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ABSTRACT

Transfer learning with a small amount of target data is an effective and common
approach to adapting a pre-trained model to distribution shifts. In some situations,
target data labels may be expensive to obtain, so we may only have access to a
limited number of target data points. To make the most of a very small target
dataset, we propose a lightweight, sample-efficient approach that learns a diverse
set of features and adapts to a target distribution by interpolating these features.
Our approach, PROJECT AND PROBE (PRO2), first learns a linear projection that
maps a pre-trained embedding onto orthogonal directions while being predictive
of labels in the source dataset. The goal of this step is to learn a variety of predic-
tive features, so that at least some of them remain useful after distribution shift.
PRO2 then learns a linear classifier on top of these projected features using a small
target dataset. Theoretically, we find that PRO2 results in more sample-efficient
generalization by inducing a favorable bias-variance tradeoff. Our experiments
on four datasets, with multiple distribution shift settings for each, show that PRO2

improves performance by 5-15% when given limited target data compared to prior
methods such as standard linear probing.

1 INTRODUCTION

Machine learning models can face significant challenges when there is a distribution shift between
training and evaluation data. A model trained on a specific source dataset may not perform well
when deployed on a target domain with a distribution of inputs that differs significantly from the
source domain. One common and reliable approach for adapting to distribution shifts is fine-tuning
a trained model on a small amount of labeled data from the new target domain. However, in some
situations, target data labels may be expensive to obtain, which limits the number of available labeled
datapoints for fine-tuning. As an example, a hospital may have imaging software that slightly differs
from what was used for dataset collection, but they may not be able to acquire many new labeled
samples. In such conditions, conventional fine-tuning approaches may overfit to the small target
dataset and distort the information learned during initial training. Therefore, we require a method
that can reliably extract information from the new target domain with less overfitting.

Recent works have demonstrated the effectiveness of re-training a final linear head using target data
for adapting to distribution shifts due to spurious correlations or domain shift (Rosenfeld et al.,
2022; Kirichenko et al., 2022; Mehta et al., 2022). However, it is unclear whether this standard
approach of re-training a linear layer is the most data-efficient method to adapt pre-trained features
to various target distributions. While versatile, feature embeddings may not necessarily contain the
most suitable set of features for adapting to target distributions: they may also contain redundant,
non-predictive, or noisy information. Our primary insight is that the key to more sample-efficient
adaptation to target domains lies in starting with a compact and diverse set of useful features. Each
feature in this set should not only be predictive, but also hold unique information distinct from others
inside the set. We leverage source data, which is substantially more abundant than target data, in
performing this selection of features for target adaptation.

We propose PROJECT AND PROBE (PRO2), a simple and sample-efficient method for adapting to
unknown target distributions. PRO2 first learns a projection of pre-trained embedding vectors, which
is optimized to extract a diverse set of features that are each predictive of labels. More specifically,
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Figure 1: The Project and Probe (PRO2) framework for adapting to different target distribu-
tions. (a) We first use a large source dataset to project pre-trained feature embeddings onto a set
of predictive features while enforcing orthogonality. (b) For a new target distribution, we learn a
linear layer on top of the projected features. This step adaptively chooses features in a data-efficient
manner.

we first use a source dataset to project pre-trained feature embeddings onto a smaller set of pre-
dictive features. We enforce pairwise orthogonality among all features, thereby ensuring that each
projected dimension carries unique information not present in others. We expect this learned feature
space to compactly contain a diverse set of predictive features while discarding information that is
redundant or not predictive on the task. PRO2 then uses the reduced set of features as a basis space
for adaptation. Specifically, we fit a linear head on top of the projected embedding using labeled
target data. Both the linear projection and the linear head require minimal computational overhead,
making PRO2 a practical method for adapting to new target distributions. Fig. 1 shows a visual
summary of PRO2.

To support our approach, we provide a theoretical analysis, in both a general setting with minimal
distribution assumptions as well as the more specific setting of a shifted homoscedastic Gaussian
model, showing how PRO2 learns a projection matrix that results in better generalization due to a
favorable bias-variance tradeoff. From this analysis, PRO2 improves sample efficiency because it
can learn useful, diverse features so that it is more likely to better recover the important directions
for adaptation with a smaller projection dimension, allowing us to combat the variance introduced
by a very small target dataset while maintaining low bias. We conduct experiments on a variety of
distribution shift settings across 4 datasets. We find that standard linear probing, which is the default
method used by prior works, is not the most data-efficient adaptation approach. Using PRO2, i.e.
projecting with source data onto an informative feature-space basis and probing with target data,
improves performance by 5-15% in few-shot adaptation to new target distributions.

2 RELATED WORK

Robustness and zero-shot generalization. Many prior works aim to improve robustness to various
distribution shifts (Tzeng et al., 2014; Ganin et al., 2016; Arjovsky et al., 2019; Sagawa et al., 2020;
Nam et al., 2020; Creager et al., 2021; Liu et al., 2021; Zhang and Ré, 2022). Additionally, prior
works have studied how to adapt pre-trained features to a target distribution via fine-tuning Oquab
et al. (2014); Yosinski et al. (2014); Sharif Razavian et al. (2014). Such fine-tuning works typically
frame robustness to distribution shift as a zero-shot generalization problem Kornblith et al. (2018);
Zhai et al. (2019); Wortsman et al. (2022); Kumar et al. (2022), where the model is trained on source
and evaluated on target. Both of the above classes of approaches fundamentally cannot handle the
problem settings we consider, where a single function is insufficient for achieving good performance
on different distributions. In this paper, we evaluate on a variety of test distributions, some of which
are mutually exclusive, and it is therefore crucial to perform adaptation on the target distribution.

Adapting to distribution shifts. Recent works have proposed various methods for adapting models
at test time with some labeled target data Sun et al. (2020); Varsavsky et al. (2020); Iwasawa and
Matsuo (2021); Wang et al. (2020); Zhang et al. (2021); Gandelsman et al. (2022); Lee et al. (2022a).
In particular, given a feature embedding produced by a pretrained network with sufficient expressiv-
ity, training a final linear head, also known as linear probing, suffices for adapting to datasets with
spurious correlations Kirichenko et al. (2022); Mehta et al. (2022); Izmailov et al. (2022) as well
as in the setting of domain generalization Rosenfeld et al. (2022). As detailed further in Sec. 3, we
specifically focus on scenarios in which we have very little target data (only 4∼ 256 datapoints). We
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find that in this setting, training a final linear head in the default manner is not the most data-efficient
way to adapt. PRO2, which breaks this training down into 2 steps, is able to more effectively extract
useful features and interpolate between them for varying target distributions, leading to improved
sample efficiency with limited target data.

Learning diverse features for spurious datasets. Prior works have explored learning diverse or
orthogonal features in standard supervised learning settings (Bansal et al., 2018; Xie et al., 2017b;a;
Laakom et al., 2023b; Cogswell et al., 2015; Laakom et al., 2023a; Zbontar et al., 2021), and we
show diversification can lead to more sample efficient adaptation to distribution shifts. Neural net-
works tend to be biased towards learning simple functions that rely on shortcut features (Arpit et al.,
2017; Gunasekar et al., 2018; Shah et al., 2020; Geirhos et al., 2020; Pezeshki et al., 2021; Li et al.,
2022; Lubana et al., 2022). To better handle novel distributions, it is important to consider the entire
set of functions that are predictive on the training data (Fisher et al., 2019; Semenova et al., 2019;
Xu et al., 2022). Recent diversification methods for adaptation discover such a set (Teney et al.,
2022; Pagliardini et al., 2022; Lee et al., 2022b). The latter two methods use additional assump-
tions such as unlabeled data. With a similar motivation to ours, Teney et al. (2022) penalizes the
similarity between different features, but does so with an additional loss term instead of explicitly
enforcing orthogonality. We observe that this implementation detail matters in Sec. 6, where PRO2

outperforms Teney et al. (2022). A concurrent work (Morwani et al., 2023) also proposes an orthog-
onal projection method to learn diverse classifiers. However, the Probe step of PRO2 additionally
interpolates between the orthogonal features, and we provide theoretical and empirical analysis of
how distribution shift severity affects sample efficiency during probing.

