) and the Jensen–Shannon (JS) divergence. The MMD is defined as

MMD(µ, ν) = ∥Ex∼µ[ϕ(x)]− Ex′∼ν [ϕ(x
′)]∥H , (S-2)

where H is the Reproducing Kernel Hilbert Space and ϕ(·) : Rd → H is the feature map. Minimizing
the MMD is to match the kernel mean embedding of distributions in the Reproducing Kernel Hilbert

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Space. The JS divergence satisfies

JS(µ, ν) ∝ max
D

Ex∼µ [logD(x)] + Ex′∼ν [log(1−D(x′))] . (S-3)

Minimizing the JS divergence by F is equivalent to the adversarial training on F and D as in the
Generative Adversarial Network [5].

Strategies for designing the source data weights. The source data weights are designed based on
the output of classifier C [1, 2, 9, 10, 12, 14] or discriminator D [3, 15]. If the strategy is based on
the classifier, the weight of source data (xs

i , y
s
i) is defined by the average predicted probability for

the category of ysi on the target domain data, i.e.,

wi ∝ pys
i
, p =

1

nt

nt∑
j=1

C(F (xt
j)), (S-4)

where pys
i

is the ysi -th element of vector p. If the strategy is based on the discriminator D that is
trained to predict the source (resp. target) domain label 1 (resp. 0), the weight of (xs

i , y
s
i) is defined

by the predicted probability of xs
i belonging to the target domain by

wi ∝ 1−D(F (xs
i)). (S-5)

Supp. B Detailed Results for Fig. 1(b)

We have reported the average classification accuracy over all tasks on each dataset in Fig. 1(b) of the
paper. We now additionally report the detailed classification accuracies for all tasks on each dataset
in this section. The detailed classification accuracies on Office-Home dataset and DomainNet dataset
are shown in Tables S-2 and S-3, respectively. The detailed classification accuracies on Office-31,
ImageNet-Caltech, and VisDA-2017 are shown in Table S-4.

Table S-2: Accuracy (%) comparisons for different reweighted distribution alignment losses and the
baseline (w/o Align) for PDA on Office-Home dataset.

Alignment lossAr→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→Pr Avg
w/o Align 54.03 73.61 83.27 69.51 67.56 77.75 69.51 53.73 83.38 74.56 59.34 82.41 70.72
MMD 57.31 73.11 84.59 69.70 67.17 78.63 69.79 56.36 85.15 75.11 61.61 81.79 71.69
PADA 55.94 68.52 82.27 68.23 64.03 76.15 67.68 52.84 83.38 74.38 57.31 81.12 69.32
BAA 54.57 73.17 84.48 69.79 67.39 79.85 69.24 53.25 84.59 76.31 59.82 82.69 71.26

Table S-3: Accuracy (%) comparisons for different reweighted distribution alignment losses and the
baseline (w/o Align) for PDA on DomainNet dataset.

Method C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg
w/o Align 50.14 64.05 59.81 65.26 76.12 69.5 75.54 69.74 68.55 50.63 54.95 54.44 63.23
MMD 49.95 59.18 56.71 65.11 75.2 70.33 76.01 71.16 70.14 50.28 52.17 57.2 62.79
PADA 39.43 56.49 48.89 54.21 68.41 63.19 72.71 68.27 64.77 39.63 41.36 46.93 55.36
BAA 42.93 57.64 53.75 59.62 73.45 68.51 75.12 71.11 67.16 46.04 46.64 60.39 60.20

Table S-4: Accuracy (%) comparisons for different reweighted distribution alignment losses and the
baseline (w/o Align) for PDA on Office-31, ImageNet-Caltech, and VisDA-2017.

Method
Office-31 ImageNet-Caltech VisDA-2017

A→D A→W D→A D→W W→A W→D Avg C→I I→C Avg R→S S→R Avg
w/o Align 90.45 87.8 94.68 100.0 94.36 98.09 94.23 77.74 77.82 77.78 69.00 82.32 75.66
MMD 90.45 88.81 93.95 100.0 94.26 98.09 94.26 77.93 81.06 79.50 54.73 38.00 46.37
PADA 90.45 87.8 94.36 100.0 94.15 98.09 94.14 75.26 75.37 75.32 65.93 57.44 61.69
BAA 91.72 89.15 95.51 100.0 94.99 98.09 94.91 77.6 81.83 79.72 71.33 48.38 59.86

2

Supp. C Details for Computing the Wasserstein Distance

This section illustrates the details for computing the Wasserstein distance discussed in Sect. 3.2 of the
paper. To compute the following approximation of the dual form of Wasserstein distance

