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Section 1. Quick Start

l. Quick Start

Requirement: MATLAB R2018a or higher (PlatEMO without GUI) or
MATLAB R2020b or higher (PlatEMO with GUI) with
Parallel Computing Toolbox and
Statistics and Machine Learning Toolbox

PlatEMO provides a variety of algorithms for solving optimization problems in a black-
box manner. To this end, users should define the optimization problem, select an

algorithm, and set the parameter values, by means of one of the following ways:
1) Calling the main function with parameters:
platemo ('problem',@SOP F1, 'algorithm',@GA, 'Name',Value,..);

Then the specified benchmark problem will be solved by the specified algorithm with
specified parameter settings, where the result can be displayed, saved, or returned (see

Solving Benchmark Problems for details).
2) Calling the main function with parameters:

f1 Q(x,d)sum(x*d) ;
f2 @(x,d)l-sum(x*d) ;
platemo ('objFecn', f1, 'conFen',f2, 'algorithm', QGA,..) ;

Then the user-defined problem will be solved by the specified algorithm with specified

parameter settings (see Solving User-Defined Problems for details).
3) Calling the main function without parameter:
platemo () ;

Then a GUI with three modules will be displayed, where the test module is used to
visually investigate the performance of an algorithm on a benchmark problem (see
Functions of Test Module for details), the application module is used to solve user-
defined problems (see Functions of Application Module for details), and the experiment
module is used to statistically analyze the performance of multiple algorithms on
multiple benchmark problems (see Functions of Experiment Module for details).

) PlatEMO v3.5
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[I. Using PlatEMO without GUI

A. Solving Benchmark Problems

Users can use PlatEMO without GUI by calling the main function platemo () with

parameters like

platemo ('Namel',Valuel, 'Name2',Value2, '"Name3',Value3,..);

where all the acceptable names and values are

Name Data type Default value Description
'algorithm' Function }llfmdle dependent Class of algorithm
or ce
'problem’ Function handle dependent Class of benchmark
or cell problem
'N' Positive integer 100 Population size
'M! Positive integer dependent Number of objectives
'D' Positive integer ‘ dependent Number of variables
'maxFE’ Positive integer 10000 Number of evaluations
'save' Integer ‘ 0 Number of saved populations
'outputFcn' | Function handle | @ALGORITHM. Output Function (.:alleq before
each iteration

* 'algorithm' denotes the algorithm to be run, whose value should be the function
handle of an algorithm, such as @GA. The value can also be a cell like
{@GA,pl,p2,..}, where pl, p2, .. specify the parameter values of the algorithm.

* 'problem' denotes the benchmark problem to be solved, whose value should be
the function handle of a benchmark problem, such as @SoP_F1. The value can also
beacell like {@sOP _F1,pl,p2,..},wherepl, p2,..specify the parameter values
of the benchmark problem.

* 'N' denotes the population size of the algorithm, which usually equals to the
number of solutions in the final population.

e 'M' denotes the number of objectives of the benchmark problem, which is valid
for some multi-objective benchmark problems.

* 'D' denotes the number of decision variables of the benchmark problem, which is
valid for some benchmark problems.

*  'maxFE' denotes the maximum number of available function evaluations, which
usually equals to the product of population size and number of generations.

* 'save' denotes the number of saved populations, where the populations are saved
to a file if the value is positive and displayed in a figure if the value is zero (see
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Collecting the Results for details).
* 'outputFcn' denotes the function called before each iteration of the algorithm.
An output function has two inputs and no output, where the first input is the current

ALGORITHM object and the second input is the current PROBLEM object.

For example, the following code runs the genetic algorithm on the sphere function
with a population size of 50, where the populations are displayed in a figure:

platemo ('algorithm', @GA, 'problem',@SOP F1, 'N',50);

The following code runs NSGA-II on 5-objective 40-variable DTLZ2 for 20000

function evaluations, where the populations are saved to a file:

platemo('algorithm', @NSGAITI, 'problem',@DTLZ2, 'M',5,'D"',40,"'
maxFE', 20000, '"save',10) ;

The following code runs MOEA/D with Tchebycheft approach on ZDT]1 for ten times,
where the populations obtained in each time are saved to a file:

for 1 =1 : 10
platemo ('algorithm', {@MOEAD, 2}, '"problem',@ZDT1, 'save',5) ;
end

Note that users need not specify all the parameters as each of them has a default value.

B. Solving User-Defined Problems

When the parameter 'problem' is not specified, users can define their own problem

by specifying the following parameters:

Name Data type Default value Description
'encoding' char 'real' Encoding scheme
' obFen' Function handle @ (x,d) sum (x) _ObJectlve functlon:s. All
or cell objectives are to be minimized
Constraint functions. A
. . Function handle constraint is satisfied if and
conFcn @(x,d)0 ) .
or cell only if the constraint violation
is not positive
'"lower' Row vector 0 Lower bounds of variables
'upper' Row vector ‘ 1 ‘ Upper bounds of variables
YinitFen! Function handle ] Function for 1n¥tlahzlng a
population
"decFen! Function handle ] Function for repairing invalid
solution
'parameter' Cell {} Data

* ‘'encoding' denotes the encoding scheme of the problem, whose value can be
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'real' (variables are real or integer numbers), 'binary' (variables are binary
numbers), or 'permutation' (variables constitute a permutation). Algorithms
may use different reproduction operators for different encoding schemes.

* 'objFcn' denotes the objective functions of the problem, whose value can be a
function handle (a single objective) or cell (multiple objectives). An objective
function has two inputs and an output, where the first input is a decision vector, the
second input is the data specified by 'parameter' (this input can be omitted if
'parameter' is not specified), and the output is the objective value. All the
objectives are to be minimized.

* 'conFcn' denotes the constraint functions of the problem, whose value can be a
function handle (a single constraint) or cell (multiple constraints). A constraint
function has two inputs and an output, where the first input is a decision vector, the
second input is the data specified by 'parameter' (this input can be omitted if
'parameter' is not specified), and the output is the constraint violation. A
constraint is satisfied if and only if the constraint violation is not positive.

* 'lower' denotes the lower bounds of variables, which is effective only when the
value of 'encoding'is 'real’

* 'upper' denotes the upper bounds of variables, which is effective only when the
value of 'encoding'is 'real’

* 'initFcn' denotes the function for initializing a population, whose value should
be a function handle having two inputs and an output, where the first input is the
number of solutions in the population, the second input is the data specified by
'parameter' (this input can be omitted if 'parameter' is not specified), and
the output is a matrix consisting of the decision vectors in the initial population.
This function is called at the beginning of most algorithms.

* 'decFcn' denotes the function for repairing invalid solution, whose value should
be a function handle having two inputs and an output, where the first input is a
decision vector, the second input is the data specified by 'parameter' (this input
can be omitted if 'parameter' is not specified), and the output is the repaired
decision vector. This function is called before the objective calculation of each
solution.

* 'parameter' denotes the data of the problem, which is used as the second input
(optional) of the functions specified by 'objFcn', 'conFen', "initFen', and

'decFcn'.

For example, the following code solves a unimodal problem with 10 variables by
differential evolution:

platemo ('objFcn', @ (x)sum(x.”2), 'lower',zeros(1,10)-10,

'upper', zeros(1,10)+10, 'algorithm', @DE) ;
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The following code solves a rotated unimodal problem with 10 variables by the default

algorithm, where the rotation matrix is specified via 'parameter"':

platemo ('objFcn',@(x,d)sum( (x*d) ."2), 'lower',zeros(1,10) -
10, "upper', zeros (1,10)+10, 'parameter',rand (10)) ;

The following code solves a constrained bi-objective problem with 20 variables by
NSGA-II with a population size of 50:

fl = @(x)x (1) *sum(x(2:end)) ;

f2 = @(x)sgrt(1l-x(1)"2)*sum(x(2:end)) ;

gl = @(x)1l-sum(x(2:end));

platemo ('objFen', {f1,£f2}, "conFen',gl, 'lower', zeros (1,20), 'u

pper',ones (1,20), 'algorithm', @NSGAII, 'N',50);

C. Collecting the Results

The generated populations can be displayed, saved, or returned after the algorithm

terminates. If the main function is called like

[Dec,Obj,Con] = platemo(..);

Then the final population will be returned, where Dec is a matrix consisting of the
decision vectors in the final population, Obj is a matrix consisting of the objective
values in the final population, and Con is a matrix consisting of the constraint violations

in the final population. If the main function is called like

platemo ('save',Value,..);

Then the generated populations will be displayed in a figure if Value is zero (default),
where various plots can be displayed by switching the Data source menu on the figure.

Data source

v Population (obj.)
Population (dec.)
True Pareto front
IGD
HV
GD
Feasible rate

While if value is positive, the generated populations will be saved to a MAT file named
as PlatEMO\Data\alg\alg pro M D run.mat, where alg is the algorithm name,
pro is the problem name, M is the number of objectives, D is the number of variables,
and run automatically increases from 1 until the file name does not exist. A file saves

a cell result consisting of the generated populations and a struct metric consisting

5
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of the metric values. The whole optimization process of the algorithm is divided into
Value equal intervals, where the first column of result stores the number of
consumed function evaluations at the last iteration of each interval, the second column
of result stores the population at the last iteration of each interval, and metric stores
the metric values of the stored populations. Note that the above are achieved by the
default output function @ALGORITHM. Output, while users can collect the results in
their own ways by specifying the value of ' outputFcn' to the handle of a user-defined

output function.

result = metric =
6x2 cell array struct with fields:

{[ 16507} {1x50 SOLUTION}

{[ 33001} {1=x50 SOLUTION} runtime: 0.3317

{[ 50001} {1=50 SOLUTION} IGD: [6x]1 double]
{[ 66501} {1x50 SOLUTION}

{[ 830071} {1x50 SOLUTION}

{[100007} {1x50 SOLUTION}

Besides, the metric values can be automatically calculated and saved in the
experiment module of the GUI. To calculate the metric values manually, users should

obtain the optimums of the problem and then call the metric functions, for example,

pro = DTLZ2();
IGD (result{end},pro.optimum) ;
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[11. Using PlatEMO with GUI

A. Functions of Test Module

Users can use PlatEMO with GUI by calling the main function platemo () without

parameter like

platemo () ;

Then the test module of the GUI will be displayed, which is used to visually investigate

the performance of an algorithm on a benchmark problem.