Compression & feature selection. In aiming to extract important features and discarding repetitive
information, PRO2 is related to work on compression May et al. (2019) and information bottle-
necks Tishby et al. (2000); Alemi et al. (2016). Our method is also closely related to methods
that learn projections such as principal component analysis (PCA) and linear discriminant analysis
(LDA). Beyond these representative methods, there is an immense body of work on feature selec-
tion (Dash and Liu, 1997; Liu and Motoda, 2007; Chandrashekar and Sahin, 2014; Li et al., 2017)
and dimensionality reduction (Lee et al., 2007; Sorzano et al., 2014; Cunningham and Ghahramani,
2015). Among all projection-based methods, LDA is the most related to ours, but it only learns
the single most discriminative direction. In Corollary 9, we show that PRO2 with dimensionality
d = 1 provably recovers the LDA direction in a shifted homoscedastic Gaussian model, and that
using higher values of d is critical in adapting to higher degrees of distribution shift. Generally,
most methods (including LDA) operate in the setting without distribution shift.

3 ADAPTATION TO DISTRIBUTION SHIFT

We now describe our problem setting, where the goal is to adapt a model so as to provide an accurate
decision boundary under distribution shift given a limited amount of target distribution information.
We consider a source distribution pS(x, y) and multiple target distributions p1T (x, y), p

2
T (x, y), . . ..

The source dataset DS ∈ (X × Y)N is sampled from the source distribution pS . We evaluate
adaptation to each target distribution piT given a small set of labeled target data Di

T ∈ (X × Y)M ,
where M ≪ N so the model must learn from both the source and target data for best performance.
We measure the post-adaptation average accuracy of the model on a held-out target dataset from the
same distribution piT .

We note that this setting differs from the setting studied in prior works on spurious correla-
tions (Sagawa et al., 2020), which train a model only on source data DS and evaluate the model’s
performance on the hardest target distribution (i.e., worst-group accuracy). This is also different
from the setting used in fine-tuning methods for zero-shot generalization (Wortsman et al., 2022;
Kumar et al., 2022): such methods fine-tune a pretrained model on source data DS and directly
evaluate performance on target data Di

T without any exposure to labeled target data. Compared to
these zero-shot evaluation settings, we argue that a small amount of target data may realistically
be required to handle the arbitrary distribution shifts that arise in the real world. Target data can
be an effective point of leverage because it can be available or easy to collect, and we find that
even a small dataset can reveal a lot about what features are effective in the target distribution. Our
problem setting of adapting with target data has been used in some recent works (Kirichenko et al.,
2022; Rosenfeld et al., 2022; Izmailov et al., 2022; Lee et al., 2022a), but we specifically focus on
the setting in which we only have access to a very small target dataset, i.e., M ≪ N .
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Algorithm 1 Project and Probe

Input: Source data DS , Target data DT ,
Backbone f : X →D

Initialize Π :D→d #Project with source
for i in 1 . . . d do
Πi ← argminLS(Πi(f(x)), y)

subject to Πj ⊥ Πi for all j < i
end for
Initialize g :d→ Y #Probe with target
g ← argminLT (g(Π(f(x))), y)

Figure 2: Visualization of PRO2: (a) orthog-
onal decision boundaries learned during the
Project stage, and (b) the interpolated classi-
fier learned during the Probe stage.

4 PROJECT AND PROBE

We now describe PRO2, a framework for few-shot adaptation to distribution shifts. PRO2 is com-
posed of two steps: (1) learn a projection Π that maps pre-trained embeddings onto orthogonal
directions, and (2) learn a classifier g using projected embeddings.

Before Step (1), we use a pre-trained backbone model f : X → RD to map the datapoints to D-
dimensional embeddings. This backbone model extracts meaningful features from the raw inputs,
resulting in a low-dimensional embedding space, for example 224× 224× 3 images to D = 1024-
dimensional embeddings.

Step 1: Project with source. Recall that we operate in the few-shot setting, where we may have
fewer target datapoints than even embedding dimensions (M < D). Intuitively, we would like to
select a suitable decision boundary from a set of decision boundaries that worked well in the source
domain. If this set is discrete, that might correspond to training some sort of diversified ensemble of
linear classifiers on top of the features, a strategy adopted in some prior works (Teney et al., 2021;
Lee et al., 2022b; Pagliardini et al., 2022).

However, in general, we might need the expressive power of a continuous set of decision boundaries
to adapt to the target domain, and we can construct this set by interpolating over a basis of decision
boundaries. Mathematically, this is identical to selecting a set of linear features. Thus, the question
we must answer is: which set of linear features of the D-dimensional feature space should we retain?
First, it should be clear that the features should form an orthogonal basis, as otherwise they will be
redundant. Second, the features should be discriminative, in the sense that they are sufficient to solve
the desired prediction task. Lastly, there should not be too many of them, since the more features we
include (i.e., the larger the rank of the basis we learn), the more samples we’ll need from the target
domain to find the best decision boundary in the corresponding set.

To learn a feature space that satisfies these desiderata, we parameterize a linear projection Π : RD →
Rd that maps the embeddings to a reduced space (d ≤ D). Specifically, we use the source data to
learn a complete orthonormal basis for the embedding space Π1,Π2, . . . ,Πd ∈D, by learning each
basis vector with the constraint that it is orthogonal to all vectors before it:

Πi = argminE(x,y)∼DS
L(Πi(f(x)), y) s.t. Πj ⊥ Πi for all j < i. (PRO2)

Note that this induces a natural ranking among the basis vectors. This collection of orthogonal
vectors constitute the rows of our projection matrix Π. In our implementation, we do projected
gradient descent, enforcing orthogonality using QR decomposition on the projection matrix after
every gradient step. See Appendix B for a short PyTorch implementation.

Empirically and theoretically, we find that it is particularly beneficial to use a small d ≪ D, even
d = 1, in when adapting to small distribution shifts and use larger d for more severe distribution
shifts.

Step 2: Probe with target. After learning Π, we learn a classifier g : Rd → Y that maps the
projected embeddings to the target labels:

g = argminE(x,y)∼DT
L(g(Π(f(x))), y).
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Since the projection Π was optimized to a diverse set of the most discriminative features for the
source data, we expect the initial projected features to be particularly predictive when the distribution
shift is relatively small.

In summary, PRO2 is a simple and lightweight framework that addresses the problem of few-shot
adaptation in the presence of distribution shifts. We summarize its overall structure in Algorithm 1
and show a simplified 3D visualization in Fig. 2. In our implementation, we use cached embeddings
for all source and target datapoints, such that feeding raw inputs through f is a one-time cost that
is amortized over epochs and experiments, making our framework scalable and efficient. As an
orthogonal improvement to our work, one could additionally fine-tune the backbone network on
source data. In Sec. 5, we theoretically analyze the properties of the projection and classifier learned
by PRO2. We then empirically evaluate PRO2 on a variety of distribution shifts and publicly available
backbone networks in Sec. 6.

5 ANALYSIS

In this section, we present a theoretical analysis of PRO2, aiming to understand how our proposed
orthogonal feature selection procedure can lead to sample-efficient adaptation under distribution
shifts. Intuitively, the more shift we can expect, the more features we should need to adapt to it,
which in turn requires more samples during adaptation (to fit the features accurately). However, the
choice of how we extract features determines how the sample complexity grows under distribution
shift: while large shifts may still require many features, if the features are prioritized well, then
smaller shifts might require only a very small number of features, and thus require fewer samples.

Given M target samples, in our analysis we first show that using (fewer) d features leads to lower
variance, which scales as O(d/M), as opposed to O(D/M). But this improvement comes at a cost
in bias, which in some cases scales as O(

√
D − d · KL(pS ||pT )). Note that this term grows with

the amount of shift between the source pS and target pT distributions. In Sec. 5.1, we first analyze
the specific features learned by PRO2 with minimal distributional assumptions. Then, in Sec. 5.2,
we apply our general results to a shifted homoscedastic Gaussian (SHOG) model, where the bias
and variance terms take more intuitive forms. We also empirically verify our results using synthetic
SHOG data. Additional theoretical results and proofs can be found in Appendix A.

