Appendix

Outline We provide detailed proofs for all of our theories in Secs. A to F. Sec. G provides
multiple additional experiments demonstrating that pseudo-labeling improves transfer learning and
that combining pseudo-labeling with adversarial training in the source further improves tranferability.
Sec. H provides additional details about our experiments.

Recall that in the main context, in Algorithm 1, we have W < top-r SVD of [31, B, - - , Br].
Specifically, we assign the columns of W; as the collection of the top-r left singular vectors of
[ﬁlaﬁQa e 7BT]'

The rest of proofs are based on the above methodology.

A Proof of Lemma 1

Let us define i, = >, 2y® /n, and pi; = Bay forall t € [T + 1.
Notice that

||_17'

J =@/l fr/llarl) = (i, for)diag([lin I

As a result, doing SVD for J to obtain left singular vectors is equivalent to doing SVD for b =
(fi1,- -, i) to obtain left singular vectors (up to an orthogonal matrix, meaning rotation of the
space spanned by the singular vectors) since multiplying a diagonal matrix on the right does not affect

the collection of left singular vectors. It further means doing SVD for J to obtain left singular vectors
is equivalent to obtaining left singular vectors for & = (jiy, - - - , fip)diag(|[pa || =%, - -+, | ~1) (up
to an orthogonal matrix).

We mainly adopt the Davis-Kahan Theorem in [60]. We further denote ® =
(u1, - pr)diag ([l |71+ ozl 71).

Lemma 2 (A variant of Davis—Kahan Theorem). Assume min{T,p} > r. For simplicity, we denote

61 > 09 > -+ > &, as the top largest r singular value of<i> and o1 > 09 > --- > 0, as the
top largest r singular value of ®. Let V = (vy, - - - , v,.) be the orthonormal matrix consists of left
singular vectors corresponding to {o;}7_, and V = (01, - - , D) be the orthonormal matrix consists

of left singular vectors corresponding to {6, }7_,. Then,

PR (201 + || — *[|,p) min{rO® (| — &*||,p, [|® — &* |}
|sin®@(V,V)||r < E o2 L .

Moreover, there exists an orthogonal matrix O € R™", such that |[VO — V|p <
V2| sin©(V, V)|, and

(201 + [|® — ®*|lop) min{r®®|| & — &*|lop, | & — ©*||r}

2
oy

VO —-Vllr <

It is worth noticing that actually B plays the exact same role as V. Since B has orthonormal columns,
for ¢ we have

® = B(ay, - ,ar)diag([|p |~ lnrlI ™)
= B(ay, -, ar)diag(llar ]|, -, [lar| ).
Thus, B is a solution of the SVD step in Algorithm 1.
Lemma 3 (Restatement of Lemma 1). Under Assumption 1, if n >

c1 max{pr?/T,r?log(1/5)/T,r?} for some universal constant ¢, > 0 and 2r < min{p, T}, for all
t € [T). For Wy obtained in Algorithm 1, with probability at least 1 — O(n=1%0),

. 2 1 logn
|sin©(Wi, B¢ < r <\/;+,/:}+\/ ngT > .
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Proof. By a direct application of Lemma 2, we can obtain

(201 + [|® — @]op) min{rP||& — |l |& — D[}

2
oy

|sin ©(W1, B)||r <

Besides, we know that the left singular vectors of ® are the same as the ones of M = [ay,- - ,ar]
since ® = BMdiag(||a1|| 7%, -+, laz||71).

To estimate [|® — ®||,, = sup,cgp—1 |[vT (& — ®)]|, for any fixed v € SP~!, by standard chaining
argument in Chapter 6 in [57], we know that

P(WWé—@z¢Z+wb%y“><a

Then, we use chaining again for the y-process {v : |[vT (® — ®)

<£¥1” (@~ @n>¢ ¢ vﬁgua>

Besides, we know o,.(M) = /T'/r by assumption 1, and we also have Y _;_, 02(M) = T, thus, we
know that o1 (M) and o,.(M) are both of order ©(\/T/r)

f \/: /10g(1/5 + T( %"‘\/%‘F /log(i/(S))

/r

Isin©(W1, B)|r <

by simple calculation, we further have

. - 1 D log 1/5 \/7 log 1/6
< _
Hsm@(Wl,B)HFNr\/F(n—i—nT nT +4/ ==

If we further have n > r max{p/T,log(1/0)/T, 1}, we further have

im0, Bl vy L[ 2|l

Plugging into § = n 100, the proof is complete.