7 PlatEMO v3.5 = [m] X |
Modules Support _
’\,\ P T
Test | | Appiication | | Experiment t

Number of objectives “ EmEEM NSGAllonﬁ v

A
mult i Nz B | \ <
| Encoding scheme . g runtime 050935
N 100 [ S

z : >
| — A - - T ) = | ~~ <Algorithm: NSGAIl>
Special difficultiés i = T
5 . @ <Problem: DTLZ2>
i > " pr=s ‘ > N: 100
; e maxFE 10000 8 Bk o M
| = . k
’ v 5 maxFE: 10000
Algorithms 0.6 >
| NMPSO = e
| [ NniA 0.4 22
| [NSGAil ] o™ )
| [ NSGAlIARSEX 02 @ o—u =1
& 2 T~
0 < \>
E 0 e 0
( \ 04
> e
0.6 S 06
08 \(/ 0.8
f
11 i
DTLZ2
| R R L L L YN A NIRRT LA [P ]
0 25 f: 75 100 [<
10000 evaluations Start Save

Users should first determine the type of problems in Region A (see Labels of Algorithms
and Problems for details), select an algorithm in Region B, select a benchmark problem
in Region C, and set the parameter values in Region D. Then, the optimization process
can be started and controlled in Region E, where the real-time result is displayed in
Region F and the historical results can be reviewed in Region G.

Pressing Button H can choose the plot to be displayed, pressing Button I can display
the plot in a new figure and save the data in the plot to workspace, pressing Button J
can save the whole optimization process to a GIF image with 20 frames, and pressing
Button K can save the current population to a text or MAT file, wherea N X (D + M +
P) matrix is saved with N being the number of solutions, D being the number of
decision variables, M being the number of objectives, and P being the number of

constraints.
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B. Functions of Application Module

Users can press the menu button to switch to the application module, which is used

to solve user-defined problems.

| 7 PltEMO v3.5

x|
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| Special difficulties -

Users should first define the problem in Region D, whose details are the same to those

in Solving User-Defined Problems, where

* Decision vector is the same to 'encoding'

¢ Decision space is the same to "lower' and 'upper'
e Dataset is the same to 'parameter'

e |nitialization function is the same to 'initFen'

* Repair function is the same to "decFcn'

*  Objective functions is the same to 'objFcn'!

* Constraint functions is the same to 'conFen'

For simplicity, users can only specify Decision vector, Decision space, Objective
functions, and Constraint functions. Meanwhile, users can save or load a problem, check
the validity of the problem, and select an example problem in Region E. Then, the type
of problems can be automatically determined in Region A, while users should select an
algorithm in Region B and set the parameter values in Region C. The optimization
process can be started and controlled in Region F, and the real-time result is displayed

in Region G.

When pressing the Validation button or Start button, a UserProblem object will be
instantiated and its validity will be checked by calculating the objective values and
constraint violations of a solution, i.e., calling objFcn (decFen (initFen (1)) ) and
conFcn (decFen (initFen(1))) when Dataset is not defined and calling

objFcn (decFcn (initFcn (1, parameter) ,parameter) ,parameter) and
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conFcn (decFcn (initFcn (1, parameter) , parameter) ,parameter) when
1s defined.
Users can save the current problem as a subclass of PROBLEM in Region E, which

can be further used in other modules (loaded via Open File).

C. Functions of Experiment Module

Users can press the menu button to switch to the experiment module, which is used

to statistically analyze the performance of multiple algorithms on multiple problems.

| ) PIatEMO v3.5 - O X

ocies [JEREEE EE-Y
X & |=HH |
Test Application Experiment
Module Module Module

e

I
\a

| Number of objectives [ awioen 7] i~ (n) () (B (Fe| (16D v MeanH v | [Ranksumtest v | [Highlightthebest v
= = B oMo [v]
| Encoding scheme . M D ARMOEA GFMMOEA NSGAIl
theta 02
real A ermutation s oTLZ2 2 11 4.1517e-3 (5.68e-5) + 4.1466e-3 (2.41¢-5) + 5.1151e-3 (2.91e-4)
fPFE 0.1
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NNIA B M 23] = 320 20
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| & M
C .
|
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| Number of runs N 100] K
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—— W] Parallel execution Start

File path TUsers\Ye Tian\Des D

Users should first determine the type of problems in Region A (see Labels of Algorithms
and Problems for details), select multiple algorithms in Region B, select multiple
benchmark problems in Region C, configure the experimental settings in Region D, and
set the parameter values in Region E, where the number of objectives M and the number
of variables D can be vectors. Then, the optimization process can be started and

controlled in Region F, where the statistical results are listed in Region G.

The statistical results to be listed can be customized in Region H. Pressing Button I
can save the table to an Excel, TeX, TXT, or MAT file, and pressing Button J can display
the results in the selected cells of the table in a new figure. Button K determines whether
the experiment is performed on a single CPU (in sequence) or all the CPUs (in parallel).
All the results are saved to MAT files in the folder specified in Region D. If a result file
already exists, the file will be loaded and the algorithm will not be run.

D. Labels of Algorithms and Problems

Each algorithm or benchmark problem is tagged with labels by the comment in the
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second line of its main function. For example, in the code of PSO.m:

classdef PSO < ALGORITHM

% <single> <real> <large/none> <constrained/none>

which indicates the types of problems that the algorithm can solve. All the labels are

Label Description
<single> The problem has a single objective
<multi> The problem has two or three objectives
<many> The problem has four or more objectives
<real> The decision variables are real or integer numbers
<binary> The decision variables are binary numbers
<permutation> | The decision variables constitute a permutation
<large> The problem has more than 100 decision variables
<constrained> | The problem has at least one constraint
cesenedves The objectives are computa_tlonally expensive, i.e., only a very limited
number of function evaluations are available
. There exist multiple optimal solutions with similar objective values but
<multimodal> . . .. .
considerably different decision vectors, all of which should be found
<sparse> Most decision variables of the optimal solutions are zero
Only the optimal solutions in the predefined regions of the Pareto front
<preference>
are expected to be found
<none> Empty label

An algorithm may have multiple sets of labels, where the Cartesian product between all
the label sets constitutes all the types of problems that can be solved by the algorithm.
If the label sets of an algorithm are <single> <real> <constrained/none>, it
will be able to solve single-objective continuous optimization problems with or without
constraints. On the other hand, the label sets <single> <real> mean that the
algorithm can only solve unconstrained problems, the label sets <single> <real>
<constrained> mean that the algorithm can only solve constrained problems, and
the label sets <single> <real/binary>mean that the algorithm can solve problems

with either real variables or binary variables.

Each algorithm or benchmark problem should be tagged with labels, otherwise it will
not be appeared in the lists in the GUL. When determining the type of problems in
Region A, the algorithms that can solve such type of problems will be appeared in the
list in Region B, and the benchmark problems belonging to this type will be appeared
in the list in Region C. The labels of all the algorithms and benchmark problems in
PlatEMO are referred to List of Algorithms and List of Problems, respectively.

10
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V. Extending PlatEMO

A. ALGORITHM Class

An algorithm should be written as a subclass of ALGORITHM and put in the folder

PlatEMO\Algorithms, which contains the following properties and methods:

Property Specified by Description
parameter Users Parameters of the algorithm
save Users Number of populations saved in an execution
outputFcn Users Function called in Not Terminated ()
pro Solve () Problem solved in current execution
result NotTerminated () Populations saved in current execution
metric NotTerminated () = Metric values of current populations
Method Be redefined Description
ALGORITHM Cannot Set the properties specified by users
Solve Cannot ;agl(l)ri}llri.;f;ve (pro) to solve problem pro by
main Must Main procedure of the algorithm
NotTerminated Cannot Function called before each iteration in main ()
ParameterSet Cannot Set the parameter values according to parameter

Each algorithm should inherit ALGORITHM and redefine the method main (). For

example, the code of GA.m is

O 0 9 N L B~ W N~

e T T S Y
wm A W N = O

classdef GA < ALGORITHM

% <single><real/binary/permutation><large/none><constrained/none>
% Genetic algorithm

% proC -——- 1 --- Probability of crossover

% disC --- 20 --- Distribution index of crossover

% proM --- 1 --- Expectation of the number of mutated variables
% disM --- 20 --- Distribution index of mutation

et ittt RECEOEENER —so——c—coocooooooooosomsos
% J. H. Holland, Adaptation in Natural and Artificial Systems,

o\°

methods

MIT Press,

1992,

function main (Alg, Pro)

11
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16 [proC,disC,proM,disM] = Alg.ParameterSet (1,20,1,20);
17 P = Pro.Initialization();
18 while Alg.NotTerminated (P)
19 Pl = TournamentSelection (2,Pro.N,FitnessSingle (P))
20 = OperatorGA (P (P1l), {proC,disC, proM,disM}) ;
21 = [P,0];
22 [~,rank] = sort(FitnessSingle (P)) ;
23 P = P(rank(l:Pro.N));
24 end
25 end
26 end

The functions of each line are as follows:

Line 1: Inheriting the ALGORITHM class;

Line 2: Tagging the algorithm with labels (see Labels of Algorithms and Problems
for details);

Line 3: Full name of the algorithm;

Lines 4-7:  Parameter name --- default value --- description, which are shown in the
parameter setting list in the GUI;

Lines 9-12: Reference of the algorithm;

Line 15: Redefining the method of main procedure;

Line 16: Obtaining the parameter values specified by users, where 1,20, 1, 20
are default values of the four parameters proC, disC, proM, disM;

Line 17: Obtaining an initial population by calling a method of the problem;

Line 18: Storing the last population and checking whether the number of function
evaluations exceeds; if so, the algorithm will terminate immediately;

Line 19: Binary tournament based mating selection by calling a public function;

Line 20: Using the mating pool to generate offsprings by calling a public function;

Line 21: Combing the current population with the offsprings;

Line 22: Sorting the solutions based on their fitness calculated by a public function;

Line 23: Retaining the solutions with better fitness for next iteration.