5.1 BIAS-VARIANCE TRADEOFFS FOR GENERAL SHIFTS.

In this section, we analyze the properties of Π (learned projection) on the target distribution to
understand why sample efficiency during adaptation can be improved by first extracting a set of
diverse features that are predictive on the source distribution.

Probing on the target distribution. We first introduce some additional notation specific to the
target distribution. Let Sd denote span({Πi}di=1) and Md denote the projection matrix for Sd,

Md = (Π⊤Π)−1Π⊤ where, Π ≜ Π1, ..,Πd. (1)

We denote the target error for classifier w as LT (w) ≜ EpT
l(⟨w,x⟩, y), and the bias incurred by

probing over the projected features span({Πi}di=1) as:

bd ≜ min
w′∈Sd

LT (w
′) − min

w∈W
LT (w).

Finally, the d-dimensional weight vector learned by PRO2 on the M projected target samples is:

ŵd ≜ arg min
w∈Sd

∥w∥2≤1

M∑
i=1

l(⟨w,x(i)⟩, y(i)).

In Proposition 1 we show a bound on the bias bd incurred by only using features in Sd to fit the target
predictor, as opposed to using all possible d-dimensional linear features. Note that the upper bound
on bd reduces to 0 as we add more features d→ D. The rate at which bd → 0 is determined by how
the optimal linear classifier w⋆

T (on target) interplays with the projection matrix Md learned on the
source data. On one extreme, when there is no distribution shift, we know that for the projection Π1

returned by PRO2, Π1 ∝ w⋆
T , and thus (ID −M1)w

⋆
T = 0, the bias bd → 0 with just one direction.

On the other extreme, if Πd consists of random orthogonal features, then the bias bd decreases at a
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Figure 3: Evaluation of PRO2 on shifted homoscedastic Gaussian data. (left) The x- and y-axes
denote the rank of Md and the nullspace norm ∥(ID −Md)w

⋆
T ∥2, respectively. The nullspace norm

drops slowly for more severe distribution shifts, indicating that bd would be low enough only at very
high values of d for severe shifts. (right) For less severe distribution shifts (ID and Near OOD), low-
dimensional projections suffer from less bias, resulting in higher accuracy in the low-data regime.
For the Far OOD distribution, using all 20-dimensional features is best, as bias drops more slowly.

rate O(
√
D − d) even when there is distribution shift. This indicates that the rate at which the bias

reduces as we increase d should be controlled by degree of distribution shift, and how informative
the source features (in Πd) remain under this shift. This argument is captured more formally in the
following Proposition.
Proposition 1 (bias induced by distribution shift). For some w⋆

T that is the optimal linear predictor
on distribution pT over the full feature space, and an L-Lipschitz smooth convex loss l, the bias
bd ≤ L · ∥(ID −Md)w

⋆
T ∥2. When Md is a random rank d projection matrix with columns drawn

uniformly over the sphere SD−1, then bdL
√
D − d · ∥w⋆

T ∥2.

In Theorem 2, we describe the full bias-variance tradeoff where we see that the variance term is
also controlled by the number of features d but unlike the bias is independent of the nature of shift
between source and the target.
Theorem 2 (bias-variance tradeoff). When the conditions in Lemma 1 hold and when ∥x∥∞ =
O(1), for B-bounded loss l, w.h.p. 1 − δ, the excess risk for the solution ŵd of PRO2 that uses d
features is LT (ŵd)−minw∈W LT (w)

∥(ID −Md)w
⋆
T ∥2 +

√
d+B

√
log(1/δ)√

M
, (2)

where the first term controls the bias and the second controls the variance.

This result provides insights on what factors affect generalization when probing on target data.
Tighter compression of the original representation, i.e., using a smaller d, increases bias while de-
creasing variance. The rate of bias increase is determined by the degree of distribution shift, where
more severe shifts correspond to a steeper increase in bias. However, this bias can be mitigated as
long as the important features needed for prediction on the target domain are covered by the com-
pressed representation. Thus, PRO2 induces a favorable bias-variance tradeoff, as the features ex-
tracted are predictive and diverse and hence are more likely to cover the important features needed
for the target domain, allowing compression to a smaller d while still maintaining low bias. The
distribution shift has no effect on variance, and variance can only be decreased by using a low-
dimensional represent (at the cost of bias) or learning from a larger target dataset (higher M ).

5.2 BIAS-VARIANCE TRADEOFF IN A SIMPLIFIED GAUSSIAN MODEL.

In this subsection, we consider a simplified setting of a shifted homoscedastic Gaussian (SHOG).
Within this model, we show that the more general statement in Theorem 2 can be simplified further
to provide a more intuitive relationship between the factors that affect excess risk on target. We also
empirically demonstrate the behavior predicted by our bounds on synthetic SHOG data.

Shifted homoscedastic Gaussian (SHOG) model of distribution shift. We model the source dis-
tribution as a Bernoulli mixture model of data in which binary labels are balanced (y ∼ Bern(0.5))
and the class conditional distributions are homoscedastic multivariate Gaussians:

x | y ∼ N (µy,ΣS) for y ∈ {0, 1},

where µ0, µ1 ∈D are mean vectors and ΣS ∈D×D is the shared covariance matrix. The target distri-
bution has the same label distribution and Gaussian means, but a different covariance matrix given
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by ΣT . Under this model, the degree of shift is fully realized by the distance between ΣS ,ΣT under
some reasonable metric. This directly impacts the bias term bd when Πd is either returned by PRO2

or a random projection matrix with columns drawn uniformly over the sphere Sd−1. We specialize
the more general bias-variance tradeoff result to a shifted homoscedastic Gaussian (SHOG) model in
Corollary 3, where we derive a simpler bound distilling the effect of d, and the degree of distribution
shift on the target excess risk.

Corollary 3 (tradeoff under SHOG). Under SHOG model, and conditions for random projection

Md in Proposition 1, the target excess risk LT (ŵd)− LT (w
⋆
T )
√
D − d ·KL(pS ||pT ) +

√
d
M .

Recall from Proposition 1, the bias scales directly with the norm along the null space of Md. In
Fig. 3(left), we plot the nullspace norm for different d in three target distributions of varying dis-
tribution shift severity under the SHOG model. We see that the more severe shifts have a higher
nullspace norm even at large values of d. This indicates that the excess risk on target (OOD) may
suffer from high bias on severe shifts. In Fig. 3(right), we see that the source distribution (ID) suffers
from virtually no bias, since d=1 achieves optimal target accuracy for even small target datasets. In
contrast, the “Near OOD” and “Far OOD” distributions suffer from high bias since even with large
datasets they fall short of optimal target performance (by >40%), and higher projection dimension
d is needed for adaptation. This also validates our findings in Theorem 2 and Corollary 3.

6 EXPERIMENTS

In this section, we aim to empirically answer the following questions: (1) Can PRO2 identify a
feature-space basis for rapid adaptation, and how does it compare to other methods for extracting
features? (2) How does the dimensionality of the feature-space basis affect sample efficiency in
different distribution shift conditions? We provide additional empirical results and analyses, such
as showing that the adaptation performance of PRO2 improves with better pre-trained backbones, in
Appendix C. Details on pre-trained models and training details are in Appendix B.

6.1 EXPERIMENTAL SETUP

Datasets. We run experiments on six datasets with distribution shifts: 4-way collages (Teney et al.,
2021), Waterbirds (Sagawa et al., 2020), CelebA (Liu et al., 2015), Camelyon (Bandi et al., 2018),
Living17 (Santurkar et al., 2020), and FMoW (Koh et al., 2021) datasets. Each of these datasets have
a source distribution that we use for training. For the first four datasets, we construct multiple target
distributions for evaluation, representative of a range of potential test distributions. For the latter
two datasets, which are larger datasets representing shifts that may occur in the wild, we evaluate on
the given test set. For all settings, we use the original source datasets, which each contain thousands
of datapoints. For target data, we subsample very small label-balanced datasets for adaptation, with
{2, 8, 32, 128} images per label for the first four datasets and {1, 2, 5} images per label for the latter
two datasets. The remaining target distribution datapoints are used for evaluation. Due to space
constraints, we describe the different target distributions in Appendix B.

