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1. Introduction
Solid-state battery (SSB) technology promises im-

proved capacity and safety compared to conven-
tional batteries with liquid electrolytes [1–4]. This
advancement has the potential to address the press-
ing energy storage challenges in various applica-
tions, including electric vehicles, portable electron-
ics, and renewable energy integration [1, 4]. The
widespread adoption of SSBs is, however, impeded
by several obstacles. A number of challenges involve
achieving and maintaining physical and chemical
stability at the electrolyte-electrode interfaces [5, 6].
Moreover, there is a general limitation of ionic con-
ductivity in solids, which tends to be lower than that
of liquid electrolytes [3, 7]. Therefore, the need for
new fast-conductingmaterials remains amajor chal-
lenge in the development of SSBs [3].
Computational techniques for assessing ionic

conductivities in solids pave the way for in silico dis-
covery of novel superionic materials [8, 9]. Among
these techniques, molecular dynamics simulations
driven by forces fromKohn-Shamdensity functional
theory (DFT), hereafter referred to as ab initiomolec-
ular dynamics (AIMD), allow to identify, understand,
and evaluate the ion diffusion mechanisms in new
materials [8]. These calculations have been success-
fully utilized in various studies focused on solid elec-
trolyte discovery [10–12]. The biggest limitation of
this approach is its high computational cost, which
motivates the use of faster approximate screening
methods on largematerial datasets before validating
the final predictions with AIMD. For instance, such
a scheme is applied in [11], where approximate dif-
fusivity is evaluated using a simplifiedmolecular dy-
namics model with lithium ions moving in a frozen
host lattice (the pinball model). Similarly, Ref. [12]
follows this logic, using a logistic regression model
fitted to labeled data on ionic conductivity for initial
screening.
In this work, we propose a heuristic approach

for predictingmaterials with high ionic conductivity
based on the analysis of the potential energy land-
scape observed by mobile ions. Our technique is
designed to be computationally efficient and auto-
mated, making it suitable for large-scale screening
of solid electrolytes. To test the method, we apply

it to lithium-containing structures from the Materi-
als Project database [13]. We find that the resulting
predictions, while including well-known superionic
materials like LGPS [14] or Li7P3S11 [15], also con-
tain a number of less expected candidates. In par-
ticular, our top prediction, LiB3H8, is a hydroborate
that, to the best of our knowledge, has not been stud-
ied as a potential ionic conductor before. In fact, our
method has highlighted a number of hydroborates, a
known family of superionic conductors, without us-
ing any prior information regarding ionic conductiv-
ity within this family. Notably, this family is typically
not present infindings fromsimilar high-throughput
searches [11, 12, 16–18], indicating that our approach
complements existing methods. Figure 1 demon-
strates a flowchart of logical steps performed in this
study.

2. Methodology
For a given structure, we analyze the potential

energy landscape observed by the mobile ion while
remaining ions are fixed in their equilibrium loca-
tions. We denote this setup as the frozen framework
approximation. We evaluate the potential energy us-
ing theM3GNet [19]model, thoughwe expect our ap-
proach to work with other universal potential mod-
els or DFT. A discussion of the errors introduced by
these approximations can be found in Appendix B.
We extract various numeric features from the po-
tential energy landscape and select those that show
the highest correlation with Li conductivity in the
labeled structures, as described in Appendix A. Fi-
nally, we validate our results by running AIMD sim-
ulations for the top predictions, with more details
in Appendix C. For a complete description of the
methodology, we direct the reader to [20].

3. Results
3.1 Accuracy based on top 10 candidates
From the top ten predicted structures, five

are well-studied superionic materials derived from
LGPS through element substitution [10] and are
therefore excluded from our AIMD validation proce-
dure. Of the remaining five, three — orthorhombic
LiB3H8 (mp-1211100), cubic Li(BH)6 (mp-1211296)
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Fig. 1: Flowchart illustrating the logical steps of the study: (left) calculation and optimization of descriptors,
and (right) prediction and validation of the most promising candidates

and hexagonal LiBH4 (mp-644223) — demonstrate
significant lithium mobility in low-temperature
AIMD simulations. The other two — wurtzite LiI
(mp-570935) and fluorite-structured Li2Te (mp-2530)
— are only diffusive at T = 1000K, as shown in
Fig. A2. Overall, this yields eight out of ten correct
predictions for superionic behavior at room temper-
ature and ten out of ten for high temperatures.