In the above codes, the functions ParameterSet () and NotTerminated () are
provided by the ALGORITHM class, and the function Initialization () is provided
by the PROBLEM class. Besides, the functions TournamentSelection(),
FitnessSingle() and OperatorGA() are public functions in the folder
PlatEMO\Algorithms\Utility functions, which provides a number of
operations commonly used in algorithms. The following table lists the functions that
can be used in algorithms, where the details of them are referred to the comments in

their codes; besides, their techniques for efficiency improvement can be found 4ere.

12
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Function Name Description
ALGORITHM. . . . .
NotTerminated Function called before each iteration of the algorithm
ALGORITHM. .
ParameterSet Set the parameter values specified by users
PROBLEM. e 1 .
Initialization Initialize a population for the problem
CrowdingDistance | Crowding distance calculation for multi-objective optimization
FitnessSingle ‘ Fitness calculation for single-objective optimization
NDSort Non-dominated sorting
OperatorDE ‘ The reproduction operator of differential evolution
OperatorFEP The reproduction operator of fast evolutionary programming
OperatorGA ‘ The reproduction operators of genetic algorithm
OperatorGhhalf The reproduction operators of genetic algorithm, where only the
first half of offsprings are generated
OperatorPSO ‘ The reproduction operator of particle swarm optimization
RouletteWheel .
. Roulette-wheel selection
Selection
Tournament .
] Tournament selection
Selection
UniformPoint Generate a set of uniformly distributed points

B. PROBLEM Class

A benchmark problem should be written as a subclass of PROBLEM and put in the

folder P1atEMO\Problems, which contains the following properties and methods:

Property Specified by Description
N Users ’ Population size of algorithms
Users and .
M
Setting () Number of objectives of the problem
D User§ i Number of decision variables of the problem
Setting ()
maxkg Users Maximum number of function evaluations
FE SOLUTION () Numbe.r of function evaluations consumed in current
execution
encoding Setting () | Encoding scheme of the problem
lower Setting () ‘ Lower bounds of the decision variables
upper Setting () | Upper bounds of the decision variables
Optimal values of the problem, such as the minimum
P GetOpt imum () objective value of s1ngle—object1ve optimization
problems and a set of points on the Pareto front of
multi-objective optimization problems
Pareto front of the problem, such as a 1-D curve of
PF GetPF () b1.—0bj.ect1.ve optimization problems, a 2-D surfage of
tri-objective optimization problems, and feasible
regions of constrained optimization problems
parameter Users Parameters of the problem

13
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Method Be redefined Description
PROBLEM Cannot ‘ Set the properties specified by users
Setting Must Default settings of the problem
Initialization Can ‘ Initialize a population for the problem
CalDec Can Repair invalid solutions in a population
Cal0bs Must Calculajce the obj.ecti.ve values of so}ut.ions in a
population. All objectives are to be minimized

Calculate the constraint violations of solutions in a

CalCon Can population. A constraint is satisfied if and only if the
constraint violation is not positive
GetOptimum Can ‘ Generate the optimal values and store in optimum
GetPF Can Generate the Pareto front and store in PF

DrawDec Can ‘ Display the decision variables of a population
DrawObj Can Display the objective values of a population
—— Cannot itgg](; Lrélbeqtl(l)(éjc.iecf;or getting or setting the current

ParameterSet Cannot Set the parameter values according to parameter

Each benchmark problem should inherit PROBLEM and redefine the methods Setting ()
and CalObj (). For example, the code of SOP F1.mis

classdef SOP_F1 < PROBLEM

% <single><real><expensive/none>

o\

Sphere function

——————————————————————————— Reference - - —————-----------------———-

o

X. Yao, Y. Liu, and G. Lin, Evolutionary programming made

o

faster, IEEE Transactions on Evolutionary Computation, 1999, 3

O 0 9 N L B~ W N~
o

% (2): 82-102.
10
11 methods
12 function Setting (obj)
13 obj.M = 1;
14 if isempty(obj.D); obj.D = 30; end
15 obj.lower = zeros(l,obj.D) - 100;
16 obj.upper = zeros(l,obj.D) + 100;
17 obj.encoding = 'real';
18 end
19 function PopObj = CalObj (obj, PopDec)
20 PopObj = sum(PopDec.”2,2);
21 end
22 end

The functions of each line are as follows:

14
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Line 1: Inheriting the PROBLEM class;

Line 2: Tagging the problem with labels (see Labels of Algorithms and Problems
for details);

Line 3: Full name of the problem;

Lines 5-9:  Reference of the problem;

Line 12: Redefining the method of default parameter settings;

Line 13: Setting the number of objectives;

Line 14: Setting the number of decision variables if it is not specified by users;
Lines 15-16: Setting the lower bounds and upper bounds of decision variables;
Line 17: Setting the encoding scheme of the problem;

Line 19: Redefining the method of calculating objective values;

Line 20: Calculating the objective values of solutions in a population.

The method ITnitialization () randomly initializes a population for the problem.
This method can be redefined to specify a novel initialization strategy. For example,

Sparse NN.m initializes a population in which half the decision variables are zero:

function Population = Initialization (obj,N)
if nargin < 2; N = obj.N; end
PopDec = (rand(N,obj.D)-0.5)*2.*randi ([0 1],N,obj.D);
Population = SOLUTION (PopDec) ;

end

The method CalDec () repairs invalid solutions in a population, where each decision
variable will be set to the boundary values if it is larger than the upper bound or smaller
than the lower bound. This method can be redefined to specify a novel repair strategy.
For example, MOKP . m repairs solutions that exceed the capacity:

function PopDec = CalDec (obj, PopDec)
C = sum(obj.W,2)/2;
[~,rank] = sort (max(obj.P./ob]j.W)) ;
for i = 1 : size (PopDec,1)
while any (obj.W*PopDec (i, :) '>C)
k = find(PopDec (i, rank),1);
PopDec (i, rank(k)) = 0;
end
end

end

The method CalCon () returns zero as the constraint violation of the solutions in a
population, i.e., all the solutions are feasible. This method can be redefined to specify
constraint functions for the problem. For example, MW1 .m calculates a constraint for

each solution:
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function PopCon = CalCon (obj, X)
PopObj = obj.Callbj (X) ;
1 = sqgrt(2)*PopObj (:,2) - sqgrt(2)*PopObj(:,1);
PopCon = sum (PopObj,2) — 1 — 0.5*sin(2*pi*l)."8;
end

Use all (PopCon<=0,2) to determine whether each solution is feasible or not. Note
that equality constraints should be relaxed to such inequality constraints. The method
GetOptimum () can be redefined to specify the optimal values of the problem. For

example, SOP_F8.m returns the optimal value of the objective function:

function R = GetOptimum (obj,N)
R = -418.9829*0bj.D;

end
and DTLZ2 .m returns a set of uniformly distributed points on the Pareto front:

function R = GetOptimum (obj,N)
R = UniformPoint (N, obj.M) ;
R R./repmat (sgrt (sum(R."2,2)),1,0b].M);

end

The strategies for sampling points on different Pareto fronts can be found /ere. The
method GetPF () can be redefined to specify the Pareto front or feasible regions of the
problem for the visualization achieved in DrawObj () . For example, DTLZ2 .m returns
the data for plotting the 2-D or 3-D Pareto front:

function R = GetPF (obj)
if obj.M ==
R = obj.GetOptimum (100) ;
elseif obj.M ==
a = linspace(0,pi/2,10)"';
R = {sin(a)*cos(a'),sin(a)*sin(a'"),cos (a)*ones(size(a'))};

else

end
and MW1 . m returns the data for plotting the feasible regions:

function R = GetPF (obj)
[x,y] = meshgrid(linspace(0,1,400),1linspace(0,1.5,400)):;
z = nan(size (x));
fes = x+y-1-0.5*sin (2*pi* (sgrt(2) *y-sqgrt (2) *x)) .”8 <= 0;
z (fes&0.85*x+y>=1) = 0;
R = {x,y,2};
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end

The method DrawDec () displays the decision variables of a population, which is used
for the visualization of results in the GUI This method can be redefined to specify a

novel visualization method. For example, TSP .m displays the route of the best solution:

function DrawDec (obj, P)
[~,best] = min(P.objs):;
Draw (obj.R (P (best) .dec([l:end,1]),:),"'-k', 'LineWidth',1.5) ;
Draw (obj.R) ;

end

The method DrawOb7j () displays the objective values of a population, which is used
for the visualization of results in the GUI. This method can be redefined to specify a

novel visualization method. For example, Sparse CD.m adds labels to the axes:

function DrawObj (obj, P)
Draw (P.objs, { 'Kernel k-means', 'Ratio cut',[]1}):

end

where Draw () is a function in the folder P1atEMO\GUTI for displaying data. The details

of the above functions are referred to the comments in their codes.