Computational efficiency. Similarly to Mehta et al. (2022), we use feature embeddings from a pre-
trained backbone without fine-tuning. Our aim is to develop methods that can leverage pretrained
models out-of-the-box with minimal computational requirements: our training involves at most two
linear layers on top of cached feature vectors. For all comparisons, we hyperparameter tune over 3
different learning rates (0.1, 0.01, and 0.001) as well as 3 different L2 regularization weights (0.1,
0.01, 0.001). In our main experiments in Sec. 6.2, we also sweep over 6 different projection dimen-
sions (d = 1, 4, 16, 64, 256, 1024) and report results over 10 runs. For hyperparameter tuning, we
adopt the typical practice of using a target validation set, which is common in prior work in similar
transfer learning settings (Kirichenko et al., 2022; Mehta et al., 2022; Lee et al., 2022a). The chal-
lenge of hyperparameter tuning for a target domain without additional domain-specific information
remains an open problem that we hope can be addressed in future work. As a demonstration of the
computational efficiency of PRO2, after caching pre-trained embeddings, we can collectively run all
experiments in Sec. 6.2, which is nearly 30k runs due to hyperparameter tuning, within 24 hours
using four standard CPUs and no GPUs. We find that PRO2 is robust to learning rate, which is
expected as the optimization problem is linear.
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Waterbirds CelebA Camelyon17 Collages

Figure 4: Main results. We compare 4 different methods for learning features to adapt to a target distribution:
(1) Random Projection, (2) DFR Kirichenko et al. (2022), (3) Teney et al. (2021), and (4) PRO2. We report
average target accuracies after probing with different target dataset sizes ranging from 2 to 128 datapoints per
label; error bars indicate standard error across 10 runs. PRO2 is the best performing or tied for best performing
method across each of these 4 datasets with any amount of target data. PRO2 substantially outperforms Random
Projection and DFR in the low-data regime on all four datasets. PRO2 also outperforms Teney et al. (2021) on
average on 3 of the 4 datasets particularly when given more target data.

Living17 FMoW

Target Train Data Size (per label) 1 2 5 1 2 5

Random Projection 85.7 (0.6) 92.7 (1.0) 99.2 (0.1) 16.3 (0.7) 23.6 (0.6) 33.3 (0.6)
DFR (Kirichenko et al.) 87.1 (0.9) 95.0 (0.9) 98.8 (0.3) 17.5 (0.8) 24.0 (0.6) 35.1 (0.6)

PRO2 91.2 (0.4) 95.7 (0.7) 99.2 (0.06) 20.2 (0.9) 28.7 (1.1) 37.2 (0.8)

Table 1: Additional main results. We run additional experiments on the Living17 dataset from the Breeds
benchmark (Santurkar et al., 2020) and FMoW (Koh et al., 2021), reporting adaptation accuracy and standard
error across 10 runs. Both of these datasets are challenging multi-class distribution shift tasks and are represen-
tative of real-world scenarios. We find that similar to the other datasets, PRO2 is the best performing or tied for
best performing method on these datasets when given a limited amount of target data.

6.2 COMPARISON TO PRIOR PROJECTION METHODS

We investigate whether PRO2 can extract features that can facilitate adaptation to different distri-
bution shifts, and how it compares other feature extraction methods. We perform a comprehensive
experimental evaluation on the six datasets, comparing PRO2 against four other projection methods:
(1) Random Projection, (2) DFR Kirichenko et al. (2022), which uses standard linear probing, and
(3) Teney et al. (2021), which aims to learn multiple predictive patterns by minimizing the alignment
of input gradients over pairs of features. Experiments in Fig. 4 and Tab. 1 indicate that across all dif-
ferent target distributions six datasets, PRO2 significantly outperforms Random Projection and DFR,
especially in the low-data regime. In particular, these results show that DFR or standard linear prob-
ing, the strategy adopted by several additional prior works by default Mehta et al. (2022); Izmailov
et al. (2022), is not the most data-efficient way to utilize pre-trained embeddings when given limited
target data. This is because such embeddings contain redundant or non-predictive information, and
including these features during adaptation leads to higher variance without decreasing bias, which
in turn means that we need more labeled samples. In contrast, PRO2 improves sample efficiency
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Figure 5: Feature-space dimensionality of PRO2 and severity of distribution shift. We vary the feature-
space dimensions d (y-axis) of PRO2 and report held-out accuracy after training on target datasets of different
size (x-axis) on our 4 datasets. Higher accuracies are in blue and lower accuracies are in red. We see that
smaller feature-space dimensions suffice for target distributions with milder distribution shifts while higher
dimensions are required for more severe shifts. For example, on the spurious test distribution (small dist. shift)
of Waterbirds/CelebA, the bottom row, which uses d = 1 is bluest, while the blue is concentrated in the top
right squares (which use more features and more data) for more difficult distribution shifts such as Minority for
Waterbirds/CelebA and the collages test sets.

by first extracting a predictive feature-space basis from the source distribution, removing redundant
information. Teney et al. (2021) is sufficient in some scenarios with milder distribution shift, where
a diverse range of features are not needed for adaptation. However, it fails to achieve high accuracy
given a large target dataset on more severe distribution shifts, such as the Minority distributions on
Waterbirds and CelebA or the Fashion-MNIST and CIFAR distributions in 4-Way Collages. This
indicates that the feature diversity from the orthogonality constraint gives PRO2 better coverage of
different features, enabling better adaptation to severe distribution shifts given enough target data.
These results demonstrate the effectiveness of PRO2 compared to existing methods in the few-shot
adaptation problem setting.

6.3 PROJECTION DIMENSION AND SHIFT SEVERITY

In this subsection, we investigate how the feature-space dimension d affects the sample efficiency of
PRO2, for different degrees of distribution shift. Experiments in Fig. 5 show that when the distribu-
tion shift is less severe, such as the Spurious test distributions on Waterbirds and CelebA, it is helpful
to reduce the number of features used. This scenario is analogous to the ID setting in Fig. 3. In such
scenarios, the top-ranked features from the source data are also predictive on the target distribution,
and incorporating additional features worsens generalization because it increases variance without
sufficiently decreasing bias. However, when the distribution shift is more severe, such as the Minor-
ity distributions on Waterbirds and CelebA or Collages-Fashion MNIST and Collages-CIFAR, it is
helpful to increase the number of features used. This scenario is analogous to the Far OOD setting
in Fig. 3. These empirical results are supported formally by our theoretical results in Sec. 5, which
show that the optimal number of features to use increases with distribution shift severity.

7 CONCLUSION

In this paper, we propose PRO2, a lightweight framework consisting of 2 steps: (1) a projection
step that extracts a diverse and predictive feature-space basis and (2) a probing step that interpolates
between the projected features to efficiently adapt varying target distributions. Our theoretical and
empirical analyses reveal a number of interesting novel insights: (i) standard linear probing is not the
best approach for few-shot adaptation; (ii) Retaining a diverse range of potentially useful features
that different target distributions may require improves sample efficiency, (iii) we can trade off how
much to adapt (size of the feature-space basis) vs number of samples, picking the best basis to adapt
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for each level of shift. These insights open up a range of exciting paths for future work. First, our
framework may be extended to other problem settings, such as the active learning setting, in which
the model can adaptively request target labels. Another interesting direction would be selecting
which features to use in an unsupervised fashion, without any labeled target data. For limitations,
more complex target distributions generally require more directions and therefore more data to fit.
Our analysis on the bias-variance tradeoff expressed in Theorem 2 depends on the dataset size, so
PRO2 will have smaller benefits in settings with a large amount of target data.
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A PROOFS FOR THEORETICAL ANALYSIS