3.2 Hydroborate candidates
Of the lithium hydroborate predictions, the best

studied is the hexagonal LiBH4 [21–23]. It has been
found experimentally to have an ionic conductiv-
ity of the order of 1mS / cm at T = 110 ◦C, below
which it exists in a different phase. Cubic Li(BH)6
has been found to have low diffusivity in a computa-
tional study, but a closely connected orthorhombic
distortion of the structure is reported to have a con-
ductivity of up to 0.1 S / cm at 700K [24].
To the best of our knowledge, lithium conductiv-

ity has not been previously studied in LiB3H8, our
top prediction. The similar NaB3H8 structure has re-
cently been successfully used in a composite solid
electrolyte in a sodium-metal SSB [25, 26]. Ionic con-
ductivity and relaxation times for anionic reorien-
tation have also been studied for various phases of
the related KB3H8 [27, 28]. In our AIMD calcula-
tions, LiB3H8 has demonstrated very high conduc-
tivity at the lowest temperature simulated, σ500K =
1.6± 0.4 S / cm. The fitted activation energy is EA =
99± 93meV; however theR2 for this fit is only 0.696,
which doesn’t allow for a reliable extrapolation to
room temperature.

3.3 Computational efficiency
We note that our PES descriptors are very fast to

calculate when compared to other methods for pre-
dicting ionic conductivity. Running our calculations
on a single machine with 48-core Intel Xeon w7-3455
CPU and two 46-GB NVIDIA RTX 6000 Ada Genera-

tion GPUs yielded the average calculation speed of
∼ 1.7 minutes per structure. For comparison, the
same characteristic for the SevenNet [29] molecular
dynamics used for additional validation described in
Appendix D is of the order of ∼ 100 minutes per
structure. OurAIMDcalculations, though runondif-
ferent hardware (64 CPU cores, without GPU accel-
eration) and therefore not directly comparable, take
between four and twelve days per structure per tem-
perature point, depending on the material.

4. Conclusion
We have proposed an effective and computation-

ally efficient technique for screening solid elec-
trolyte materials through the analysis of the po-
tential energy landscape experienced by the mo-
bile ions. Having applied our method to lithium-
containing structures from the Materials Project,
we demonstrate its accuracy with ten out of ten of
the highest-ranked predictions agreeing with first-
principles calculations at T = 1000K, and eight out
of ten at room temperature. Notably, our technique
has highlighted several hydroborate structures, a
known family of superionic conductors, which typi-
cally evadeother screening approaches. Our toppre-
diction, LiB3H8, has demonstrated very high ionic
mobility in AIMD calculations. To the best of our
knowledge, this material has not been studied as an
ionic conductor before.
The code implementing the proposed technique,

as well as the predictions calculated for lithium-
containing structures from theMaterials Project, are
available in [30].
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Appendix A. Potential energy surface analysis

In recent years, several machine learning mod-
els have been developed to successfully approxi-
mate the ab initio interatomic potential given the
atomic structure [19, 29, 31–34]. Trained on exten-
sive datasets of DFT structural relaxations [13] and
covering most elements in the periodic table rele-
vant to applications, these models are often referred
to as universal potentials [35]. Throughout this work,
we use one of suchmodels, M3GNet [19], to calculate
potential energy surface (PES) values for the studied
structures.
Inspired by the frozen host lattice idea behind the

pinball model from [11], our method evaluates the
PES as a function of a single mobile ion’s position,
with the remaining ions fixed in their locations from
the original relaxed structure. We refer to this ap-
proximation as the frozen framework approximation.
In contrast to the pinball model, however, we assess
this static picture without time integration. We eval-
uate the PES on a discrete grid of possible locations
spanning the entire unit cell and calculate character-
istics of the resulting landscape.
These characteristics are designed to correlate

with ionic conductivity. In particular, we find the
minimum-energy migration path and calculate the
associated barrier, referred to as theminimal percola-
tion energy (MPE). Additionally, we calculate the frac-
tional volume of the set of locations r⃗ with energy
below a given threshold τ , denoted as the free volume
(FV), which is defined in two variations. The first
variation, referred to as disconnected, considers any
(potentially disconnected) set of such locations:

FVdisc.τ =
|{r⃗ : PES(r⃗) < τ}|

|{r⃗}|
. (A1)

The second variation, denoted as connected,
FVcon.τ , includes only the connected subset of
{r⃗ : PES(r⃗) < τ} that contains the ion’s original
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(a) Li(BH)6, Ξ = 0.99 (b) Li2Te, Ξ = 0.97

(c) Li2In2GeS6, Ξ = 0.35 (d) Li3Bi(BO3)2, Ξ = 0.00

Fig. A1: Volumes defining one of the most power-
ful free volume descriptors, FVcon.τ=0.5 eV, for var-
ious structures. Each subplot shows the con-
nected subset of {r⃗ : PES(r⃗) < 0.5 eV} containing
themobile ion’s original site, where r⃗ denotes the
mobile ion location atwhich the potential energy
surface (PES) is evaluated. The isosurfaces are
shown in red everywhere except (d), where yel-
low color is used for the isosurface and red is re-
served to denote the oxygen atoms. Visualized
using [36].

minimum-energy location. Figure A1 shows such
connected subsets for various structures.
We use the available ionic conductivity data, both

experimental [18] and computational [11], to validate
the MPE and FV descriptors, as well as to optimize
the energy threshold τ used in the definition of FV.
From this analysis, we conclude that all proposed
PES descriptors (with τ for FV ranging from 0.1 eV
to 4 eV) demonstrate predictive power in identifying
superionic materials. Notably, both FVcon.τ=0.5 eV and
FVdisc.τ=0.5 eV outperformall other descriptors, although
there is no clear winner between the two.
We define a positive prediction by requiring that

both FVcon.τ=0.5 eV and FVdisc.τ=0.5 eV exceed certain cutoff
values tuned on the labeled data. To allow for mate-
rial ranking, we smooth these cutoffs using sigmoid
functions and calculate their product, resulting in
the combined ranking descriptor Ξ:

Ξ = S1 · S2,

S1 = s10 [2.00 + log10 FVcon.τ=0.5 eV] ,

S2 = s10

[
1.15 + log10 FVdisc.τ=0.5 eV

]
,

s10(x) ≡
1

1 + e−10x
.

(A2)

This descriptor is used to predict lithium su-
perionic materials within the Materials Project
database. We calculate our predictors for all lithium-
containing structureswithbandgapabove 0.5 eVand

energy above hull of at most 0.05 eV / atom, exclud-
ing structures containing transition metals to en-
hance stability against reduction, as done in [12].
This results in 1302 structures, with 113 of them hav-
ing both FV values above the cutoff values.

Appendix B. On the errors introduced by the
used approximations

The use of machine-learned interatomic potentials
for PES evaluation introduces errors associated with
the prediction accuracy of the underlying machine
learning model. For the M3GNet potential used in
this work, themean absolute error in energy predic-
tion on the Materials Project data, relative to ab ini-
tio relaxation energies, is reported as 34.7± 3.1meV
/ atom [19]. Applying the model outside its train-
ing domain can notably deteriorate accuracy, a phe-
nomenon typically referred to as generalization er-
ror. For instance, in molecular dynamics simula-
tions driven by learned potentials, this issue is typ-
ically addressed through active learning [37, 38]. In
our approach, however, the structures are intention-
ally kept close to the training domain due to the
frozen framework approximation: during PES evalu-
ation, only a single ion location is changed compared
to the relaxedMaterials Project structure. We expect
that this will minimize the generalization error.
The frozen framework approximation is expected

to steepen the potential landscape compared to that
of a realistic system. Experimental studies of su-
perionic conductors have demonstrated that ionic
hopping in these materials occurs on a timescale of
ns [39, 40], allowing for the relaxation of the remain-
ing ions and softening of the potential landscape.
However, wehypothesize that frozen frameworkPES
reflects the strength of interactions experienceddur-
ing ionic hopping. This hypothesis is supported by
the observed predictive power of the MPE and FV
descriptors, as discussed above, based on the con-
ductivity labels in both experimental and simulated
data.