C. SOLUTION Class

A SOLUTION object denotes an individual, and an array of SOLUTION objects denote
a population. The SOLUTION class contains the following properties and methods:

Property Specified by Description

dec Users ‘ Decision variables of the solution

obj SOLUTION () = Objective values of the solution

con SOLUTION () ‘ Constraint violations of the solution

add adds () Additional properties (e.g., velocity) of the solution
Method Description

Receive the decision variables and calculate the objective values and
SOLUTION constraint violations of one or more solutions. PROBLEM. FE will be

automatically increased by the number of SOLUTION objects returned

decs Get the matrix of decision variables of multiple solutions
objs Get the matrix of objective values of multiple solutions
cons Get the matrix of constraint violations of multiple solutions
adds Get the matrix of additional properties of multiple solutions

Get the feasible and best solution for single-objective optimization, or the

best . . . Yo L
feasible and non-dominated solutions for multi-objective optimization

For example, the following code generates a population with ten solutions, then gets
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the objective matrix of the best solutions in the population:

Population = SOLUTION (rand(10,5))
BestObjs

Population.best.objs

Note that before generating solutions, the current PROBLEM object should be set by
calling the static method PROBLEM.Current (), otherwise SOLUTION cannot

calculate any objective value or instantiate any object.

D. Whole Procedure of One Run

The following code uses the genetic algorithm to solve the sphere function:

Alg = GA();
SOP_F1();

Alg.Solve (Pro) ;

Pro

where the functions called in the execution of Alg.Solve (Pro) are as follows.

ALGORITHM. Solve () PROBLEM. Current () ALGORITHM.Output ()
1. function solve (obj,Problem) 1. function obj = Current (obj) 1. function Output (Algorithm, Problem)
2 try 2. persistent Problem; Bo o0 ooo
3 obj.pro = Problem; 3. if nargin > 0; Problem = obj; end 3. end
4. obj.result = {}; 4. if nargout > 0; obj = Problem; end
ER obj.metric = struct('runtime',0); 5. end
6 obj.pro.FE = 0;
7 addpath (fileparts (which (class (obj ALGORITHM.NotTerminated ()
8 1. function nofinish = NotTerminated (obj,Popuflation)
2 obj.metric.runtime = obj.metric.runtime/+ toc;
3 if obj.save <= 0; num = 10; else; num =f obj.save; end
4 index = min(num,size(obj.result,1)+1);
5. index = max(l,min(index,ceil (num*obj.pfro.FE/obj.pro.maxFE)));
6. obj.result(index,:) = {obj.pro.FE,Popylation};
7 drawnow () ; obj.outputFcn(obj,obj.pro)j;
8 nofinish = obj.pro.FE < obj.pro.maxFE;
9 assert (nofinish, 'PlatEMO:Termination','"); tic;
10.end

GA.main () ALGORITHM.ParameterSet ()
1. function main (Algorithm, Problem) /14 function varargout = ParameterSet (obj,varargin)
2 [proC, disC, proM,disM] = Algorithm.Parametersef(1,20,1,20); 2.  varargout = varargin;
3 Population = Problem.Initialization(); 3. specified = ~cellfun (@isempty,obj.parameter);
4. while Algorifhm.NotTerminated (Population) 4.  varargout (specified) = obj.parameter (specified);
5o 5. end
6.
e FitnessSingle ()
8. 1. function Fitness = FitnessSingle (Population)
S 2. PopCon = sum(max(0,Population.cons),2);
1B, el 3. Feas = PopCon <= 0;
11.end 4. Fitness = Feas.*Population.obis;
5. Fitness = Fitnesst~Feas.* (PopComklel0) ;
6. end

PROBLEM. Initialization () TournamentSelection ()

function index = TournamentSelection (K,N,vara
£ = @(s)reshape(s, [],1);

SOLUTION.cons ()
1. function v = cons (obj)
2. v = cat(l,obj.con);
3. end

. function Population =
if nargin < 2
N = obj.N;

1 Initialization (obj,N)
2

o

4. end

5

6

7

8

el
[~, rank]
[~, rank]

sortrows ([varargin{:}]);

switch obj.encoding sort (rank) ;

case 'binary'

SOLUTION.objs ()

L@ T e W e

Parents randi (length (varargin{1}),K,N);

PopDec = randi([0,1],N,0bj.D); [~,best] = min(rank(Parents),[],1); 1. function v = objs (obj)
. case 'permutation’ index = Parents (best+(0:N-1) *K) ; 2. v = cat(l,obj.obj);
9. [~,PopDec] = sort (rand(N,obj.D),2); end 3. end
10. otherwise
1. PopDec = unifrnd (repmat (obj.lower,N,1),repmat (obj.upper,N,1));
12. end ? (zee ’ oem ) " OperatorGA ()

function Offspring = OperatorGA(Parent,Parameter)

Population = SOLUTION (PopDec) ; =
2

3.

if calObj

4. Offspring = SOLUTION (Offspring);
k/ﬁf/—u

SOLUTION.SOLUTION ()

1. function obj = SOLUTION (PopDec,AddPro) PROBLEM.CalDec()

2 S B B () 1. function PopDec = CalDec (obj, PopDec)

Jo obj (1, size (PopDec,1)) = SOLUTION; B i eimerelet oty aaei )

4. Problem = PROBLEM.Current (); .

5. PopDec 3. N = slze(P?pDeC,l’i

e PopOb3 4. PopDec = min (PopDec, repmat (obj.upper,N,1)) ;
5 e R PopDec = max (PopDec, repmat (obj.lower,N,1)) ;
8. for i = 1 : length(obj) s' engnd

9. obj (i) .dec = PopDec (i, :); ©

10. obj (i) .obj = PopObj (i,:);

11. obj (i) .con = PopCon (i,:); SOP_F1.CalObj ()

12. end 1. function PopObj = CalObj (obj, PopDec)

13. if nargin > 1 2. PopObj = sum(PopDec.”2,2);

14. for i = 1 : length(obj) 3. end

15, obj (i) .add = AddPro(i,:);

o PROBLEM. CalCon ()

18. Problem.FE = Problem.FE + length (obj); 1. function PopCon = CalCon (obj, PopDec)

19. end 2. PopCon = zeros(size(PopDec,1),1);

20.end 3. end
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E. Metric Function

A metric should be written as a function and put in the folder P1atEMO\Metrics.

For example, the code of IGD.mis

1 function score = IGD (Population,optimum)

2 % <min>

3 % Inverted generational distance

4

5 e e Reference -—-————---—"—"—"—"""—"—"—"—"—"—-"———\———
6 $ C. A. Coello Coello and N. C. Cortes, Solving multiobjective

7 % optimization problem using an artificial immune system, Genetic
8 % Programming and Evolvable Machines, 2005, 6(2): 163-190.

g G o
10

11 PopObj = Population.best.objs;

12 if size (PopObj,2) ~= size(optimum, 2)

13 score = nan;

14 else

15 score = mean (min (pdist2 (optimum, PopObj), []1,2))

16 end

17 end

The functions of each line are as follows:

Line 1: Function declaration, where the first input is a population (i.e., an array of
SOLUTION objects), the second input is the optimums of a problem (i.e.,
the opt imum property of the problem), and the output is the metric value;

Line 2: Tagging the metric with <min> (the smaller metric value the better) or
<max> (the larger metric value the better);

Line 3: Full name of the metric;

Lines 5-9: Reference of the metric;

Line 11: Obtaining the feasible and non-dominated solutions in the population;

Lines 12-13: Returns nan if there is no feasible and non-dominated solution;