We present proofs for our theoretical analysis in Sec. 5 along with some additional statements. As
in the main paper, we denote the dimensionality of the feature-space basis learned by PRO2 as d, the
original dimension of the representations given by the feature backbone f as D, source and target
distributions as pS and pT , and the number of source and target datapoints as N and M . We let Md

denote the projection matrix for span({Πi}di=1), Md=[Π1, ..,Πd][Π1, ..,Πd]
⊤. If the target error

for the feature w is LT (w) := EDT
l(⟨w,x⟩, y), then the bias incurred by probing on the subspace

Md consisting of source features is:
bd := min

w′∈span({Πi}d
i=1)
LT (w

′) − min
w∈W

LT (w),

and we denote the feature-space basis of dimensionality d learned by PRO2 as follows:

ŵd := argmin
w∈span({Πi}d

i=1)

M∑
i=1

l(⟨w,x(i)⟩, y(i)). (3)

From the original D-dimensional feature representations given by our feature backbone f , we want
our learned linear projections Π :D→d to retain as much information as possible that is relevant in
predicting the label y. In other words, we want to maximize the mutual information between the
projected features Π(x) and the labels y. In Theorem 6, We first formally characterize the solution
found by the projection step in PRO2 as maximizing this mutual information amongst all rank d
matrices with orthogonal columns, using the following two lemmas.
Lemma 4 (Entropy of a sub-gaussian under low rank projection). For a σ−sub-gaussian random
variable x, and rank r orthonormal matrix A ∈d×D the differential entropy H(Ax) for projection
Ax is O(1/d) when log σ = O(1/d2).

Proof. Let Ai denote the ith row of A, then:

H(Ax) = H([A⊤
1 x, . . . ,A

⊤
r x]

⊤) = H(A⊤
1 x) +

i=d∑
i=2

H(A⊤
i x | A⊤

1 x, . . . ,A
⊤
i−1x) ≤

i=d∑
i=1

H(A⊤
i x)

Since, x is σ−sub-gaussian, using standard bounds on differential entropy and the inequality above
we can argue that:

Eet
2A⊤

i x ≤ et
2σ2/2, ∀i, t

=⇒ H(A⊤
i x) ≤

1

2
log(2πeσ2) ∀i

=⇒ H(A⊤
i x)(1/d

2) ∀i (since log σ = O(1/d2))
=⇒ H(Ax) = O(1/d)

Lemma 5 (Entropy for a mixture of σ−sub-gaussians). For a d−dimensional random variable x
that is a mixture of two σ−sub-gaussian random variables x1 and x2 with overlapping supports,
bounded Jensen-Shannon divergence JS(v⊤x1||v⊤x2) ≤ β and mixture proportion α ∈ [0, 1] the
density function p(x) = α · p1(x) + (1− α) · p2(x), then the entropy H(v⊤x) for ∥v∥2 = 1, is at
most O(log σ + β).

Proof. Using Jensen inequality and the definition of KL divergence, the differential entropy can be
broken down as follows:

H(v⊤x) = −
∫
(α · p1(v⊤x) + (1− α) · p2(v⊤x)) log(α · p1(v⊤x) + (1− α) · p2(v⊤x)) dx

≤ α2H(v⊤x1) + (1− α)2H(v⊤x2)

− α(1− α)

∫
p1v

⊤x) log p2(v
⊤x) dx− α(1− α)

∫
p2(v

⊤x) log p1(v
⊤x) dx

≤ αH(v⊤x1) + (1− α)H(v⊤x2) + 2α(1− α)β

log(σ) + β

where the last step follows from the first two arguments made in the proof for Lemma 4.
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Theorem 6 (Information in projected input). When the distributions p(x | y) are exp (d−2)−sub-
gaussian for each y and the Jensen-Shannon divergence JS(p(v⊤x | y = 0) || p(v⊤x | y =
1)) = O(1/d). the solution {Πi}di=1 returned by PRO2 maximizes a tight lower bound (difference
bounded by an O(1) constant) on the mutual information criterion I(Ax; y) among all d × D
row-orthonormal matrices A. (See end of the proof for discussion on assumptions and remark on
tightness).

Proof. We use an inductive argument on d. Consider the following maximization problem where
Bd is the set of all row orthonormal matrices of row rank d≪ D:

max
A∈Bd

I(Ax; y). (4)

Let d > 1. Then, we can re-write the above as:

max
A∈Bd×D

I(Ax; y) = max
A′∈Bd−1,v∈D

I
(
A′x,v⊤x

⊤
; y
)

where, v ∈ NullSpace(A′), ∥v∥2 = 1.

(5)

Now, we can decompose this expression using the conditional mutual information identities:

I
(
A′x,v⊤x

⊤
; y
)
= I(A′x; y) + I(v⊤x; y)− I(v⊤x;A′x) + I(v⊤x;A′x | y)

= I(A′x; y) + I(v⊤x; y)−
(
I(v⊤x;A′x)− I(v⊤x;A′x | y)

)
(6)

Now, we upper bound the drop in information when we condition on y: (I(v⊤x;A′x) −
I(v⊤x;A′x | y)) using Lemma 4 and Lemma 5.

I(v⊤x;A′x)− I(v⊤x;A′x | y) = H([v⊤x;A′x]⊤ | y)−H(v⊤x | y)−H(A′x | y) + I(v⊤x;A′x)

≤ H([v⊤x;A′x]⊤ | y) +H(v⊤x) = H(Ax | y) +H(v⊤x)

log σ + β = O(1/d), (7)
where the last statement applies Lemma 4 to bound H(Ax | y) (since Ax | y = 0 and Ax | y = 1
are σ−sub-gaussian) and Lemma 5 to bound the entropy on the mixture of sub-gaussians H(v⊤x).
Also, note that the conditional distributions differ in Jensen-Shannon divergence byO(1/d) and the
sub-gaussian assumption gives us log σ = O(1/d2).
Using equation 6, equation 7 we have:

max
A∈Bd

I(Ax; y) ≥ max
A′∈Bd−1,

v∈NullSpace(A),∥v∥2=1

I (A′x; y) + I(v⊤x; y)−O(1/d). (8)

Let Ai denote the ith row of A, then. Then, applying the above inductively for all d:

max
A∈Bd

I(Ax; y) ≥ max
A∈Bd

(
i=d∑
i=1

I(A⊤
i x; y)

)
−O(1) (9)

Let A∗ be the solution of the right hand side and v∗ = argmaxv:∥v∥2=1 I(v
⊤x; y). Next, we note

that ∃i such that A∗
i = v∗. It is easy to prove this by contradiction. Consider the case where ∄i such

that A∗
i = v∗. Then, we can construct a solution {(ID − v∗v∗⊤)A∗

i }di=1, order them by mutual
information I((A∗

i )
⊤(ID − v∗v∗⊤)x; y), take the top d − 1 entries and append to this set v∗. The

new solution would have a higher value of the objective on the right hand side of equation 9, since
the new solution retains optimal directions perpendicular to v∗ while adding v∗ to the set. Thus, we
arrive at a contradiction and it is clear that v∗ belongs to the solution A∗ for the objective on the
right side of equation 9.

Knowing that v∗ has to be part of A∗, we can now write the right side of equation 9 as the following:

max
A∈Rd×D

I(Ax; y) ≥ max
v1∈RD

I
(
v⊤
1 x; y

)
+ max

v2∈RD
I
(
v⊤
2

(
I − v∗

1v
∗
1
⊤
)
x; y
)

+ max
v3∈RD

I
(
v⊤
3

(
I − v∗

2v
⋆
2
⊤
)(

I − v⋆
1v

⋆
1
⊤
)
x; y
)
+ . . .−O(1), (10)
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where v⋆
1 ,v

⋆
2 , . . . ,v

⋆
d denote the solutions to each subsequent max term. This sequence of solu-

tions is the same as that returned by solving the following iterative optimization problem because
maximizing mutual information with label for a linear projection of the input is the same as find-
ing a direction that minimizes Bayes error of the linear projection (Petridis and Perantonis (2004)
connects mutual information to cross entropy loss and Bayes error):

1. v∗
1 = argmin∥v∥≤1 l(⟨v,x⟩, y)

2. Project data in the null space of v∗
1 : (I − v∗

1v
∗
1
⊤)x

3. Re-solve (1.) to get next v∗
i and so on.

Finally, it is easy to see that solution returned by the above iterative optimization is the same as that
returned by the project step of PRO2.

