
Appendix
Outline We provide detailed proofs for all of our theories in Secs. A to F. Sec. G provides
multiple additional experiments demonstrating that pseudo-labeling improves transfer learning and
that combining pseudo-labeling with adversarial training in the source further improves tranferability.
Sec. H provides additional details about our experiments.

Recall that in the main context, in Algorithm 1, we have Ŵ1  top-r SVD of [�̂1, �̂2, · · · , �̂T ].
Specifically, we assign the columns of Ŵ1 as the collection of the top-r left singular vectors of
[�̂1, �̂2, · · · , �̂T ].
The rest of proofs are based on the above methodology.

A Proof of Lemma 1

Let us define µ̂t =
Pnt

i=1 x
(t)
i y

(t)
/nt and µt = Bat for all t 2 [T + 1].

Notice that

Ĵ = (µ̂1/kµ̂1k, · · · , µ̂T /kµ̂T k) = (µ̂1, · · · , µ̂T )diag(kµ̂1k�1
, · · · , kµ̂T k�1)

As a result, doing SVD for Ĵ to obtain left singular vectors is equivalent to doing SVD for �̂ =
(µ̂1, · · · , µ̂T ) to obtain left singular vectors (up to an orthogonal matrix, meaning rotation of the
space spanned by the singular vectors) since multiplying a diagonal matrix on the right does not affect
the collection of left singular vectors. It further means doing SVD for Ĵ to obtain left singular vectors
is equivalent to obtaining left singular vectors for �̂ = (µ̂1, · · · , µ̂T )diag(kµ1k�1

, · · · , kµT k�1) (up
to an orthogonal matrix).

We mainly adopt the Davis-Kahan Theorem in [60]. We further denote � =
(µ1, · · · , µT )diag(kµ1k�1

, · · · , kµT k�1).
Lemma 2 (A variant of Davis–Kahan Theorem). Assume min{T, p} > r. For simplicity, we denote

�̂1 � �̂2 � · · · � �̂r as the top largest r singular value of �̂ and �1 � �2 � · · · � �r as the

top largest r singular value of �. Let V = (v1, · · · , vr) be the orthonormal matrix consists of left

singular vectors corresponding to {�i}ri=1 and V̂ = (v̂1, · · · , v̂r) be the orthonormal matrix consists

of left singular vectors corresponding to {�̂i}ri=1. Then,

k sin⇥(V̂ , V )kF . (2�1 + k�̂� �⇤kop)min{r0.5k�̂� �⇤kop, k�̂� �⇤kF }
�2
r

.

Moreover, there exists an orthogonal matrix Ô 2 R
r⇥r

, such that kV̂ Ô � V kF p
2k sin⇥(V̂ , V )kF , and

kV̂ Ô � V kF . (2�1 + k�̂� �⇤kop)min{r0.5k�̂� �⇤kop, k�̂� �⇤kF }
�2
r

.

It is worth noticing that actually B plays the exact same role as V . Since B has orthonormal columns,
for � we have

� = B(a1, · · · , aT )diag(kµ1k�1
, · · · , kµT k�1)

= B(a1, · · · , aT )diag(ka1k�1
, · · · , kaT k�1).

Thus, B is a solution of the SVD step in Algorithm 1.
Lemma 3 (Restatement of Lemma 1). Under Assumption 1, if n >

c1 max{pr2/T, r2 log(1/�)/T, r2} for some universal constant c1 > 0 and 2r  min{p, T}, for all

t 2 [T ]. For Ŵ1 obtained in Algorithm 1, with probability at least 1�O(n�100),
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Proof. By a direct application of Lemma 2, we can obtain

k sin⇥(Ŵ1, B)kF . (2�1 + k�̂� �kop)min{r0.5k�̂� �kop, k�̂� �kF }
�2
r

Besides, we know that the left singular vectors of � are the same as the ones of M = [a1, · · · , aT ]
since � = BMdiag(ka1k�1

, · · · , kaT k�1).

To estimate k�̂� �kop = supv2Sp�1 kv>(�̂� �)k, for any fixed v 2 S
p�1, by standard chaining

argument in Chapter 6 in [57], we know that
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n
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Then, we use chaining again for the  2-process {v : kv>(�̂� �)k}, we obtain
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Besides, we know �r(M) =
p
T/r by assumption 1, and we also have

Pr
i=1 �

2(M) = T , thus, we
know that �1(M) and �r(M) are both of order ⇥(

p
T/r)
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by simple calculation, we further have
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If we further have n > rmax{p/T, log(1/�)/T, 1}, we further have
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Plugging into � = n
�100, the proof is complete.