Lines 14-15: Returns the IGD value of the feasible and non-dominated solutions.
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V. List of Algorithms

g Bl el = 3
ol=lzl=|2|Ele|ls|l3]|2]| 2]l s
Abbreviation Full name 2lE2|s|8|2|2|E|2|85|E|s|s
a2 = F Sl El Tl 5127 ¢
2 S| @ E &
ABC Artificial bee colony algorithm \ \ v [N
AB-SAEA Adaptive Baye51gn based sur.rogate—ass1sted NE NN N
evolutionary algorithm
ACO Ant colony optimization \ v N
Adam Adaptive moment estimation \ \ \
AGE-II Approximation-guided evolutionary multi-objective algorithm II Y N A
AGE-MOEA Adaptive geometry e§t1matlon—ba§ed many-objective VININIV]Y N
evolutionary algorithm
A-NSGA-III Adaptive NSGA-III NN AN NN \
AR-MOEA Adaptive reference. points baseq multi-objective VININIV]Y N
evolutionary algorithm
BCE-IBEA Bi-criterion evolution based IBEA NN NN A
BCE-MOEA/D Bi-criterion evolution based MOEA/D NN NN A
A quasi-Newton method proposed by Broyden, Fletcher,
BFGS Goldfarb, and Shanno v v v
BiGE Bi-goal evolution NN A A
BSPGA Binary space partition tree based genetic algorithm \ \ v
CA-MOEA | Clustering based adaptive multi-objective evolutionary algorithm + N A
CCGDE3 Cooperative coevolution GDE3 \ \ \
CCMO Coevolutlona.ry.copstralned multi-objective N NI BN N N
optimization framework
c-DPEA Constrained dual-population evolutionary algorithm \ NN A \
CMA-ES Covariance matrix adaptation evolution strategy l l V|V
C-MOEA/D Constraint-MOEA/D VIV VA v
CMOEA-MS Constrained multiobj ective evolutionary algorithm with N VIV N
multiple stages
CMOPSO Competitive mechanism based multl-obj ective particle N N
swarm optimizer
CPS-MOEA Classification aqd Pfctreto dom}natlon based multi- N N N
objective evolutionary
CSEA Classification based surrogate-assisted evolutionary algorithm VAN N
CSO Competitive swarm optimizer \ \ v
C-TAEA Two-archive evolutionary algorithm for constrained MOPs NNV NN \
DAEA Duplication analysis based evolutionary algorithm \ \
DCNSGA-III Dynamic constrained NSGA-III N NN NN \
DE Differential evolution \ \ v
DEA-GNG | Decomposition based evolutionary algorithm guided by NN AN
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Abbreviation Full name 21| 8| 8|Sl 2| E|5|E]l 5|5
ZIE|E|T|B|E|S|E|e|2|%7|®
= = > = =
2 S I = 2
growing neural gas
DGEA Direction guided evolutionary algorithm \ \ \
DMOEA-eC Decomp0.51t10n—l.)ased multi-obj qctlve evolutionary N N NN
algorithm with the e-constraint framework
dMOPSO MOPSO based on decomposition \ \
DN-NSGA-II Decision space based niching NSGA-II \ \ \
DSPCMDE Dynamic se}ect'lon.pref@rence-z}smsted cpnstramed N NE NN N
multiobjective differential evolution
DWU Dominance-weighted unifolrmity multi-objective evolutionary N \
algorithm
EAG-MOEA/D External archive guided MOEA/D \ \
EDN-ARMOEA| Efficient dropout neural network based AR-MOEA VAN \
EFR-RR Ensemble fitness ranking with a ranking restriction scheme N NN NN
EGO Efficient global optimization \ \ \
EIM-EGO Expected improvement matrix based efficient global optimization + N, N
e-MOEA Epsilon multi-objective evolutionary algorithm NN AN NN
EMyO/C Evolutionary magy-ob] ectlYe optimization algorithm N BN N
with clustering-based
ENS-MOEA/D| Ensemble of different neighborhood sizes based MOEA/D VNN
FDV Fuzzy decision variable fre.tm.ework with various internal N BN N N
optimizers
FEP Fast evolutionary programming \ \ v [N
FRCG Fletcher-Reeves conjugate gradient \ \ \
FROFI Feasibility rule Wlth. the.lncorpor.atlon of objective N N N
function information
GA Genetic algorithm \ NN ANV
GDE3 Generalized differential evolution 3 \ \/ \/
GFM-MOEA Generic front moc}elmg based.multl—objectlve VIVINIV]Y
evolutionary algorithm
GLMO Grouped and linked mutation operator algorithm \ \ \
g-NSGA-II g-dominance based NSGA-II \ VN A \
GrEA Grid-based evolutionary algorithm NN A A
HeE-MOEA Multiobjective evolutionary algonthm w1'th N N N
heterogeneous ensemble based infill criterion
hpaEA Hyperplane assisted evolutionary algorithm N AN AN NN
HypE Hypervolume estimation algorithm N NN NN
IBEA Indicator-based evolutionary algorithm NNV NN
ICMA Indicator based constrained multi-objective algorithm S \ \
I-DBEA Improved decomposition-based evolutionary algorithm N NN NN \
IM-MOEA |Inverse modeling based multiobjective evolutionary algorithm \ N v
IM-MOEA/D Inverse modeling multiobjective evolutionary algorithm N N N

based on decomposition
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IMODE Improved multi-operator differential evolution \ \ v [N
I-SIBEA Interactive simple indicator-based evolutionary algorithm \ VNN N
KnEA Knee point driven evolutionary algorithm NN A A \
K-RVEA Surrogate-assisted RVEA VAN \
KTA2 Kriging-assisted Two_Arch2 NN A \
LCSA Linear combination-based search algorithm NN A \
LMEA Evolutionary algorithm for.large—scale many-objective NN N
optimization
LMOCSO Large-scale mu'ltl-.obj §ctlve competltlve swarm VIV NN
optimization algorithm
LMOEA-DS Large-scale evqlutlonary 'multl-obj ectlye optimization N N N
assisted by directed sampling
Large-scale multi-objective optimization framework
LSMOF with NSGA-II v v v
MaOEA-CSS Many-objective evo?utlonary algorlthms based on VININIV]Y
coordinated selection
MaOEA-DDFC Mgny-pbj ectlye e\{olutlonary algorithm based on VININIV]Y
directional diversity and favorable convergence
MaOEA/IGD IGD based many-objective evolutionary algorithm NN A
MaOEA/IT Many-obj ect1V§ evolutionary algorithms based on an N BN N N
independent two-stage
MaOFEA-R&D Many-obj ective eyolutlonary algo'rlthm based on VIvIV Y
objective space reduction
MCEA/D Multiple classifiers-assisted evolgt'lonary algorithm NN N
based on decomposition
MMOPSO MOPSO with multiple search strategies \ \
MO Ring_ Multiobjective PSO using ring topology and special N N N
PSO_SCD crowding distance
MOCell Cellular genetic algorithm \ NN A \
MO-CMA Multi-objective covariance matrix adaptation evolution strategy v N
MOEA/D Multiobjective evolutionary algorithm based on decomposition NN AN
MOEA/D-AWA| MOEA/D with covariance matrix adaptation evolution strategy N A A
M(éll::/IIXD- MOEA/D with covariance matrix adaptation evolution strategy N AN
MOEA/DD Many-obj ective evolutionary algorl.t}.lm based on VIVINIV]Y N
dominance and decomposition
MOEA/D-DAE MOEA/D with detect-and-escape strategy \ NN A \
MOEA/D- MOEA/D with distribution control of weight vector set N AN AN NN
DCwWV
MOEA/D-DE MOEA/D based on differential evolution VAN
MOEA/D-DRA MOEA/D with dynamical resource allocation NV
MOEA/D-DU MOEA/D with a distance based updating strategy N NN NN
Mgg{?/SD- MOEA/D with fitness-rate-rank-based multiarmed bandit NV
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MOEA/D-EGO MOEA/D with efficient global optimization \ \ \
MOEA/D- . . .
FRRMAB MOEA/D with fitness-rate-rank-based multiarmed bandit VAN
MOBA/D- MOEA/D based on MOP to MOP N N
M2M
MOEA/D- . . T
MRDL MOEA/D with maximum relative diversity loss \ \
MOEA/D-PaS | MOEA/D with Pareto adaptive scalarizing approximation VAN
MOEA/D-PFE MOEA/D with Pareto front estimation NN AN NN
MOEA/D-STM MOEA/D with stable matching VAN
MOEA/D-UR MOEA/D with update when required N NN NN
MOEA/D- . . . .
URAW MOEA/D with uniform randomly adaptive weights NN AN NN
MOEA/DVA Multi-objective evqlgtlonar}f algorithm based on N N N
decision variable
MOEA/D-VOV MOEA/D with virtual objective vectors NN AN NN
MOEA/IGD- Multi-objective evolutionary algorithm based on an N N NN
NS enhanced IGD
MOEA-PC | Multiobjective evolutionary algorithm based on polar coordinates v \/
MOEA/PSL Multi-objective evolut%onary algorithm based on Pareto N N NN N
optimal subspace
MOMBI-II Many objective metaheuristic based on the R2 indicator II NN NN
MOPSO Multi-objective particle swarm optimization \ V
MOPSO-CD MOPSO with crowding distance \ \
M-PAES Memetic algorithm with Pareto archived evolution strategy \ \
MP-MMEA Multi-population rnultl-modal' multi-objective N N N N
evolutionary algorithm
MPSO/D Multi-objective particle swarm optimization algorithm NN
based on decomposition
MSCMO Multi-stage constrained multi-objective evolutionary algorithm N NN v
MSEA Multi-stage multi-objective evolutionary algorithm \ NN A
MSOPS-II Multiple single objective Pareto sampling II NN \
MTS Multiple trajectory search \ \
Multlé)(l})]g ctive Multi-objective efficient global optimization \ \ VLA
MyO-DEMR |Many-objective differential evolution with mutation restriction NN
NelderMead The Nelder-Mead algorithm \ N
NMPSO Novel multi-objective particle swarm optimization NV
NNIA Nondominated neighbor immune algorithm \ NN
NSGA-II Nondominated sorting genetic algorithm II \ NN \
NSGA-II+ARSBX | NSGA-II with adaptive rotation based simulated binary crossover v \ v
I\Li(jf/;jg i NSGA-II with conflict-based partitioning strategy NN A A
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NSGA-III Nondominated sorting genetic algorithm III N NN NN \
NSGA-II/SDR NSGA-II with strengthened dominance relation NN N A
Multiobjective optimization framework based on
NSLS . ) ol ol
nondominated sorting and local search
OFA Optimal foraging algorithm \ \ v [N
one-by-one EA Many-objective evolutionary al.gorlthm using a one-by- VININIV]Y
one selection
OSP-NSDE Non—dommat?d .sort.mg dlffe.ren‘glal evolution with N
prediction in the objective space
ParEGO Efficient global optimization for Pareto optimization \ \
PB-NSGA-ITI NSGA-III based on queto b‘ase'd bi-indicator infill NN N
sampling criterion
PB-RVEA RVEA based on Pargto based .b1-1nd1cator infill NE NN N
sampling criterion
PeEA Pareto front shape estimation based evolutionary algorithm N NN NN
PESA-II Pareto envelope-based selection algorithm II \ VN A
PICEA-g  |Preference-inspired coevolutionary algorithm with goals NN AN NN
PM-MOEA | Pattern mining based multi-objective evolutionary algorithm \/ \ v
POCEA Paired offspring generatlon ba.sed constrained N N NN
evolutionary algorithm
PPS Push and pull search algorithm NN A \
PREA Promising-region based EMO algorithm N AN NN
PSO Particle swarm optimization \ \ v
RM-MEDA | Regularity model-based multiobjective estimation of distribution v N
RMSProp Root mean square propagation \ \ \
r-NSGA-II r-dominance based NSGA-I1 \ NN A \/
RPD-NSGA-II Reference point dominance-based NSGA-II NNV NN
RPEA Reference points-based evolutionary algorithm VNN
RSEA Radial space division based evolutionary algorithm N AN AN NN
RVEA Reference vector guided evolutionary algorithm NNV NN \
RVEAa RVEA embedded with the reference vector regeneration strategy S RV VA B
RVEA-iGNG RVEA based on improved growing neural gas N AN AN NN
S3-CMA-ES |Scalable small subpopulations based covariance matrix adaptation NN v
SA Simulated annealing \ \ v [N
SACC-EAM-II Surrogate-asmsted cooperative co-evolutionary N N N
algorithm of Minamo
SACOSO Surrogate-assisted cooperative swarm optimization \ \ \ \
SADE- Sammon mapping assisted differential evolution \ \ \
Sammon
SAMSO Multiswarm-assisted expensive optimization \ \ \ \
S-CDAS Self-controlling dominance area of solutions VNN
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SD Steepest descent \ \
SHADE Success-history based adaptive differential evolution \ \
SIBEA Simple indicator-based evolutionary algorithm \ \ \
SIBEA- SIBEA with minimum objective subset of size k with VIVIV Y
kEMOSS minimum error
SLMEA Super-large-scale multi-objective evolutionary algorithm v v | v \
SMEA Self-organizing multiobjective evolutionary algorithm \ \
SMPSO Speed-constrained multi-objective particle swarm optimization \ \
SMS-EGO S metric selection based efficient global optimization \ \ \
SMS-EMOA | S metric selection based evolutionary multiobjective optimization v NV
SparseEA Evolutionary alggrthm for sparse multi-objective N NE N N
optimization problems
SparseEA2 Improved SparseEA \ VoA v \
SPEA2 Strength Pareto evolutionary algorithm 2 \ NN
SPEA2+SDE SPEA2 with shift-based density estimation VNN
SPEA/R Strength Pareto evolutlongry a}gorlthm based on VININIV]Y
reference direction
SQP Sequential quadratic programming \ \ v
SRA Stochastic ranking algorithm NN A
t-DEA theta-dominance based evolutionary algorithm N AN NN
TiGE-2 Tri-Goal Evolution Framework for CMaOPs NN A A \
ToP Two-phase framework with NSGA-II \ \ \
TriMOEA- Multi-modal MOEA using two-archive and N N N
TA&R recombination strategies
Two_Arch2 Two-archive algorithm 2 NN AN NN
VaEA Vector angle based evolutionary algorithm N AN AN
WOF Weighted optimization framework \ \ \
WV-MOEA-P Weight vector based multi-objective optimization N N N