Discussion on assumptions: Following are some remarks and intuitions behind the assumptions we
make:

• Sub-gaussianity: We need sub-gaussianity to bound the entropy of linear projections,
which is easily satisfied for inputs with bounded support. Note that the sub-gaussian pa-
rameter σ need only satisfy log σ = O(1/d2), where d≪ D which is the input dimension
of the data.

• Bounded JS-divergence: The main intuition behind why we need the class conditional
distributions to not differ too much (bounded JS-divergence) along linear projections is
that if they are very different from each other it is possible that even with sub-gaussianity
assumptions there may exist linear projections that have a high mutual information over the
mixture of conditionals (which is the marginal input distribution p(x) i.e., I(v⊤x;A′x) is
high) but not when we condition on the label (i.e., I(v⊤x;A′x | y) is low). Now, since we
iteratively search for linear projections, our project step is oblivious to these interactions
and we may recover both of these directions (see equation 6 and Lemma 5). But only one
may be present in the information theoretically optimal linear projection.

Remark on tightness of our lower bound: We show that we maximize a lower bound in equation 9.
But, in the special case when the class conditionals are log-concave (e.g., multivariate Gaussian) we
can also show something much tighter: maxA∈Bd

I(Ax; y) = maxA∈Bd

(∑i=d
i=1 I(A

⊤
i x; y)

)
−

Θ(1). This is because our upper bounds on the entropy terms have matching lower bounds for log-
concave distributions, which can then be applied to lower bound the negative terms in the first step
of equation 6.

We now provide proofs of the generalization bounds in Section 5 showing the bias-variance tradeoff.

Lemma 7 (generalization bound for probing projected features). For an L-Lipshitz, B-bounded

loss l, with probability ≥ 1 − δ, ŵd in equation 3 has generalization error
√
d+B
√

log(1/δ)√
M

, when
∥x∥∞ = O(1).

Proof. For this proof, we invoke the following two lemmas.

Lemma 1 (generalization bound for linear functions Bartlett and Mendelson (2002)). For an L-
Lipshitz B-bounded loss l, the generalization error for predictor ŵd, contained in the class of l2
norm bounded linear predictorsW is bounded with probability ≥ 1− δ:

l(⟨ŵd,x⟩, y) −
M∑
i=1

l(⟨w,Mdx
(i)⟩, y(i)) ≤ 2LRn(W) +B

√
log(1/δ)

2M

whereRn(W) is the empirical Rademacher complexity of l2 norm bounded linear predictors.
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Lemma 2 (Rn(W) bound for linear functions Kakade et al. (2008)). LetW be a convex set inducing
the set of linear functions F(W) ≜ {⟨w,x⟩ : X 7→| w ∈ W} for some input space X , bounded in
norm ∥ · ∥ by some value R > 0. If there exists a mapping h : W 7→ that is κ-strongly convex with
respect to the dual norm ∥·∥∗ and some subsetW ′ ⊆ W takes bounded values of h(·) {h(w) ≤ K |
w ∈ W ′} for some K > 0, then the empirical Rademacher complexity of the subsetW ′ is bounded

byRn(F(W ′)) ≤ R
√

2K
κn .

Let ∥ · ∥22 be the function h :W 7→ in Lemma 2; we know that ∥ · ∥22 is 2-strongly convex in l2 norm.
Further, take the standard l2 norm as the norm over X . So, the dual norm ∥ · ∥∗ is also given by l2
norm. Thus, κ = 2. We also know thatW is bounded in ∥ · ∥2 by 1, based on our setup definition.
Thus, K = 1.

Further, we note that ∥x∥∞ = O(1). We apply Cauchy-Schwartz and use the fact that Md = 1 to
bound the norm of the projected vector:

∥Mdx∥ ≤ Md∥x∥2 ≤ Md

√
d∥x∥∞

√
d. (11)

By Lemma 2 we get the empirical Rademacher complexityRM (W)
√

d/M , and plugging this into
Lemma 1 yields the main result in Lemma 7.

Theorem 8 (bias-variance tradeoff, Theorem 2). When the conditions in Lemma 1 hold and when
∥x∥∞ = O(1), for B-bounded loss l, w.h.p. 1− δ, the excess risk for the solution ŵd of PRO2 that
uses d features is

LT (ŵd)− min
w∈W

LT (w)∥(ID −Md)w
∗
T ∥2 +

√
d+B

√
log(1/δ)√

M
, (12)

where the first term of the RHS controls the bias and the second controls the variance.

Proof. The excess risk for ŵd is

LT (ŵd)− min
w∈W

LT (w)

= LT (ŵd)− min
w∈span{Πi}d

i=1

LT (w) + min
w∈span{Πi}d

i=1

LT (w)− min
w∈W

LT (w)

= min
w∈span{Πi}d

i=1

LT (w)− min
w∈W

LT (w) + LT (ŵd)− min
w∈span{Πi}d

i=1

LT (w)

∥(ID −Md)w
∗
T ∥2 +

√
d+B

√
log(1/δ)√

M
(13)

where the first term is the bias (bounded using Lemma 1), and the second term is the generalization
error or the variance (bounded using Lemma 7).

Corollary 9. Under the SHOG model, Π1 recovers the linear discriminant analysis (LDA) solution,
Π1 = Σ−1(µ2 − µ1)/(∥Σ−1(µ2 − µ1)∥2).

Proof. Since the LDA solution is Bayes optimal under the HOG model, it is exactly characterized
by the top eigen vector of Σ−1(µ2 − µ1)(µ2 − µ1)

⊤. Thus, the Bayes optimal solution on target
w∗

T ∝ Σ−1(µ2−µ1), and since Π1 returns the Bayes optimal linear predictor, following Theorem 6,
the above corollary is proven.

Lemma 10 (bias under SHOG). Let Md be the projection returned by PRO2. The bias bd term

under our SHOG is bd∥(ID−vSv
⊤
S )vT ∥. Here, vS =

Σ−1
S µ

∥Σ−1
S µ∥2

and vT =
Σ−1

T µ

∥Σ−1
T µ∥2

. Further, when

∥ΣS∥op is bounded, and Md is a random rank d projection matrix, bd = O
√
1− d

D ·KL(pS ||pT ).

17



Published as a conference paper at ICLR 2024

Proof. From Corollary 9, we know that M1 is exactly the rank-1 projection matrix given by the
direction Σ−1

S (µ2 − µ1)/(∥Σ−1
S (µ2 − µ1)∥2). Therefore

bd ≤ ∥(ID −Md)w
∗
T ∥2 ≤ |(ID −M1)w

∗
T ∥2 = ∥(ID − vSv

⊤
S )vT ∥. (14)

This gives us the first result for vS ,vT .

For the second result, we note that the KL divergence between multivariate Gaussian distributions
is convex.

KL(pS ||pT ) = KL(p(y)pS(x | y)||p(y)pT (x | y))
≤ KL(pS(x | y)||pT (x | y))
= 0.5 · KL(N (µ1,ΣS)||N (µ1,ΣT )) + 0.5 · KL(N (µ2,ΣS)||N (µ2,ΣT ))

=
1

2
tr(Σ−1

T ΣS)−
D∑
i=1

log λS
i +

D∑
i=1

log λT
i −D. (15)

Refer to Wainwright (2019) for the final step, where λS
i and λT

i are the eigenvalues of source and
target covariance matrices, respectively. The final term in the above derivation is O(tr(Σ−1

T )) when
ΣS = O(1). From Lemma 1 we know that under random projections onto d dimensions,

bd ≤ L ·
√
1− (d/D)∥w∗

T ∥
√

1− (d/D)∥Σ−1
T (µ2 − µ1)∥tr(Σ−1

T ) (16)

where we use Corollary 9. Thus from (16) and (15), we get our desired bound:

bd

√
1− d

D
·KL(pS ||pT ).