B Proof of Corollary 1

Corollary 2 (Restatement 0f Corollary 1). Under Assumption 1, if n >
¢ max{prQ/T r?log(1/8) /T, 72, rny 1} for some universal constant ¢y > 0, 2r < min{p, T'},

then for W obtained in Algorithm 1, with probability at least 1 — O(n=190),

R, afT ) 5 [T \/
nr4i1

Proof. By DK-lemma, we know there exists a Wy such that Wy € argminy, g, W T pgi|
(the minimizer is not unique, so we use € instead of = to indicate W7* belongs to the set consists of
minimizers) and |5 — W1 || is small.
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ROV, ol ) = LT o™ W) = min L(PTAY wa, W)

- ’ w2 || <1,W1€0px
<|g//§rz;i|’ W 1) + (W5 |
N
ey 7o)+ e e
a <m’ Wi T gy + Wi T g
S WL = Wil |l + W T ey — Wi firga |

S AW = W[l prga || + HBTMTH — B i

if n > r?max{p/T,log(1/8)/T,1}. The last formula is due to the fact that W and B are different
only up to an orthogonal matrix.

By standard chaining techniques, we have with probability 1 — §

log( 1/5

nr4i

IBY prs1 — By frriall S

Thus, we can further bound ||W; — W;|| by v/2|| sin ©(W;, B) ||, thus, by Lemma 1, we have

A log(1/6 log(1 5
ROV, ) < |78 o8(1/9) \[ oy | 2 °8( /
nr4+1 nT

Now, if we further have n > rnr 1, we have

. I 1/6 2
ROV, @iy < , L 0el/0) og(1/ )ﬂ/%.

nr4+i

Plugging into § = n =190, the proof is complete.

C Proof of Theorem 1

Theorem 5 (Restatement of Theorem 1). Under Assumption 2 and 3, for ||ary1|| = a = Q(1), if
n > ¢ max{r?,r/ar} - max{plog T,logn/T,1} and n > cy(aar)*rnyi1 for universal con-
stants cy1,co, 2r < min{p, T}. There exists a universal constant cs, such that if we choose

€ € [maxeeg, |lat]| + cs/plogT/n, minees, ||at|| — c3+/plog T /n| (this set will not be empty

if T',n are large enough), for Wl‘ld”, w;d“’(”” obtained in Algorithm 2 with q = 2, with probability
at least 1 — O(n=100),

. o - r2 pr2 r2logn
H51n@(Wfd1,B)HF < (ar) ' (\/Z+ \/;+\/7 ’

and the excess risk

R + logn _ 2p
R Wadv adv,(T+1) < r 1 b I
e 5 ) < g [T ) (|
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Proof. For {s-adversarial training, we have
ny

A 1
adv : (t) (t)
= argmin max — E —y, ot 4+ 8
t & l1B:lI<1 ”(Sil‘p}éa Ny — Yi <Bt i z>

n

. 1 t t
= argmln”Btugl ”(%’Ihi«)is nj Z _yf )<6t7$£ )> + EHﬁtH
tP= i=1

Recall [i; = nlf S yft) ®if we have ||| > e, then 324 = ji, /||fiy]|, otherwise, 24 = 0.

We denote o o
= [6(11 U,'" 35’(11’ U]'

Since |S1| = ©(T), there exists a universal constant ¢ such that with probability 1 — §, we have
for all i € S1, fi; < |lai|| + esv/plogT/n. Thus, if T is large enough, the set [max;cg, |lat]| +
c3+v/plog T /n, mingeg, ||at]| — c3+/plog T /n] is non-empty. If we choose € € [max;cg, ||as| +
cs\/plog T /n, mingesg, ||az|| — c3v/plog T/n), for all t € Sa, 3% = iy /||4is||. Meanwhile, Gg,
is a zero matrix.