algorithm with preference
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V1. List of Problems

Abbreviation

Full name

single

multi

many

real

binary

permutation

large

constrained

expensive

multimodal

sparse

preference

BT1

Benchmark MOP with bias feature

BT2

Benchmark MOP with bias feature

BT3

Benchmark MOP with bias feature

BT4

Benchmark MOP with bias feature

BTS5

Benchmark MOP with bias feature

BT6

Benchmark MOP with bias feature

BT7

Benchmark MOP with bias feature

BTS

Benchmark MOP with bias feature

BT9

Benchmark MOP with bias feature

2L ||| 2|22 ||| =<

CEC2008 F1

Shifted sphere function

CEC2008_F2

Shifted Schwefel's function

CEC2008_F3

Shifted Rosenbrock's function

CEC2008 _F4

Shifted Rastrign's function

CEC2008_F5

Shifted Griewank's function

CEC2008_F6

Shifted Ackley's function

CEC2008_F7

FastFractal 'DoubleDip' function

< || ||| |||l

P | B ) I -

CEC2010_F1

CEC'2010 constrained optimization benchmark problem

CEC2010_F2

CEC'2010 constrained optimization benchmark problem

CEC2010_F3

CEC"2010 constrained optimization benchmark problem

CEC2010_F4

CEC"2010 constrained optimization benchmark problem

CEC2010_F5

CEC'2010 constrained optimization benchmark problem

CEC2010_F6

CEC'2010 constrained optimization benchmark problem

CEC2010_F7

CEC"2010 constrained optimization benchmark problem

CEC2010_F8

CEC"2010 constrained optimization benchmark problem

CEC2010_F9

CEC'2010 constrained optimization benchmark problem

CEC2010_F10

CEC'2010 constrained optimization benchmark problem

CEC2010 _F11

CEC"2010 constrained optimization benchmark problem

CEC2010 F12

CEC'2010 constrained optimization benchmark problem

CEC2010 _F13

CEC"2010 constrained optimization benchmark problem

CEC2010 _F14

CEC"2010 constrained optimization benchmark problem

CEC2010 _F15

CEC'2010 constrained optimization benchmark problem

CEC2010_F16

CEC'2010 constrained optimization benchmark problem

CEC2010_F17

CEC"2010 constrained optimization benchmark problem

< |2 ||| ||| ||| |||l
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Abbreviation

Full name

single

multi

many

real

binary

permutation

large

expensive

multimodal

sparse

preference

CEC2010 _F18

CEC'2010 constrained optimization benchmark problem

<_ | constrained

CEC2013_F1

Shifted elliptic function

CEC2013_F2

Shifted Rastrigin's function

CEC2013_F3

Shifted Ackley's function

CEC2013_F4

7-nonseparable, 1-separable shifted and rotated elliptic function

CEC2013_F5

7-nonseparable, 1-separable shifted and rotated Rastrigin's function

CEC2013_F6

7-nonseparable, 1-separable shifted and rotated Ackley's function

CEC2013_F7

7-nonseparable, 1-separable shifted and rotated Schwefel's function

CEC2013_F8

20-nonseparable shifted and rotated elliptic function

CEC2013_F9

20-nonseparable shifted and rotated Rastrigin's function

CEC2013_F10

20-nonseparable shifted and rotated Rastrigin's function

CEC2013_F11

20-nonseparable shifted and rotated Schwefel's function

CEC2013_F12

Shifted Rosenbrock's function

CEC2013_F13

Shifted Schwefel's function with conforming
overlapping subcomponents

P | R - - ) - I R (- [ I R .

P | R - - - - I R (- - I R .

CEC2013_F14

Shifted Schwefel's function with conflicting overlapping
subcomponents

CEC2013_F15

Shifted Schwefel's function

< | <2 P | N - - - - I I - I =y .

