Exploring Learnability in Dynamical Stochastic Networks: A Field-Theoretic Approach
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Introduction Intelligent Field Theory Numerical Simulations
5 o1 Stochastic Network We use the theory of objective-driven dynamical e Task: learn the XOR operation.
ynamical Stocndstic NETWOrsS stochastic fields, also referred to as intelligent fields [1]. || ¢« The network consists of 13 binary neurons
A network of stochastically evolving nodes time e FEach connected to two other neurons

Each neuron has its own state

Each neuron interacts with its neighbors

It may receive input or generate output signals

Local evolution and local learning rule t' =t + At

* When an input is given to two neurons, the network
runs for 30 steps, after which the environment reads
the output from a node to check whether it matches
the result of the XOR operation.
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* Field configuration w; local configuration w(t, x)
* Evolving probability distribution of the field
configurations, i.e., “superposition” |p) € H
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How can individual neurons, with a local learning rule, * Evolution governed by infinitesimal generators G  0.025
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efficiently achieve a given global objective: a‘(p) = G|o) o
 The G = )., G(x) isthe sum of local generators 01
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Activation Probability

* Challenge 1: Theoretical Modeling.
» To understand and analyze the learning in the
stochastic dynamical system

* There also is a path integral formalism
* The objective propagation is modeled by an
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Regime of Optimal Learning Regime of Rigidity

Chall 2. Credit Acsi operator called objective propagator: Infarmation Betantion
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