W (µ, ν) ≈ max
{θD:∥D(·;θD)∥L≤1}

Ex∼µ[D(x; θD)]− Ex′∼ν [D(x′; θD)], (S-6)

we utilize the gradient penalty technique as in [6] to enforce the constraint in Eq. (S-6). Hence,

θ∗D = argmax
θD

Ex∼µ[D(x; θD)]− Ex′∼ν [D(x′; θD)]− Ex̃∼P̃ (µ,ν)[(∥∇x̃D(x̃)∥ − 1)2], (S-7)

where P̃ (µ, ν) denotes the samples uniformly along lines between pairs of points sampled from
distributions µ and ν. Equation (S-7) can be solved using the gradient-based optimization algorithm,
e.g., Adam algorithm [8]. With Eq. (S-7), the Wasserstein distance can be approximated by

W (µ, ν) ≈ Ex∼µ[D(x; θ∗D)]− Ex′∼ν [D(x′; θ∗D)]. (S-8)

Supp. D Pseudo-Code of Training Algorithm

Algorithm 1 presents the pseudo-code of our training algorithm in Sect. 3.3 of the paper.

Algorithm 1 Training Algorithm.
Input: Datasets S and T ; Total training steps Nsteps

Output: Trained network parameters θF , θC
1: S ′ = S
2: Initialize w by wi = 1, i = 1, 2, · · · , |S′|
3: for k ∈ {0, 1, · · · , Nsteps} do
4: Sample a mini-batch data (Xs, Ys) and Xt from S ′ and T , respectively
5: Update θF and θC with the loss in Eq. (1) computed on (Xs, Ys) and Xt, using the SGD
6: if k%M = 0 and k > 0 then
7: if |S| > 105 then
8: Randomly select N samples from S to construct S ′

9: end if
10: Extract features for all training data in both S ′ and T
11: Train θD as in Eq. (S-7) with µ = PS′ and ν = PT
12: while True do
13: Set ρ = ρ0

14: Solve Eq. (5) to update w and compute Aρ

15: if Aρ > Aup then
16: Set ρ = cρ
17: else
18: if Aρ < Alow then
19: Set ρ = ρ/c
20: else
21: Break
22: end if
23: end if
24: end while
25: end if
26: end for

Supp. E Full Implementation Details.

The full implementation details are provided in this section. We implement our method using
Pytorch [11] on a Nvidia Tesla v100 GPU. For the feature extractor F , we use the ResNet-50 [7]
pre-trained on ImageNet [13], which excludes the last fully-connected layer. For the discriminator D,
we use the same architecture with [4] (three fully connected layers with 1024, 1024 and 1 nodes),

3

excluding the last sigmoid function. We use the SGD algorithm with momentum 0.9 to update θF and
θC . The learning rate of θC is ten times that of θF . θD is updated by the Adam [8] algorithm with
learning rate 0.001. Following [4], we adjust the learning rate η of θC by η = 0.01

(1+10p)−0.75 , where
p is the training progress linearly changing from 0 to 1. We set the batchsize to 36, M = 500, and
N = 36M . In the adaptation tasks with large-scale source (e.g., task S→R on VisDA-2017 dataset,
and all the tasks on ImageNet-Caltech and DomainNet datasets), we sample the mini-batch source
data according to the learned weights (using a weighted random sampler) to calculate the classification
loss. We find this strategy is more stable than the strategy that reweights the classification loss for
each data in the uniformly sampled mini-batch, on these tasks.

Supp. F Justifications on the Convergence of Training Algorithm

This section provides more evidence for justifying the convergence of the training algorithm, which
is the supplementary material to the discussion of convergence in Sect. 4.2 of the paper. We plot the
training losses in Eq. (1), the approximated distance in Eq. (2), and the relative difference of weights
in Fig. 1. The relative difference is ∥∆wt∥

∥wt∥ , where ∆wt = wt+1 −wt, and wt is the value of the
weights in the t-th iteration of the alternate training algorithm.

0 1 2 3 4 5
Training Steps (x1k)

0

1

2

3

4

Lo
ss

Cross-Entropy
Conditional Entropy

(a)

2 4 6 8 10
Iteration

−5

−3

−1

1

D
is
ta
nc
e

(b)

1 2 3 4 5 6 7 8 9
Iteration

0.3

0.6

0.9

1.2

‖Δ
w

t ‖/
‖w

t ‖

(c)

0 2 4 6 8
Training Steps (x1k)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Cross-Entropy
Conditional Entropy

(d)

000 4444 8888 12121212 16161616 20
Iteration

−5

−3

−1

1

D
is
ta
nc
e

(e)

