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1 Appendix A: Data Generation

In order to train and evaluate this model, we generate a set of random polygonal shapes and random
trajectories r(t). Each object is generated by sampling points along a unit circle, connecting them randomly
to form a polygon [1]. This shape is re-scaled to fit within a 20 cm radius. To generate a trajectory we
sample a starting pose and a goal pose from an uniform distribution as r(0), r(T)∼U(E). We linearly
interpolate with T−2 points between the goal and starting pose, adding a Gaussian noise d∼G(0,1 cm)
to each position. For each trajectory and shape, we setup T=5 and use a video resolution of 50×50.

Once the task is setup, we pose a Mixed-Integer Quadratic Program (MIQP) that find the globally optimal
robot finger placements and contact forces pc(t),λc(t) as:

MIQP: min
p,Λ

T∑
t=0

λTc (t)Qλλc(t)+p̈Tc (t)Qpp̈c(t) (1)

subject to: Mr̈(t)+G(r)=J(r)TΛ(t), pc(t)∈Fc(t), λc(t)∈FCc(t), λe(t)∈FCe(t) (2)

This problem is known as Contact-Trajectory Optimization (CTO), and we solve the MIQP using the
formulation from [2]. Once the contact-trajectory is generated, we extract the following mechanical
parameters:

1. r: object trajectory in SE(2) over T time-steps, represented by one 3×T matrix.

2. J(r)(t): contact-force Jacobian that maps contact forces into wrenches for object configuration
r, represented as a 3×2N matrix.

3. Fc(t): facet where finger pc is at contact during time-step t. We represent the facet with two
vertices ϕ1∈R2,ϕ2∈R2.

4. FCc(t): friction cone for finger pc at time-step t. We represent each friction cone as two rays
γ1∈R2,γ2∈R2.

5. pe(t): contact point where external wrenches are aggregated to the object.

6. FCe(t): friction cone for the external wrench location at time-step t. We represent this friction
cone as two rays γe1∈R2 and γe2∈R2.

All these parameters, along with the solution to CTO are stored and used to train and validate our model.
Note that it is difficult to extract these parameters without synthetic data, since real world environments
can be very hard to control and measure.

2 Appendix B: Simulated Experiments with OmniPush Shapes

We also study the application of our method towards more realistic data, using shapes and trajectories from
the OmniPush dataset [3] adapted to the saggital setting that we consider. We qualitatively demonstrate
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Figure 1: Qualitative examples of each network applied to objects from the OmniPush [3] dataset in a saggital setting.
These shapes are significantly smoother than those used for training.

how our model generalizes to this data (consisting of smooth object shapes), without having seen them
during training. These results are illustrated in Fig. 1. As before, we observe that our structured architecture
performs qualitatively better than less structured approaches.

Real-world videos could directly be utilized as inputs, for example, to a semantic segmentation neural
network which then generates the animated style videos as inputs to our proposed architecture and the
whole system can also be trained end-to-end. This lies beyond the scope of this paper but would be an
interesting future direction.
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