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Problem Statement
Can we infer how to manipulate an object
given a video description of the desired
motion?

Specifying tasks with videos is a powerful tech-
nique towards acquiring novel and general robot
skills. However, reasoning over mechanics and
dexterous interactions can make it challenging
to scale learning contact-rich manipulation.

In this work, we focus on the problem of vi-
sual non-prehensile planar manipulation: given
a video of an object in planar motion, find
contact-aware robot actions that reproduce the
same object motion

Fundamental Challenges
1 Mechanical Parameters
The robot finger-trajectories are dictated by the
mechanics that describe the task: object facets,
friction cones, and external contact location.
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2 Non-uniqueness of the so-
lution

There is no direct mapping from an object
motion to a robot finger-trajectory, since

different robot interactions can lead to a single
object motion.

g

References
[1] de Avila Belbute-Peres, Filipe, et al. "End-to-

end differentiable physics for learning and control."
NeurIPS (2018).

[2] Agrawal, Akshay, et al. "Differentiable Convex Op-
timization Layers." NeurIPS (2019).

[3] Cheng, Xianyi, et al. "Contact mode guided
sampling-based planning for quasistatic dexterous
manipulation in 2d. ICRA (2021).

[4] Aceituno, Bernardo, and Alberto Rodriguez. "A
global quasi-dynamic model for contact-trajectory
optimization." RSS (2020).

Proposed Architecture

Robot ActionsVideo

Model
g

Problem overview

To address the fundamental challenges of learning a policy in this setup, we propose the following
differentiable architecture:

1. We encode the video of the desired object motion in a latent vector LV and decode it to infer
a set of mechanical parameters P that describe the task, trained under a cost function LP .

2. The parameters P are used to solve a linearized inverse dynamics problem, posed as differen-
tiable QP. We train the network such that QP outputs robot finger-trajectories p, λ, under a
cost function LQP .

3. The robot finger-trajectory is fed to a differentiable simulator of the scene. We train the full
model such that the simulation output matches the input video, under a cost function Lsim.
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Proposed architecture: Differentiable Learning for Manipulation (DLM)

Quantitative Comparison
We demonstrate the capabilities of this model on four different baselines of this problem with different
degrees of intermediate training and differentiable structure. We test the architectures:

1. Fully-connected networks trained over finger-trajectories (NN) or simulator output (NNM).

2. Our architecture trained solely over the mechanical parameters (MDR).

3. Our architecture trained over the mechanical parameters and the QP output (CVX).

4. Our full architecture trained over mechanical parameters, QP, and simulator output (DLM).

We train and validate these models over videos with randomized shapes illustrated as:
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We report our qualitative results with videos from randomized shapes below:
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