Notice that the left singular vectors obtained by applying SVD to G for left singular vectors is
equivalent to applying SVD for left singular vectors to G S,» which is further equivalent to applying

SVD for left singular vectors to o s,» given that Gy is equal to <1352 times a diagonal matrix on the
right. Thus, we have

(201((I>52) + H(I)S2 (I)SzHOP) min{TO'SH‘i)Sb - (I)SzHOPV ”(i)sz - (I)S2||F}
o (Ps,)

Isin©(Wi", B)||r

By our assumptions, we know that

P<sup o7 (B, — )] 2o (f2 + YT floellf) ><5
veSp—1

As a result,

. P _ 1 D 10g(1/6 log 1/5
I sin O, Bl £ ag?rvr( + L+ U

If we further have n > = max{p/T'log(1/4)/T', 1}, we further have

Jsin®(T, B)le 5 (ar) oy~ + T Yol

Now, if we further have n > (aar)?rnyyq, we have

ROV, aT+) < oy | r+log(1/0) | \/7
nr+1

Plugging into § = n =100, the proof is complete.
O

Remark 6 (¢s-adversarial training v.s. standard training). The proof of the counterpart of Lemma 1
under the setting of Theorem 1 basically folllows similar methods in the proof of Lemma 1. The only
modification is that we need an extra step:

- T log(1/6
P( sup [0 (& — @) Z\/;+\/+ \/‘gi( / )> SP( sup o (b5, — Ps,)] 2
vesSp—1 n n n veESP—1

+P < sup |lv" (s, — Ps,)|| >

+T+\/W>
+\/W>

_|_

ﬁ‘i\”@
= e

vesSr—1
and recall that both |S1| and |Sa| are of order ©(T).
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D Proof of Theorem 2

Theorem 6 (Restatement of Theorem 2). Under Assumptions 1 and 4, if n > ¢ -

r2 max{s?log®> T/T,rnr1,1} for some universal constants ¢; > 0, 2r < min{p, T}. There

exists a universal constant cs, such that if we choose € > ca+\/logp/n, for and Wad”, Agd”’(TH)
obtained in Algorithm 2 with q = oo, with probability at least 1 — O(n=10%) — O(T~190),

. 1 52
. adv
|lsin © (W4, )||FN7“<\/n+ nT) og(T" + p),
and the excess risk
R adv 1 2
R(W{ldv,’lf}2d 7(T+1)) 5 ( m + 7’\/87> . log(T —|—p) 7
nr41 nT

Proof. For {,-adversarial training, we have

ne

A 1
adv . (t) (t)
= argmin max —E —y; {Be,x;” + b;
t TG g, || <1 [16:]lcc < Tt pat Yi < ts L5 1>

Nt

. 1 t t
:argmln\|ﬁt|\g1n72*y£ )< z )>+5||5t||1

=1

:argmlHHBtH<1 ﬁt, Z y(t) (t) +€||B ||1

Recall iy = ;f S yz(f) Et). By observation, when reaching minimum, we have to have
sgn(B;) = sgn(fit;), therefore
d
argmax g, =1 Z futj Bej — €Br;]
j=1
d
= argmax| 5, =1 > (it — € - sgn(jie;)) By
j=1
Te(p)
EGI

where 77 (/1) is the hard-thresholding operator with (7% (f1)); = sgn(fi;) - max{|f;| — €, 0}.
We denote . o -
G= [, Br"].
By the choice of ¢, ¢ 2 C k’% for sufficiently large C, we have that the column sparsities of
G is no larger than slogT. As a result, the total number of non-zero elements in G is less than

O(T'slog T) with probability at least 1 — 7190,

Now we divide the rows of G by two parts: [p] = Ay U Ag, where A; consists of indices of rows
whose sparsity smaller than or equal to s, and A, consists of indices of rows whose sparsity larger
than s.

Since the number of non-zero elements in G is less than T's log T, we have |Ag| < T'log T'. Using
the similar analysis as in the proof of Lemma 1, we have

TlogT
et

H(I)Az - (I)Az‘l <
For the rows in A1, all of them has sparsity < s, so the maximum ¢; norm of these rows

logT)
-

||qA)A1 - q)A1||OO = OP(S
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Similarly, the maximum ¢; norm of the columns in G A, satisfies

log p

||(i)A1 - (I)Al ||1 = OP(S

Therefore, we have

. - . - logp + logT
84, = @, | < /194, = B3 el B, — @, 1 = Oplsy| 222

Consequently,

- A - logp + log T
12 =2l < @4, = Payll + [ @4, = Pacll = Op(sy) ————)

As aresult, when s/ % < T/r, applying Lemma 2, we obtain

| sin ©(Wy, B)||p < sin (W%, B) \f ,/ ) - log(T + p).