B Proof of Corollary 1

Corollary 2 (Restatement of Corollary 1). Under Assumption 1, if n >

c1 max{pr2/T, r2 log(1/�)/T, r2, rnT+1} for some universal constant c1 > 0, 2r  min{p, T},

then for Ŵ1 obtained in Algorithm 1, with probability at least 1�O(n�100),
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Proof. By DK-lemma, we know there exists a W
⇤
1 such that W ⇤

1 2 argminW2Op⇥r
kW>

µT+1k
(the minimizer is not unique, so we use 2 instead of = to indicate W

⇤
1 belongs to the set consists of

minimizers) and kW ⇤
1 � Ŵ1k is small.
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if n > r
2 max{p/T, log(1/�)/T, 1}. The last formula is due to the fact that W ⇤

1 and B are different
only up to an orthogonal matrix.

By standard chaining techniques, we have with probability 1� �

kB>
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>
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.

Thus, we can further bound kŴ1 �W
⇤
1 k by

p
2k sin⇥(Ŵ1, B)kF , thus, by Lemma 1, we have
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Now, if we further have n > rnT+1, we have
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(T+1)
2 ) .

s
r + log(1/�)

nT+1
+

r
r2p

nT
.

Plugging into � = n
�100, the proof is complete.

C Proof of Theorem 1

Theorem 5 (Restatement of Theorem 1). Under Assumption 2 and 3, for kaT+1k = ↵ = ⌦(1), if

n > c1 max{r2, r/↵T } · max{p log T, log n/T, 1} and n > c2(↵↵T )2rnT+1 for universal con-

stants c1, c2, 2r  min{p, T}. There exists a universal constant c3, such that if we choose

" 2 [maxt2S1 katk + c3

p
p log T/n,mint2S2 katk � c3

p
p log T/n] (this set will not be empty

if T, n are large enough), for Ŵ
adv
1 , ŵ

adv,(T+1)
2 obtained in Algorithm 2 with q = 2, with probability

at least 1�O(n�100),
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Proof. For `2-adversarial training, we have

�̂
adv
t = argmink�tk1 max

k�ikp"
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�y(t)i h�t, x
(t)
i + �ii

= argmink�tk1 max
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ntX
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�y(t)i h�t, x
(t)
i i+ "k�tk

Recall µ̂t =
1
nt

Pnt

i=1 y
(t)
i x

(t)
i , if we have kµ̂tk � ", then �̂adv

t = µ̂t/kµ̂tk, otherwise, �̂adv
t = 0.

We denote
Ĝ = [�̂adv

1 , · · · , �̂adv
T ].

Since |S1| = ⇥(T ), there exists a universal constant c3 such that with probability 1 � �, we have
for all i 2 S1, µ̂i  kaik + c3

p
p log T/n. Thus, if T is large enough, the set [maxt2S1 katk +

c3

p
p log T/n,mint2S2 katk � c3

p
p log T/n] is non-empty. If we choose " 2 [maxt2S1 katk +

c3

p
p log T/n,mint2S2 katk � c3

p
p log T/n], for all t 2 S2, �̂adv

t = µ̂t/kµ̂tk. Meanwhile, ĜS1

is a zero matrix.

Notice that the left singular vectors obtained by applying SVD to Ĝ for left singular vectors is
equivalent to applying SVD for left singular vectors to ĜS2 , which is further equivalent to applying
SVD for left singular vectors to �̂S2 , given that Ĝ2 is equal to �̂S2 times a diagonal matrix on the
right. Thus, we have

k sin⇥(Ŵ adv
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By our assumptions, we know that
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As a result,
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If we further have n >
r
↵T

max{p/T, log(1/�)/T, 1}, we further have
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Now, if we further have n > (↵↵T )2rnT+1, we have
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Plugging into � = n
�100, the proof is complete.

Remark 6 (`2-adversarial training v.s. standard training). The proof of the counterpart of Lemma 1

under the setting of Theorem 1 basically folllows similar methods in the proof of Lemma 1. The only

modification is that we need an extra step:
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and recall that both |S1| and |S2| are of order ⇥(T ).
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D Proof of Theorem 2

Theorem 6 (Restatement of Theorem 2). Under Assumptions 1 and 4, if n > c1 ·
r
2 max{s2 log2 T/T, rnT+1, 1} for some universal constants c1 > 0, 2r  min{p, T}. There

exists a universal constant c2, such that if we choose " > c2

p
log p/n, for and Ŵ

adv
1 , ŵ

adv,(T+1)
2

obtained in Algorithm 2 with q =1, with probability at least 1�O(n�100)�O(T�100),
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and the excess risk
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Proof. For `1-adversarial training, we have

�̂
adv
t = argmink�tk1 max
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Recall µ̂t = 1
nt

Pnt

i=1 y
(t)
i x

(t)
i . By observation, when reaching minimum, we have to have

sgn(�tj) = sgn(µ̂tj), therefore

argmaxk�tk=1

dX

j=1

µ̂tj�tj � "|�tj |

=argmaxk�tk=1

dX

j=1

(µ̂tj � " · sgn(µ̂tj))�tj

=
T"(µ̂)

kT"(µ̂)k
,

where T"(µ̂) is the hard-thresholding operator with (T"(µ̂))j = sgn(µ̂j) ·max{|µ̂j |� ", 0}.