Appendix C. Ab initio molecular dynamics vali-
dation

AIMD simulation is carried out for the structures
with the highest Ξ values. From the top ten predic-
tions, we exclude five well-studied superionic ma-
terials derived from LGPS through element substi-
tution [10] and perform validation only for the re-
maining five materials. Additionally, we simulate
one referencematerial, a known superionic conduc-
tor, Li7P3S11, which is ranked twelfth by the Ξ de-
scriptor.
The calculations are conducted using the SIESTA

code [41]. The forces are calculated using the gen-
eralized gradient approximation (GGA) of density
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Fig. A2: Conductivity as a function of 1/T for the top-
Ξ structures. Values below 10−2 S / cm are indi-
cated with triangles. Small horizontal shifts are
added to the points to enhance marker visibility.
The five well-studied LGPS-like superionic ma-
terials from the top-Ξ list are omitted from our
AIMD studies and therefore not shown.

functional theory [42], except for molecular solids,
for which we used the LMKLL parameterization [43]
of the van der Waals functional of Dion et al. [44].
The core electrons are represented by pseudopoten-
tials of the Troullier-Martins scheme [45]. The basis
sets for the Kohn-Sham states are linear combina-
tions of numerical atomic orbitals of the polarized
double-zeta type [46, 47].
We perform molecular dynamics simulations in

the NV T ensemble using a Nosé thermostat [48]
at three constant temperature values: 1000K, 667K,
and 500K. The diffusion coefficient is extracted
from the ionmean squared displacement, assuming
three-dimensional Brownian motion. We then con-
nect the diffusion coefficient to the conductivity us-
ing the Nernst-Einstein relation. The obtained con-
ductivity values are shown in Fig. A2 as a function of
1/T .
The results of our validation procedure are con-

sistent with the range of experimental measure-
ments for the reference Li7P3S11 structure. The ex-
tracted activation barrier and extrapolated room-
temperature conductivity are EA = 251 ± 15meV
and σRT = 7.4 ± 2.9mS / cm. In experimen-
tal measurements, these are EA = 295meV and
σRT = 8.3mS / cm for the most pure phase sam-
ple in Ref. [49], and EA = 124meV and σRT =
3.2mS / cm for the lowest activation barrier mea-
surement from [50].

Appendix D. Larger-scale validation using
machine-learned potential

To validate our predictions at a larger scale, we per-
form faster but less reliablemolecular dynamics cal-
culations driven by one of the recent universal po-
tential models, SevenNet [29], on the 100 largest-
Ξ predictions. Details for this procedure are pro-
vided in [20]. Overall, SevenNetmolecular dynamics
confirms 55% of our predictions to be superionic at
room temperature and 88% at T = 1000K. Table A1
lists our predictedmaterials that are confirmed to be
room-temperature superionic with SevenNetmolec-
ular dynamics and that have not been predicted in
Refs. [12, 17, 18].

MP identifier Composition Ξ

mp-1211100 LiB3H8 0.992
mp-1211296 Li(BH)6 0.99
mp-985583 Li3PS4 0.958
mp-1001069 Li48P16S61 0.956
mp-1097034 Li20Si3P3S23Cl 0.951
mp-1040451 Li20Si3P3S23Cl 0.949
mp-1097036 Li3PS4 0.931
mp-1222398 LiGa(GeSe3)2 0.896
mp-755463 Li3SbS3 0.887
mp-753720 Li3BiS3 0.858
mp-34038 Li6NCl3 0.814
mp-680395 Li3As7 0.783
mp-775806 Li3SbS3 0.763
mp-28336 Li3P7 0.721
mp-1222582 Li4GeS4 0.717
mp-753429 Li4Bi2S7 0.716
mp-985582 Li6PS5I 0.703
mp-1177520 Li3SbS3 0.658
mp-1211362 Li(BH)6 0.647
mp-1211446 Li7PSe6 0.606
mp-1222482 Li6AsS5I 0.539
mp-1211324 Li7PS6 0.538
mp-1195718 Li4SnS4 0.525
mp-950995 Li6PS5I 0.521
mp-1211176 Li6AsS5I 0.483

Table A1: Structures from the top-100 highest Ξ list
confirmed with molecular dynamics calcula-
tions driven by the SevenNet universal poten-
tial, excluding those predicted in Refs. [12, 17,
18].
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