Now, if we further have n > (aar)?nr 1 /v, we have

~ 2
(1+1)) < r+log(1/5)jL rs?

R(W1, 4 < o~ ol log(T + p).

O

Remark 7 ({,.-adversarial training v.s. standard training). The proof of the counterpart of Lemma 1
under the setting of Theorem 2 follows exact the same method in the proof of Lemma 1.

E Proof of the case with pseudo-labeling

Theorem 7 (Restatement of Theorem 3). Denote n = mingrny and assume n >
c1 max{pr?/T,r*log(1/8)/T,r?,n} for some constant c; > 0. Assume o.(M " M/T) = Q(1/r)
and n® 2 0 2 n for some c; > 1, if n 2 (T + d) and minyciq) ||las| = O(log?n) and
ngt) ~ Np(0,p?1?) for p; = O(1). Let Wi 4uy obtained in Algorithm 3, with probability

11— O(n—loo)
' ) logn
|| sin ©(W1,qug, B)||r S < nT \/g>

Proof. Let us first analyze the performance of pseudo-labeling algorithm in each individual task.

In the following, we analyze the properties of y;” ) and ﬂgfz)n o = nyim Z:ﬁf " (Z:il xiyl +
Z"’ 1 Tiyi). Since 7 2 n and we only care about the rate in the result. In the following, we derive
u t

the results for /lgftl)ml = o Lis (e ay™). Also, for the notational simplicity, we omit the
index ¢ in the following analysis.
We follow the similar analysis of Carmon et al. [11] to study the property of y}*. Let b; be the indicator
that the -th pseudo-label is incorrect, so that ¥ ~ N ((1 —2b;)y¥u, I) := (1 — 2b;)y¥ i+ €}'. Then
we can write _

ffinal = Yp + d,
where v = ;- 370 (1 — )andé——Z:Z LEuyl

Let’s write y* = sign(z, fi). Using the rotational invariance of Gaussian, without loss of generality,
we choose the coordinate system Where the first coordinate is in the direction of 4. Then y}* =

sign(x] i) = sign(xi1) = sign(y; & HHH + £} and are independent with £} (j > 2).
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As aresult,

Ny

1 1
—Zsfj-y?in— g5, forj>2.

n
v i=1 Yi=1

Now let’s focus on - >, et - yi*. Let y; = (1 — 2b;)y;", we have

Ny

1 & 1 & 1 a1
*25?1'yzu:*Zegl'y?JFQ*ngl'bi:*Z 11+2 2511 i
Tt Tt Tt n

Yoi=1

Since

1 & 1 1 & 1 & 1 1
2 < (=N ") < =N "2 = = b <E[bs S +-
nquﬂ < nu;(eﬂ) )(nu;ﬂwnugl nu; SEb+ =S4+

where the last inequality is due to the fact that

EWzMﬁ#Wszmwﬁﬁ n) £yl

T u w oL 1
P(Slgn(yz H || 11) #yz ‘ >3 || ||)+P(

1

Sexp /24—
n

As a result, we have

54 N ie” +e
M i3 ' 7
where [le]2 $ = + o
Additionally, we have v = ;L 371" (1 - 2b;) =1 - 23" by =1 - O(—= + 7).

As aresult, for each ¢ € [T], we have

1
R SRR
Tt

with ||e']|2 < \/% + nlc, being a negligible term.

Since €’ is negligible, we can then follow the same proof as those in Section A by considering
fie = p + == >0 €% and obtain the desired results.

Similarly, due to the negligibility of ¢’, we can prove Theorem 4 by following the exact same

techniques in Sections C and D. O

F Lower bound proof

Proposition 2 (Restatement of Proposition 1). Let us consider the parameter space = = {A €
RPX" B € RP*" : 0,.(ATA/T) 2 1,B" B = I.}. If n'T 2 rp, we then have

p

ivg]fs%pEH sin ©(B, W1)|r 2 -

We first invoke the Fano’s lemma.