Corollary 11 (tradeoff under SHOG, Corollary 3). Under our SHOG model of shift, and conditions

for a random projection Md in Lemma 10, the target errorLT (ŵd)O
√

1− d
D ·KL(pS ||pT )+

√
d
M ,

when ΣT = O(1).

Proof. Direct application of the variance result in Lemma 7 and bias result in Lemma 10, using the
same technique used to prove Theorem 2.

B EXPERIMENTAL DETAILS

B.1 PYTORCH PSEUDOCODE FOR THE PROJECTION STEP

Below, we provide PyTorch pseudocode for the projection step of PRO2 for binary classification
datasets.

def learn_feature_space_basis(x, y, num_features):
projection = torch.nn.Linear(x.shape[1], num_features)
opt = torch.optim.AdamW(projection.parameters(), lr=0.01,

weight_decay=0.01)
max_steps = 100
for i in range(max_steps):

logits = projection(x)
loss = F.binary_cross_entropy_with_logits(logits, y, reduction="

none").mean()
opt.zero_grad()
loss.backward()
opt.step()
# Enforce orthogonality; we’re performing projected gradient

descent
Q, R = torch.linalg.qr(projection.weight.detach().T)
projection.weight.data = (Q * torch.diag(R)).T

feature_space = projection.weight.detach().T
return feature_space
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B.2 ADDITIONAL DATASET DETAILS

• 4-Way Collages (Teney et al., 2021). This binary classification dataset consists of 4-
way collages of four images per datapoint, one from each of (1) CIFAR, (2) MNIST, (3)
Fashion-MNIST, and (4) SVHN. All four image features are completely correlated in the
source data, and we consider four target distributions, where only one of the image features
are predictive of the label in each target distribution.

• Waterbirds (Sagawa et al., 2020). This dataset tasks the model with classifying images of
birds as either a waterbird or landbird. The label is spurious correlated with the background
of the image, which is either water or land. There are 4,795 training samples, of which
95% of the data follows the spurious correlation. We use the original training set as the
source data and evaluate on 3 different target distributions constructed from the original
test dataset: (1) Minority, which contains the test data points that do not follow the spurious
correlation, (2) Spurious, containing the points that do, and (3) Balanced, which contains
an equal number of points from each of the 4 (bird, background) groups.

• CelebA (Liu et al., 2015). Similar to Waterbirds, we use the original training set as source
data and evaluate on (1) Minority, (2) Spurious, and (3) Balanced target distributions. In
our main experiments in Sec. 6, we use target distributions corresponding to the spurious
correlation typically used for evaluation (spurious attribute–gender with label–hair color).
Below, in Appendix C include additional results on 4 other variants following the settings
used in Lee et al. (2022b): (1) CelebA-1 uses slightly open mouth as the label and wearing
lipstick as the spurious attribute, (2) CelebA-2 uses attractive as the label and smiling as
the spurious attribute, (3) CelebA-3 uses wavy hair as the label and high cheekbones as the
spurious attribute, and finally (4) CelebA-4 uses heavy makeup as the label and big lips as
the spurious attribute.

• Camelyon17 (Bandi et al., 2018). This dataset is part of the WILDS benchmark Koh et al.
(2021) and contains medical images where variations in data collection from different hos-
pitals induce naturally occurring distribution shifts. We evaluate on 2 target distributions:
(1) ID-Test: a held out test set of images from the source distribution, and (2) OOD-Test:
the actual test distribution with a distribution shift due to evaluating data from a different
hospital.

• Living17 (Santurkar et al., 2020). The task is to classify images into one of 17 animal
categorie. This dataset presents a subpopulation shift, in that while the ID and OOD dis-
tributions have the same overall classes, they contain different subpopulations. We test on
the given test set.

• FMoW (Koh et al., 2021). This dataset contains satellite images from 5 geographic regions,
and the task is the classify the image as one of 62 building or land use types. For the target
distribution, we use the subset of the OOD test data belonging to the Africa region.

Pre-trained models and additional training details. We extract penultimate embeddings of all
source and target datapoints from a pre-trained backbone. We preprocess all datapoints according
to the augmentation used during pre-training, and obtain feature embeddings with eval-mode batch
normalization. We cache all embeddings for a (backbone, dataset) pair to a single file and train our
linear models from the cached file. We use CLIP-ViT-L/16 Dosovitskiy et al. (2020) in our main
experiments, and additionally experiment with ResNet18 He et al. (2016), ResNet50, ResNet50-
SWaV Caron et al. (2020), CLIP-ViT-B/16 models in Appendix C.3. All pretrained models are
publicly available online. We train all models using the AdamW optimizer Loshchilov and Hutter
(2017) with weight decay 0.01. For all experiments, we perform early stopping with accuracy on
held-out target data and report mean and standard deviation across 10 runs.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL VISUALIZATIONS FOR SYNTHETIC GAUSSIAN EXPERIMENT

In Fig. 6, we approximate the bias and variance in the synthetic HOG experiment studied in Fig. 3.
On the left, for each test distribution (ID, Near OOD, and Far OOD), we plot the relationship be-
tween approximate bias (using error at the largest target dataset size) and nullspace norm and find
that they have a roughly linear relationship. Thus, this plot empirically supports the connection sup-
ported in the theory between bias and the number of features used, as the nullspace norm decreases
as the dimension of the feature-space basis increases.
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Figure 6: Visualization of bias and variance in the synthetic homoscedastic Gaussian experi-
ment Fig. 3. (Left) We approximate bias by the error at the largest target dataset size, and compare to
the nullspace norm. The two quantities have a roughly linear relationship. (Right) We approximate
variance by the difference between the error at each dataset size and the error at the largest. We
report the average across the three test distributions. Note on the left plot, ID is easily learned and
so the corresponding line is therefore clustered near (0, 0), as the nullspace norm and bias are both
near 0.

C.2 EMPIRICAL ANALYSIS OF PROJECTED FEATURE SPACE

We begin by observing the empirical properties of the projected feature space learned during the
first projection phase of PRO2. The Waterbirds dataset consists of “spurious” groups where the
background type (land or water) correlates with the bird type (land or water), on which using a
shortcut feature that relies on background type will perform optimally, as well as “minority” groups
in which the correlation does not hold and requires a robust feature that focuses on the bird itself. On
this dataset, we first extract oracle shortcut and robust features by minimizing loss on spurious and
minority groups on target data, respectively. These two directions serve as proxies for the optimal
classifier on two different target distributions. In addition to PRO2, we also evaluate a random feature
extraction method, which simply samples a random orthonormal basis for the original D embedding
space. We plot the nullspace norm of these two features in the subspace spanned by the first k
directions, for 1 ≤ k ≤ D = 1024 in ??. As expected, we see that the earlier features learned
by PRO2 are more similar to the shortcut feature than the robust feature. Because the orthogonality
constraint forces the features to be different from each other, the nullspace norm reduces to zero at
the highest value k = 1024. This experiment shows that the basis learned by PRO2 contains both the
robust and shortcut features for this dataset, and that the robust and shortcut features emerge even for
very low-rank bases (i.e., for small values of d). In contrast, a random orthogonal basis only captures
these two predictive features when the rank is larger. This indicates that our orthogonal projection
approach quickly picks up on the most important directions in feature space, which in this case
correspond to the shortcut feature representing the background and the robust feature representing
the type of bird, as discussed in prior work (Sagawa et al., 2020).

C.3 USING VARIOUS PRETRAINED BACKBONES

Finally, as PRO2 relies on using a pre-trained backbone model that is not fine-tuned to initially extract
features, we study how different backbones affect performance. In Fig. 7, we plot the accuracy of
PRO2 using 5 pre-trained backbone models that achieve a range of Image-Net accuracies. We find
that PRO2 improves significantly with better pre-trained backbones. These experiments demonstrate
the promise of the PRO2 framework. The quality of pre-trained feature extractors will continue
to improve with future datasets and architectures, and PRO2 leverages such pre-trained backbone
models for distribution-shift adaptation in a computationally efficient manner.