000 4444 8888 12121212 16161616
Iteration

0.4

0.9

1.4

1.9

2.4

‖Δ
w

t ‖/
‖w

t ‖

(f)

0 2 4 6 8 10
Training Steps (x1k)

0

1

2

3

4

5

Lo
ss

Cross-Entropy
Conditional Entropy

(g)

000 4444 8888 12121212 16161616 2020
Iteration

−5

−3

−1

1

3

5

D
is
ta
nc
e

(h)

000 4444 8888 12121212 16161616
Iteration

0.4

0.9

1.4

1.9

2.4

‖Δ
w

t ‖/
‖w

t ‖

(i)

Figure 1: The training losses (a, d, and g), the approximated distance (b, e, and h), and the relative
difference of weights (c, f, and i) in tasks of Ar→Cl on Office-Home (a-c), S→R on VisDA-2017
(d-f) and C→P on DomainNet (g-i).

In Figs. 1(a), 1(d), and 1(g), the training losses of our approach decrease stably and converge as
the training processes. The fluctuation of the approximated distances in Figs. 1(b), 1(e), and 1(h),

4

and the non-zero value of ∥∆wt∥
∥wt∥ in Figs. 1(c), 1(f), and 1(i) may be mainly because that the feature

extractor is optimized by the SGD with approximated gradients over mini-batch.

Supp. G Details for Verifying the Robustness of AR to Weight Noise

To verify the robustness of AR w.r.t. weight noise, we conduct simulation experiments for our method
under different noise levels. Specifically, we first obtain the source data weights wi, i = 1, · · · , ns,
through our adversarial reweighting model. For the noise level p ∈ [0, 1], we simulate the weight of
the i-th sample that belongs to source-only classes by pwi/

∑
j I(yj ∈ Ys\Yt)wj , for i such that

i ∈ Ys\Yt (i.e., the i-th source sample that belongs to source-only classes is assigned with noisy
weight in proportional to the weight learned by our adversarial reweighting model). Similarly, the
i-th sample that belongs to source-shared classes is assigned noisy weight by (1− p)wi/

∑
j I(yj ∈

Yt)wj , for i such that i ∈ Yt. The results are reported in Fig. 4(b) in the paper.

Supp. H Visualization of Learned Weights

We visualize the learned weights of source domain data in Fig. 2. Form Fig. 2, we can observe that
the source data distant from target domain get smaller weights.

(a) Ar→Cl (65→25) (b) S→R (12→6)

Figure 2: The learned weights of source data in tasks of Ar→Cl (a) and S→R (b). In both Figs. (a)
and (b), the left figure plots the learned source (blue) and target (brown) features. The right figure
plots the weighted source (blue) features and target (brown) features, where the source data points
with more clear blue color are with larger weights.

References
[1] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Partial transfer learning

with selective adversarial networks. In CVPR, 2018.
[2] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang. Partial adversarial domain

adaptation. In ECCV, 2018.
[3] Zhangjie Cao, Kaichao You, Mingsheng Long, Jianmin Wang, and Qiang Yang. Learning to

transfer examples for partial domain adaptation. In CVPR, 2019.
[4] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.

In ICML, 2015.
[5] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

[6] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In NeurIPS, 2017.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

5

[9] Shuang Li, Chi Harold Liu, Qiuxia Lin, Qi Wen, Limin Su, Gao Huang, and Zhengming Ding.
Deep residual correction network for partial domain adaptation. IEEE Trans PAMI, In press,
2020.

[10] Jian Liang, Yunbo Wang, Dapeng Hu, Ran He, and Jiashi Feng. A balanced and uncertainty-
aware approach for partial domain adaptation. In ECCV, 2020.

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS, 2019.

[12] Chuan-Xian Ren, Pengfei Ge, Peiyi Yang, and Shuicheng Yan. Learning target-domain-specific
classifier for partial domain adaptation. IEEE TNNLS, 32(5):1989–2001, 2020.

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 115(3):211–252, 2015.

[14] Junchi Yan, Zhongliang Jing, and Henry Leung. Discriminative partial domain adversarial
network. In ECCV, 2020.

[15] Jing Zhang, Zewei Ding, Wanqing Li, and Philip Ogunbona. Importance weighted adversarial
nets for partial domain adaptation. In CVPR, 2018.

6

	Methodology Comparisons of Feature-Adaptation-Based PDA Methods.
	Detailed Results for Fig. 1(b)
	Details for Computing the Wasserstein Distance
	Pseudo-Code of Training Algorithm
	Full Implementation Details.
	Justifications on the Convergence of Training Algorithm
	Details for Verifying the Robustness of AR to Weight Noise
	Visualization of Learned Weights