CEC2017 F1

CEC"2017 constrained optimization benchmark problem

CEC2017 F2

CEC"2017 constrained optimization benchmark problem

CEC2017_F3

CEC'2017 constrained optimization benchmark problem

CEC2017_F4

CEC'2017 constrained optimization benchmark problem

CEC2017_F5

CEC"2017 constrained optimization benchmark problem

CEC2017_F6

CEC"2017 constrained optimization benchmark problem

CEC2017_F7

CEC'2017 constrained optimization benchmark problem

CEC2017_F8

CEC'2017 constrained optimization benchmark problem

CEC2017_F9

CEC"2017 constrained optimization benchmark problem

CEC2017_F10

CEC"2017 constrained optimization benchmark problem

CEC2017_F11

CEC'2017 constrained optimization benchmark problem

CEC2017_F12

CEC'2017 constrained optimization benchmark problem

CEC2017_F13

CEC"2017 constrained optimization benchmark problem

CEC2017 F14

CEC"2017 constrained optimization benchmark problem

CEC2017_F15

CEC"2017 constrained optimization benchmark problem

CEC2017_F16

CEC"2017 constrained optimization benchmark problem

CEC2017_F17

CEC'2017 constrained optimization benchmark problem

CEC2017_F18

CEC'2017 constrained optimization benchmark problem

CEC2017_F19

CEC"2017 constrained optimization benchmark problem

CEC2017_F20

CEC"2017 constrained optimization benchmark problem
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CEC2017_F21 |CEC'2017 constrained optimization benchmark problem| \ \
CEC2017_F22 |CEC'2017 constrained optimization benchmark problem| \ \
CEC2017_F23 |CEC'2017 constrained optimization benchmark problem| \ \
CEC2017_F24 |CEC'2017 constrained optimization benchmark problem| \ \
CEC2017_F25 |CEC'2017 constrained optimization benchmark problem| \ \
CEC2017_F26 |CEC'2017 constrained optimization benchmark problem| \ \
CEC2017_F27 |CEC'2017 constrained optimization benchmark problem| \ \
CEC2017_F28 |CEC'2017 constrained optimization benchmark problem| \ \
CEC2020 _F1 Bent cigar function \ \
CEC2020_F2 Shifted and rotated Schwefel's function \ \
CEC2020 F3 Shifted and rotated Lunacek bi-Rastrigin function \ \
CEC2020_F4 Expanded Rosenbrock's plus Griewangk's function \ \
CEC2020_F5 Hybrid function 1 \ \
CEC2020 F6 Hybrid function 2 \ \
CEC2020 F7 Hybrid function 3 \ \
CEC2020 F8 Composition function 1 \ \
CEC2020_F9 Composition function 2 \ \
CEC2020 F10 Composition function 3 \ \
CF1 Constrained benchmark MOP \ \ v
CF2 Constrained benchmark MOP \ \ v
CF3 Constrained benchmark MOP \ \ v
CF4 Constrained benchmark MOP \ \ v
CF5 Constrained benchmark MOP \ \ v
CF6 Constrained benchmark MOP \ \ v
CF7 Constrained benchmark MOP \ \ v
CF8 Constrained benchmark MOP \ \ v
CF9 Constrained benchmark MOP \ \ v
CF10 Constrained benchmark MOP \ \ v
DAS-CMOPI1 | Difficulty-adjustable and scalable constrained benchmark MOP \/ \/ v [N
DAS-CMOP2 | Difficulty-adjustable and scalable constrained benchmark MOP + N NN
DAS-CMOP3 | Difficulty-adjustable and scalable constrained benchmark MOP \ V v
DAS-CMOP4 | Difficulty-adjustable and scalable constrained benchmark MOP S \ v
DAS-CMOPS5 | Difficulty-adjustable and scalable constrained benchmark MOP \/ N vV
DAS-CMOPS6 | Difficulty-adjustable and scalable constrained benchmark MOP + N N A
DAS-CMOP7 | Difficulty-adjustable and scalable constrained benchmark MOP N \ v [N
DAS-CMOPS | Difficulty-adjustable and scalable constrained benchmark MOP \/ \ v
DAS-CMOP9 | Difficulty-adjustable and scalable constrained benchmark MOP \/ N v
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DOC1 Benchmark MOP with constraints in decision and objective spaces v \/ \
DOC2 Benchmark MOP with constraints in decision and objective spaces v \/ \
DOC3 Benchmark MOP with constraints in decision and objective spaces v \ \
DOC4 Benchmark MOP with constraints in decision and objective spaces v \ \
DOC5 Benchmark MOP with constraints in decision and objective spaces v \/ \
DOC6 Benchmark MOP with constraints in decision and objective spaces v \/ \
DOC7 Benchmark MOP with constraints in decision and objective spaces v \ \
DOCS Benchmark MOP with constraints in decision and objective spaces v \/ \
DOC9 Benchmark MOP with constraints in decision and objective spaces v \/ \
DTLZ1  |Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler N R Y \ \
DTLZ2 Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler R VA \ \
DTLZ3 Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler N A A v N
DTLZ4  |Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler NN \ \
DTLZ5  |Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler NN \ \
DTLZ6 Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler NN \ \
DTLZ7 Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler N A A v N
DTLZS  |Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler NN NN
DTLZ9  |Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler NN NN A
CDTLZ2 Convex DTLZ2 VAN V V
IDTLZ1 Inverted DTLZ1 VAN V l
IDTLZ2 Inverted DTLZ2 VNN V l
SDTLZ1 Scaled DTLZ1 VAN V V
SDTLZ2 Scaled DTLZ2 VAN V V
C1-DTLZ1 Constrained DTLZ1 VNN ViV
C1-DTLZ3 Constrained DTLZ3 VNN ViV
C2-DTLZ2 Constrained DTLZ2 VAN ViV
C3-DTLZ4 Constrained DTLZ4 VAN ViV
DCI1-DTLZ1 DTLZ1 with constrains in decision space VAN VNN
DC1-DTLZ3 DTLZ3 with constrains in decision space VAN VNN
DC2-DTLZ1 DTLZ1 with constrains in decision space VAN NN
DC2-DTLZ3 DTLZ3 with constrains in decision space NN NN
DC3-DTLZI DTLZ1 with constrains in decision space VAN VNN
DC3-DTLZ3 DTLZ3 with constrains in decision space NV SR
FCP1 Benchmark constrained MOP proposed by Yuan \ \ \
FCP2 Benchmark constrained MOP proposed by Yuan \ \ \
FCP3 Benchmark constrained MOP proposed by Yuan \ \ \/
FCP4 Benchmark constrained MOP proposed by Yuan \ \ \
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FCP5 Benchmark constrained MOP proposed by Yuan \ \ \
IMMOEA_F1 Benchmark MOP for testing IM-MOEA \ \ \
IMMOEA F2 Benchmark MOP for testing IM-MOEA \ \ \
IMMOEA F3 Benchmark MOP for testing IM-MOEA \ \ \
IMMOEA _F4 Benchmark MOP for testing IM-MOEA \ \ \
IMMOEA_F5 Benchmark MOP for testing IM-MOEA \ \ \
IMMOEA F6 Benchmark MOP for testing IM-MOEA \ \ \
IMMOEA _F7 Benchmark MOP for testing IM-MOEA \ \ \
IMMOEA_F8 Benchmark MOP for testing IM-MOEA \ \ \
IMMOEA_F9 Benchmark MOP for testing IM-MOEA \ \ \
IMMOEA F10 Benchmark MOP for testing IM-MOEA \ \ \
IMOP1 Benchmark MOP with irregular Pareto front \ \ \
IMOP2 Benchmark MOP with irregular Pareto front \ \ \
IMOP3 Benchmark MOP with irregular Pareto front \ \ \
IMOP4 Benchmark MOP with irregular Pareto front \ \ \
IMOPS5 Benchmark MOP with irregular Pareto front \ \ \
IMOP6 Benchmark MOP with irregular Pareto front \ \ \
IMOP7 Benchmark MOP with irregular Pareto front \ \ \
IMOP8 Benchmark MOP with irregular Pareto front \ \ \
KP The knapsack problem \ \ v
LIR-CMOP1 Constrained benchmark MOP with large infeasible regions \/ \ v
LIR-CMOP2 Constrained benchmark MOP with large infeasible regions v N v A
LIR-CMOP3 Constrained benchmark MOP with large infeasible regions v N v A
LIR-CMOP4 Constrained benchmark MOP with large infeasible regions \/ \ v
LIR-CMOP5 Constrained benchmark MOP with large infeasible regions \/ \ v
LIR-CMOP6 | Constrained benchmark MOP with large infeasible regions v N v A
LIR-CMOP7 Constrained benchmark MOP with large infeasible regions v N v A
LIR-CMOPS Constrained benchmark MOP with large infeasible regions \/ \ v
LIR-CMOP9 Constrained benchmark MOP with large infeasible regions \/ \ v
LIR-CMOP10 | Constrained benchmark MOP with large infeasible regions v N v A
LIR-CMOPI11 | Constrained benchmark MOP with large infeasible regions v N v A
LIR-CMOP12 | Constrained benchmark MOP with large infeasible regions \/ \ v
LIR-CMOP13 | Constrained benchmark MOP with large infeasible regions \/ \ v
LIR-CMOPI14 | Constrained benchmark MOP with large infeasible regions \ N v
LSMOP1 Large-scale benchmark MOP NN \
LSMOP2 Large-scale benchmark MOP VAN \
LSMOP3 Large-scale benchmark MOP VAN \
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181 LSMOP4 Large-scale benchmark MOP NN A \
182 LSMOP5 Large-scale benchmark MOP NN A \
183 LSMOP6 Large-scale benchmark MOP VAN \
184 LSMOP7 Large-scale benchmark MOP VAN \
185 LSMOP8 Large-scale benchmark MOP NN A \
186 LSMOP9 Large-scale benchmark MOP NN A \
187 MaF1 Inverted DTLZ1 VIV v
188 MaF2 DTLZ2BZ VIV v
189 MaF3 Convex DTLZ3 VN A V
190 MaF4 Inverted and scaled DTLZ3 NN A \
191 MaF5 Scaled DTLZ4 VIV v
192 MaF6 DTLZ5IM VIV v
193 MaF7 DTLZ7 VAN v
194 MaF8 MP-DMP VAN
195 MaF9 ML-DMP VAN
196 MaF10 WFGI VIV v
197 MaF11 WFG2 VIV v
198 MaF12 WFG9 VIV v
199 MaF13 P7 VIV v
200 MaF14 LSMOP3 VIV v
201 MaF15 Inverted LSMOPS VIV v
202 MLDMP The multi-line distance minimization problem NN
203 MMF1 Multi-modal multi-objective test function \ \ \
204 MMEF2 Multi-modal multi-objective test function \ \ \
205 MMEF3 Multi-modal multi-objective test function \ \ \
206 MMF4 Multi-modal multi-objective test function \ \ \
207 MMF5 Multi-modal multi-objective test function \ \ \
208 MMF6 Multi-modal multi-objective test function \ \ \
209 MME7 Multi-modal multi-objective test function \ \ \
210 MMF8 Multi-modal multi-objective test function \ \ \
211 MMMOP1 Multi-modal multi-objective optimization problem NN \
212 MMMOP2 Multi-modal multi-objective optimization problem NV \
213 MMMOP3 Multi-modal multi-objective optimization problem NV \
214 | MMMOP4 Multi-modal multi-objective optimization problem NN \
215 | MMMOPS5 Multi-modal multi-objective optimization problem NN \
216 MMMOP6 Multi-modal multi-objective optimization problem NV \
217 | MOEADDE F1 Benchmark MOP for testing MOEA/D-DE \ \ \
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MOEADDE F2 Benchmark MOP for testing MOEA/D-DE \ \ \
MOEADDE F3 Benchmark MOP for testing MOEA/D-DE \ \ \
MOEADDE F4 Benchmark MOP for testing MOEA/D-DE \ \ \
MOEADDE F5 Benchmark MOP for testing MOEA/D-DE \ \ \
MOEADDE F6 Benchmark MOP for testing MOEA/D-DE \ \ \
MOEADDE F7 Benchmark MOP for testing MOEA/D-DE \ \ \
MOEADDE F8 Benchmark MOP for testing MOEA/D-DE \ \ \
MOEADDE F9 Benchmark MOP for testing MOEA/D-DE \ \ \
MOEADM2M F1 Benchmark MOP for testing MOEA/D-M2M \ \ \
MOEADM2M_F2 Benchmark MOP for testing MOEA/D-M2M \ \ \
MOEADM2M_F3 Benchmark MOP for testing MOEA/D-M2M \ \ \
MOEADM2M_F4 Benchmark MOP for testing MOEA/D-M2M \ \ \
MOEADM2M_F5 Benchmark MOP for testing MOEA/D-M2M \ \ \
MOEADM2M_F6 Benchmark MOP for testing MOEA/D-M2M \ \ \
MOEADM2M_F7 Benchmark MOP for testing MOEA/D-M2M \ \ \
MOKP The multi-objective knapsack problem SR \ \
MONRP The multi-objective next release problem \ \ \
MOTSP The multi-objective traveling salesman problem VA VA
MPDMP The multi-point distance minimization problem NN
mQAP The multi-objective quadratic assignment problem SR v Y
MW1 Constrained benchmark MOP proposed by Ma and Wang \/ \ v
MW?2 Constrained benchmark MOP proposed by Ma and Wang v \ v A
MW3 Constrained benchmark MOP proposed by Ma and Wang v \ v A
Mw4 Constrained benchmark MOP proposed by Ma and Wang NV v
MWS5 Constrained benchmark MOP proposed by Ma and Wang \/ \ v
MW6 Constrained benchmark MOP proposed by Ma and Wang v \ v A
MW7 Constrained benchmark MOP proposed by Ma and Wang v \ v A
MWS8 Constrained benchmark MOP proposed by Ma and Wang NV v
MW9 Constrained benchmark MOP proposed by Ma and Wang \/ \ v
MW10 Constrained benchmark MOP proposed by Ma and Wang v N v A
MWI11 Constrained benchmark MOP proposed by Ma and Wang v N v A
MW12 Constrained benchmark MOP proposed by Ma and Wang \/ \ v
MW13 Constrained benchmark MOP proposed by Ma and Wang \/ \ v
MW14 Constrained benchmark MOP proposed by Ma and Wang VAN v [N
RMMEDA F1 Benchmark MOP for testing RM-MEDA \ \ \
RMMEDA_F2 Benchmark MOP for testing RM-MEDA \ \ \
RMMEDA _F3 Benchmark MOP for testing RM-MEDA \ \ \
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RMMEDA _ F4 Benchmark MOP for testing RM-MEDA \ \ \
RMMEDA _F5 Benchmark MOP for testing RM-MEDA \ \ \
RMMEDA _F6 Benchmark MOP for testing RM-MEDA \ \ \
RMMEDA F7 Benchmark MOP for testing RM-MEDA \ \ \
RMMEDA _F8 Benchmark MOP for testing RM-MEDA \ \ \
RMMEDA_F9 Benchmark MOP for testing RM-MEDA \ \ \
RMMEDA_F10 Benchmark MOP for testing RM-MEDA \ \ \
Sparse CD The community detection problem \ \ \ \ \
Sparse CN The critical node detection problem \ \ \ \ \
Sparse FS The feature selection problem \ \ \ \ \
Sparse IS The instance selection problem \ \ \ \ \
Sparse KP The sparse multi-objective knapsack problem SR \ \
Sparse NN The neural network training problem \ \ \ \ \
Sparse PM The pattern mining problem \ \ \ \ \
Sparse PO The portfolio optimization problem \ \ \ \ \
Sparse_ SR The sparse signal reconstruction problem \ \ \ \ \
SMMOPI1 Sparse multi-modal multi-objective optimization problem NN \ v
SMMOP2 Sparse multi-modal multi-objective optimization problem VAN \ v [N
SMMOP3 Sparse multi-modal multi-objective optimization problem VAN \ v [N
SMMOP4 Sparse multi-modal multi-objective optimization problem NN \ v
SMMOP5 Sparse multi-modal multi-objective optimization problem NV \ v
SMMOP6 Sparse multi-modal multi-objective optimization problem VA A \ v
SMMOP7 Sparse multi-modal multi-objective optimization problem VAN \ v
SMMOPS Sparse multi-modal multi-objective optimization problem NV \ v
SMOP1 Benchmark MOP with sparse Pareto optimal solutions NV \ \ \
SMOP2 Benchmark MOP with sparse Pareto optimal solutions VAN \ \ \
SMOP3 Benchmark MOP with sparse Pareto optimal solutions NN \ \ \
SMOP4 Benchmark MOP with sparse Pareto optimal solutions NV \ \ \
SMOP5 Benchmark MOP with sparse Pareto optimal solutions NV \ \ \
SMOP6 Benchmark MOP with sparse Pareto optimal solutions VAN \ \ \
SMOP7 Benchmark MOP with sparse Pareto optimal solutions NN \ \ \
SMOPS Benchmark MOP with sparse Pareto optimal solutions NV \ \ \
SOP _F1 Sphere function \ \ \
SOP_F2 Schwefel's function 2.22 \ \ \
SOP_F3 Schwefel's function 1.2 \ \ \
SOP_F4 Schwefel's function 2.21 \ \ \
SOP_F5 Generalized Rosenbrock's function \ \ \
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SOP_F6 Step function \ \ \
SOP_F7 Quartic function with noise \ \ \
SOP_F8 Generalized Schwefel's function 2.26 \ \ \
SOP_F9 Generalized Rastrigin's function \ \ \
SOP _F10 Ackley's function \ \ \
SOP_Fl1 Generalized Griewank's function \ \ \
SOP F12 Generalized penalized function \ \ \
SOP_F13 Generalized penalized function \ \ \
SOP_F14 Shekel's foxholes function \ \ \
SOP_F15 Kowalik's function \ \ \
SOP_F16 Six-hump camel-back function \ \ \
SOP F17 Branin function \ \ \
SOP_F18 Goldstein-price function \ \ \
SOP _F19 Hartman's family \ \ \
SOP_F20 Hartman's family \ \ \
SOP_F21 Shekel's family \ \ \
SOP_F22 Shekel's family \ \ \
SOP_F23 Shekel's family \ \ \
TREE1 The time-varying ratio error estimation problem \ \ NN A
TREE2 The time-varying ratio error estimation problem \ \ NN
TREE3 The time-varying ratio error estimation problem \ \ NN
TREE4 The time-varying ratio error estimation problem \ \ NN
TREES The time-varying ratio error estimation problem \ \ NN
TREE6 The time-varying ratio error estimation problem \ \ NN
TSP The traveling salesman problem \ V|
UF1 Unconstrained benchmark MOP \ \ \
UF2 Unconstrained benchmark MOP \ \ \
UF3 Unconstrained benchmark MOP \ \ \
UF4 Unconstrained benchmark MOP \ \/ \/
UF5 Unconstrained benchmark MOP \ \ \
UF6 Unconstrained benchmark MOP \ \ \
UF7 Unconstrained benchmark MOP \ \ \
UF8 Unconstrained benchmark MOP \ \ \
UF9 Unconstrained benchmark MOP \ \ \
UF10 Unconstrained benchmark MOP \ \ \
VNTI Benchmark MOP proposed by Viennet S \
VNT2 Benchmark MOP proposed by Viennet \ \
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Section VI. List of Problems