C.4 ABLATION ON THE IMPORTANCE OF ENFORCING ORTHOGONALITY

For the purposes of our empirical analysis, we additionally consider a simpler variant that optimizes
the projection matrix Π with No Constraint on orthogonality:

Πi =argminE(x,y)∼DS
L(Πi(f(x)), y). (PRO2-NC)
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Waterbirds CelebA

Figure 7: Different backbones. We show the accuracy of PRO2, where we use various pretrained
backbones, which are not fine-tuned. PRO2 is able to leverage improvements in the backbone with
minimal computational overhead.

Waterbirds CelebA Camelyon17 Collages

Figure 8: Importance of orthogonality. We show the adaptation accuracy of PRO2 compared to
PRO2-NC, a variant without orthogonality enforced, averaged across the varying target distributions
for each dataset.
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CelebA-1 CelebA-2 CelebA-3 CelebA-4

Figure 9: Main results on additional CelebA variants. We compare 4 different methods for learn-
ing features to adapt to a target distribution: (1) Random Projection, (2) DFR Kirichenko et al.
(2022), i.e. standard linear probing, (3) Teney et al. (2021), and (4) PRO2. We report target accura-
cies after probing with different target dataset sizes; we report mean and standard deviation across
10 runs. Similar to the trends seen in Fig. 4, PRO2 achieves high accuracy in the low-data regime,
substantially outperforming both random orthogonal projection and no projection in most target dis-
tributions on all four datasets.

We compare PRO2 to PRO2-NC in Fig. 8. While PRO2-NC is is sufficient in some scenarios with
milder distribution shift, where the shortcut feature continues to be informative, it fails to learn a
diverse set of predictive features and often only learns shortcut features, often failing on more severe
distribution shifts.

C.5 EVALUATION ON ADDITIONAL CELEBA VARIANTS

Finally, in Fig. 9 we supplement our main results in Fig. 4 with additional results from 4 additional
variants of CelebA. The takeaways from these results line up with those from Fig. 4. In the few-shot
adaptation problem setting, PRO2 is consistently the most effective, compared to Random Projection,
DFR Kirichenko et al. (2022), which uses standard linear probing, and Teney et al. (2021).

C.6 ADDITIONAL COMPARISONS

We provide an additional comparison replacing the projection step with PCA (see results below),
which performs significantly worse than Pro2 on both Waterbirds and CelebA using a range of
target data sizes. This is expected since PCA is an unsupervised approach that does not consider
labels, whereas Pro2 leverages the given labels from the source data in its projection step.

Additionally, we evaluate against two additional points of comparison that use both a small amount
of labeled target domain data like Pro2, and additionally use unlabeled data: D-BAT (Pagliardini
et al., 2022) and DivDis (Lee et al., 2022b), shown in Table 3 While both methods perform well,
Pro2 at least matches the performance with any target data size and sometimes even outperforms the
other two methods, especially with few datapoints (2) on Waterbirds and more datapoints (32) on
CelebA, despite not using any additional unlabeled data, which may be difficult to obtain.
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Waterbirds (Balanced)

Method Target Train Data Size (per label)

2 8 32

PCA 81.5 (1.0) 85.4 (0.5) 90.7 (0.3)
Pro2 91.8 (0.2) 91.7 (0.4) 92.7 (0.3)

CelebA (Balanced)

Method Target Train Data Size (per label)

2 8 32

PCA 61.4 (1.8) 65.6 (0.8) 75.2 (0.6)
Pro2 76.5 (1.4) 78.3 (0.9) 80.8 (0.9)

Table 2: PCA comparison. PRO2 significantly outperforms PCA by leveraging the source data in
its projection step.

Waterbirds (Balanced)

Method Target Train Data Size (per label)

2 8 32

D-BAT 90.1 (0.5) 91.5 (0.4) 92.3 (0.2)
DivDis 89.5 (0.8) 91.1 (0.5) 93.0 (0.2)

Pro2 91.8 (0.2) 91.7 (0.4) 92.7 (0.3)

CelebA (Balanced)

Method Target Train Data Size (per label)

2 8 32

D-BAT 76.7 (0.5) 78.4 (0.7) 78.5 (0.7)
DivDis 76.2 (0.7) 77.8 (0.5) 77.7 (1.0)

Pro2 76.5 (1.4) 78.3 (0.9) 80.8 (0.9)

Table 3: Comparison against methods that additionally require unlabeled data. PRO2 matches
and outperforms two state-of-the-art methods that additionally require unlabeled data.

Finally, in Table 4, we provide the zero-shot transfer performance using the same pre-trained back-
bone (ViT-L-16 SWAG E2E v1) trained on the source distribution. We see that using a small
amount of target data, PRO2 results in significant gains, particularly on OOD distributions, and
thus produces consistently strong performance across a range of test distributions.

Waterbirds CelebA

Spurious Minority Balanced Spurious Balanced Minority

No Target Data 97.6 (0.1) 75.1 (0.4) 86.1 (0.1) No Target Data 97.8 (0.1) 59.9 (0.4) 22.6 (0.5)
Pro2 97.9 (0.2) 97.0 (0.3) 94.3 (0.2) Pro2 98.0 (0.1) 83.7 (0.3) 96.0 (0.2)

Camelyon17 Collages

ID Test OOD Test MNIST CIFAR Fashion MNIST

No Target Data 93.7 (0.1) 93.1 (0.0) No Target Data 75.9 (0.1) 71.8 (0.2) 61.3 (0.1)
Pro2 94.5 (0.1) 93.5 (0.2) Pro2 98.0 (0.1) 90.9 (0.3) 85.0 (0.3)

Table 4: Comparison against zero-shot transfer. PRO2 significantly outperforms the zero-shot
transfer performance after training on the source distribution.

C.7 NUMERICAL VALUES OF EXPERIMENT RESULTS

We include numerical values of experimental results in Figure 4.
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Train Data Size Method Balanced Spurious Minority

2 DFR 82.4 (0.61) 88.3 (0.88) 83.2 (0.34)
2 Proˆ2 94.1 (0.16) 97.9 (0.12) 91.0 (0.30)
2 Random Projection 82.9 (0.92) 88.4 (0.70) 88.1 (0.61)
8 DFR 86.8 (0.53) 92.3 (0.15) 91.5 (0.19)
8 Proˆ2 94.2 (0.11) 98.0 (0.19) 91.2 (0.37)
8 Random Projection 87.8 (0.54) 90.0 (0.75) 90.7 (0.54)

32 DFR 90.4 (0.57) 94.6 (0.13) 94.9 (0.29)
32 Proˆ2 94.1 (0.11) 98.2 (0.11) 94.5 (0.24)
32 Random Projection 92.9 (0.33) 94.0 (0.50) 94.4 (0.44)

128 DFR 94.0 (0.15) 97.3 (0.11) 96.8 (0.32)
128 Proˆ2 94.4 (0.17) 98.2 (0.12) 96.9 (0.24)
128 Random Projection 93.8 (0.15) 96.9 (0.23) 96.2 (0.43)

Table 5: Numerical values of Waterbirds results.

Train Data Size Method Balanced Spurious Minority

2 DFR 60.1 (0.80) 94.5 (0.36) 84.8 (0.46)
2 Proˆ2 77.4 (0.65) 97.8 (0.23) 89.1 (0.51)
2 Random Projection 59.2 (0.22) 92.8 (0.43) 84.4 (0.49)
8 DFR 66.3 (0.38) 96.8 (0.51) 89.0 (0.15)
8 Proˆ2 78.2 (0.17) 98.1 (0.71) 91.3 (0.52)
8 Random Projection 65.6 (0.45) 95.7 (0.58) 89.3 (0.46)

32 DFR 72.3 (0.32) 97.1 (0.33) 94.5 (0.21)
32 Proˆ2 79.4 (0.18) 97.9 (0.49) 93.4 (0.34)
32 Random Projection 72.9 (0.31) 97.3 (0.54) 94.3 (0.42)

128 DFR 78.4 (0.35) 97.9 (0.13) 95.9 (0.68)
128 Proˆ2 81.8 (0.73) 98.8 (0.24) 96.4 (0.16)
128 Random Projection 79.2 (0.25) 98.2 (0.17) 97.0 (0.33)

Table 6: Numerical values of CelebA results.
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