We denote
Ĝ = [�̂adv

1 , · · · , �̂adv
T ].

By the choice of ", " & C

q
log p
n for sufficiently large C, we have that the column sparsities of

Ĝ is no larger than s log T . As a result, the total number of non-zero elements in Ĝ is less than
O(Ts log T ) with probability at least 1� T

�100.

Now we divide the rows of Ĝ by two parts: [p] = A1 [ A2, where A1 consists of indices of rows
whose sparsity smaller than or equal to s, and A2 consists of indices of rows whose sparsity larger
than s.

Since the number of non-zero elements in Ĝ is less than Ts log T , we have |A2|  T log T . Using
the similar analysis as in the proof of Lemma 1, we have

k�̂A2 � �A2k 
r

T log T

n
.

For the rows in A1, all of them has sparsity . s, so the maximum `1 norm of these rows

k�̂A1 � �A1k1 = OP (s

r
log T

n
).
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Similarly, the maximum `1 norm of the columns in ĜA1 satisfies

k�̂A1 � �A1k1 = OP (s

r
log p

n
).

Therefore, we have

k�̂A1 � �A1k 
q
k�̂A1 � �⇤

A1
k1k�̂A1 � �A1k1 = OP (s

r
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n
).

Consequently,

k�̂� �k  k�̂A1 � �A1k+ k�̂A2 � �A2k = OP (s

r
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n
)

As a result, when s

q
log p+log T

n . T/r, applying Lemma 2, we obtain
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Now, if we further have n > (↵↵T )2nT+1/⌫, we have
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r
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Remark 7 (`1-adversarial training v.s. standard training). The proof of the counterpart of Lemma 1

under the setting of Theorem 2 follows exact the same method in the proof of Lemma 1.

E Proof of the case with pseudo-labeling

Theorem 7 (Restatement of Theorem 3). Denote ñ = mint2[T ] n
u
t and assume ñ >

c1 max{pr2/T, r2 log(1/�)/T, r2, n} for some constant c1 > 0. Assume �r(M>
M/T ) = ⌦(1/r)

and n
c2 & ñ & n for some c2 > 1, if n & (T + d) and mint2[T ] katk = ⇥(log2 n) and

⌘
(t)
i ⇠ Np(0, ⇢2t I

2) for ⇢t = ⇥(1). Let Ŵ1,aug obtained in Algorithm 3, with probability

1�O(n�100),
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Proof. Let us first analyze the performance of pseudo-labeling algorithm in each individual task.
In the following, we analyze the properties of yu,(t)i and µ̂

(t)
final =

1
nu
t +nt

Pnu
t +nt

i=1 (
Pnt

u
i=1 x

u
i y

u
i +

Pnt

i=1 x
u
i y

u
i ). Since ñ & n and we only care about the rate in the result. In the following, we derive

the results for µ̂(t)
final =

1
nu
t

Pnu
t +nt

i=1 (
Pnt

u
i=1 x

u
i y

u
i ). Also, for the notational simplicity, we omit the

index t in the following analysis.

We follow the similar analysis of Carmon et al. [11] to study the property of yui . Let bi be the indicator
that the i-th pseudo-label is incorrect, so that xu

i ⇠ N((1� 2bi)yui µ, I) := (1� 2bi)yui µ+ "
u
i . Then

we can write
µ̂final = �µ+ �̃,

where � = 1
nu

Pnu

i=1(1� 2bi) and �̃ = 1
nu

Pnu

i=1 "
u
i y

u
i .

Let’s write y
u
i = sign(x>

i µ̂). Using the rotational invariance of Gaussian, without loss of generality,
we choose the coordinate system where the first coordinate is in the direction of µ̂. Then y

u
i =

sign(x>
i µ̂) = sign(xi1) = sign(y⇤i

µ>µ̂
kµ̂k + "

u
i1) and are independent with "uij (j � 2).
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As a result,
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where the last inequality is due to the fact that
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As a result, we have
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=
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where kek2 . 1p
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+ 1
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Additionally, we have � = 1
nu

Pnu

i=1(1� 2bi) = 1� 2
nu

Pnu

i=1 bi = 1�O( 1p
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nC ).

As a result, for each t 2 [T ], we have

µ̂t = µt +
1

nu

nuX

i=1

"
u
i + e

0
,

with ke0k2 . 1p
nu

+ 1
nC0 being a negligible term.

Since e
0 is negligible, we can then follow the same proof as those in Section A by considering

µ̃t = µt +
1
nu

Pnu

i=1 "
u
i and obtain the desired results.