Lemma 4 ([54]). Let M > 0 and po, pi1, ..., ppsr € ©. For some constants o € (0,1/8),~v > 0,

and any classifier G, if KL(P,,,P,,) < alogM foralll < i < M, and L(p;, ;) for all
0<iz#j <M, then

inf sup B [L(us, )] 2 7
B oie[M]
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Now we take By, By, ..., B as the n-packing number of OP*" with the sin # distance.

Then according to [41, 52], we have
1
log M =< rdlog(-).
n

For any ¢ € [M], we have
T
KL(Pp,,Ps,) = S nll(Bi — Bo)au||* < nTr?.
=1

rd

Letn = 4/ .7, we complete the proof.

G Additional Empirical Results

We provide additional results on transfer performance with varied amounts of pseudo-labels in Table 2.
Here, we train models with both adversarial (allowed maximum perturbations of € = 1 with respect
to the /5 norm) and non-adversarial (standard) training on ImageNet. The observed trend is the same
as on the CIFAR-10 and CIFAR-100 tasks from Table 1 — both using robust training and additional
pseudo-labeled data improve performance.

Table 2: Additional results extending Table 1. Effect of amount of pseudo-labels on transfer task
performance (measured with accuracy). At 0%, we just use 10% of data from the source task;
at 900%, we use all remaining 90% of data with pseudo-labels (this is 9 times the train set size).
Adversarial training corresponds to using />-adversarial training with ¢ = 1 on the source task. As per
Section 7 of [46], images in all datasetsare down-scaled to 32 x 32 before scaling back to 224 x 224.

Source Task Target Task  +0% Pseudo-labels  +200% Pseudo-labels  +500% Pseudo-labels  +900% Pseudo-labels
ImageNet Aircraft [35] 17.3% 17.6% 17.9% 19.9%
ImageNet (w/adv.training) Aircraft 21.2% 20.9% 24.0% 24.5%
ImageNet Flowers [40] 60.7% 64.9% 65.4% 66.5%
ImageNet (w/adv.training) Flowers 66.9% 68.1% 70.0% 70.1%
ImageNet Food [8] 33.7% 36.0% 36.7% 37.2%
ImageNet (w/adv.training) Food 35.8% 37.5% 39.4% 40.8%
ImageNet Pets [42] 43.2% 44.9% 48.4% 49.0%
ImageNet (w/adv.training) Pets 47.9% 53.1% 58.9% 59.6%

H Experiment Details

H.1 Training Hyperparameters

All of our experiments use the ResNet-18 architecture. When transferring to the target task, we only
update the final layer of the model. Our hyperparameter choices are identical to those used in [46]:

1. ImageNet (source task) models are trained with SGD for 90 epochs with a momentum of
0.9, weight decay of le — 4, and a batch size of 512. The initial learning rate is set to 0.1
and is updated every 30 epochs by a factor of 0.1. The adversarial examples for adversarial

. . . . 2e
training are generated using 3 steps with step size 3

2. Target task models are trained for 150 epochs with SGD with a momentum of 0.9, weight
decay of 5e — 4, and a batch size of 64. The initial learning rate is set to 0.01 and is updated
every 50 epochs by a factor of 0.1.

Data augmentation is also identical to the methods used in [46]. As per Section 7 of [46], we scale all
our target task images down to size 32 x 32 before rescaling back to size 224 x 224.

Experiments were run on a GPU cluster. A variety of NVIDIA GPUs were used, as allocated by the
cluster. Training time for each source task model was around 2 days (less when using subsampled
data) using 4 GPUs. Training time for each target task model was typically between 1-5 hours
(depending on the dataset) using 1 GPU.

21



H.2 Pseudo-label Generation

When subsampling ImageNet (our source task), the sampled 10% with ground truth labels preserves
the class label distribution. This sample is fixed for all our experiments. All ImageNet pseudo-labels
are generated by a model trained on this 10% without any adversarial training. This model has a
source task test accuracy (top-1) of 44.0%.

When training models with pseudo-labels, we preserve the class label distribution of the original
training set (i.e., we add less pseudo-labels for those classes that have fewer examples in the entire
training set).
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