N I o = I ‘% ) —é q‘f :z 2 g
Abbreviation Full name %“ E é B % g ki % g _% g 3
2 S| °|E £
VNT3 Benchmark MOP proposed by Viennet \ \
VNT4 Benchmark MOP proposed by Viennet \ \ \
WFG1 Benchmark MOP proposed by Walking Fish Group VAN \ \
WFG2 Benchmark MOP proposed by Walking Fish Group VAN \ \
WEFG3 Benchmark MOP proposed by Walking Fish Group NN A \ \
WFG4 Benchmark MOP proposed by Walking Fish Group NN A \ \
WFGS5 Benchmark MOP proposed by Walking Fish Group VAN \ \
WFG6 Benchmark MOP proposed by Walking Fish Group VAN \ \
WFG7 Benchmark MOP proposed by Walking Fish Group NN A \ \
WFG8 Benchmark MOP proposed by Walking Fish Group VAN \ \
WFG9 Benchmark MOP proposed by Walking Fish Group VNN \ \
ZDT1 Benchmark MOP proposed by Zitzler, Deb, and Thiele \ \ \ \
ZDT2 Benchmark MOP proposed by Zitzler, Deb, and Thiele \ \ \ \
ZDT3 Benchmark MOP proposed by Zitzler, Deb, and Thiele \ \ \ \
ZDT4 Benchmark MOP proposed by Zitzler, Deb, and Thiele \ \ \ \
ZDT5 Benchmark MOP proposed by Zitzler, Deb, and Thiele \ \ \ \
ZDT6 Benchmark MOP proposed by Zitzler, Deb, and Thiele \ \ \ \
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