Similarly, due to the negligibility of e
0, we can prove Theorem 4 by following the exact same

techniques in Sections C and D.

F Lower bound proof

Proposition 2 (Restatement of Proposition 1). Let us consider the parameter space ⌅ = {A 2
R

p⇥r
, B 2 R

p⇥r : �r(A>
A/T ) & 1, B>

B = Ir}. If nT & rp, we then have

inf
Ŵ1

sup
⌅

Ek sin⇥(B, Ŵ1)kF &
r

rp

nT
.

We first invoke the Fano’s lemma.
Lemma 4 ([54]). Let M � 0 and µ0, µ1, ..., µM 2 ⇥. For some constants ↵ 2 (0, 1/8), � > 0,

and any classifier Ĝ, if KL(Pµi ,Pµ0)  ↵ logM for all 1  i  M , and L(µi, µj) for all

0  i 6= j M , then

inf
µ̂

sup
i2[M ]

Eµi [L(µi, µ̂)] & �.
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Now we take B0, B1, ..., BM as the ⌘-packing number of Op⇥r with the sin ✓ distance.

Then according to [41, 52], we have

logM ⇣ rd log(
1

⌘
).

For any i 2 [M ], we have

KL(PBi ,PB0) =
TX

t=1

nk(Bi �B0)atk2  nT⌘
2
.

Let ⌘ =
q

rd
nT , we complete the proof.

G Additional Empirical Results

We provide additional results on transfer performance with varied amounts of pseudo-labels in Table 2.
Here, we train models with both adversarial (allowed maximum perturbations of " = 1 with respect
to the `2 norm) and non-adversarial (standard) training on ImageNet. The observed trend is the same
as on the CIFAR-10 and CIFAR-100 tasks from Table 1 – both using robust training and additional
pseudo-labeled data improve performance.

Table 2: Additional results extending Table 1. Effect of amount of pseudo-labels on transfer task
performance (measured with accuracy). At 0%, we just use 10% of data from the source task;
at 900%, we use all remaining 90% of data with pseudo-labels (this is 9 times the train set size).
Adversarial training corresponds to using `2-adversarial training with " = 1 on the source task. As per
Section 7 of [46], images in all datasetsare down-scaled to 32⇥ 32 before scaling back to 224⇥ 224.

Source Task Target Task +0% Pseudo-labels +200% Pseudo-labels +500% Pseudo-labels +900% Pseudo-labels

ImageNet Aircraft [35] 17.3% 17.6% 17.9% 19.9%
ImageNet (w/adv.training) Aircraft 21.2% 20.9% 24.0% 24.5%

ImageNet Flowers [40] 60.7% 64.9% 65.4% 66.5%
ImageNet (w/adv.training) Flowers 66.9% 68.1% 70.0% 70.1%

ImageNet Food [8] 33.7% 36.0% 36.7% 37.2%
ImageNet (w/adv.training) Food 35.8% 37.5% 39.4% 40.8%

ImageNet Pets [42] 43.2% 44.9% 48.4% 49.0%
ImageNet (w/adv.training) Pets 47.9% 53.1% 58.9% 59.6%

H Experiment Details

H.1 Training Hyperparameters

All of our experiments use the ResNet-18 architecture. When transferring to the target task, we only
update the final layer of the model. Our hyperparameter choices are identical to those used in [46]:

1. ImageNet (source task) models are trained with SGD for 90 epochs with a momentum of
0.9, weight decay of 1e� 4, and a batch size of 512. The initial learning rate is set to 0.1
and is updated every 30 epochs by a factor of 0.1. The adversarial examples for adversarial
training are generated using 3 steps with step size 2"

3 .
2. Target task models are trained for 150 epochs with SGD with a momentum of 0.9, weight

decay of 5e� 4, and a batch size of 64. The initial learning rate is set to 0.01 and is updated
every 50 epochs by a factor of 0.1.

Data augmentation is also identical to the methods used in [46]. As per Section 7 of [46], we scale all
our target task images down to size 32⇥ 32 before rescaling back to size 224⇥ 224.

Experiments were run on a GPU cluster. A variety of NVIDIA GPUs were used, as allocated by the
cluster. Training time for each source task model was around 2 days (less when using subsampled
data) using 4 GPUs. Training time for each target task model was typically between 1-5 hours
(depending on the dataset) using 1 GPU.
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H.2 Pseudo-label Generation

When subsampling ImageNet (our source task), the sampled 10% with ground truth labels preserves
the class label distribution. This sample is fixed for all our experiments. All ImageNet pseudo-labels
are generated by a model trained on this 10% without any adversarial training. This model has a
source task test accuracy (top-1) of 44.0%.

When training models with pseudo-labels, we preserve the class label distribution of the original
training set (i.e., we add less pseudo-labels for those classes that have fewer examples in the entire
training set).
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