
Sequential Memory with Temporal Predictive Coding
Supplementary Materials

Mufeng Tang, Helen Barron, Rafal Bogacz
MRC Brain Network Dynamics Unit, University of Oxford, UK

{mufeng.tang, helen.barron, rafal.bogacz}@bndu.ox.ac.uk

1 Algorithms

In Algorithm 1 we present the memorizing and recalling procedures of the single-layer tPC.

Algorithm 1 Memorizing and recalling with single-layer tPC

1: ▷ Training/memorization
2: while W not converged do
3: for µ = 2, ..., P do
4: Input: xµ, xµ−1

5: Update W
6: end for
7: end while
8:

9: ▷ Cued recall
10: for µ = 2, ..., P do
11: Input: xµ−1 (online) or x̂µ−1 (offline)
12: while x̂µ not converged do
13: Infer x̂µ

14: end while
15: RtPC(q)← x̂µ

16: end for

In Algorithm 2 we present the memorizing and recalling procedures of the 2-layer tPC.

Algorithm 2 Memorizing and recalling with 2-layer tPC

1: ▷ Training/memorization
2: while WH , WF not converged do
3: randomly initialize ẑ0

4: for µ = 1, ..., P do
5: Input: xµ, ẑµ−1

6: while zµ not converged do
7: Infer zµ
8: end while
9: Update WH , WF

10: ẑµ ← zµ

11: end for

12: end while
13: ▷ Cued recall
14: randomly initialize ẑ0

15: for µ = 1, ..., P do
16: Input: ẑµ−1

17: while zµ and x̂µ not converged do
18: Infer zµ, x̂µ

19: end while
20: ẑµ ← zµ

21: RtPC(q)← x̂µ

22: end for

It is worth noting that, although in both algorithms we used iterative inference (line 14-16 in
Algorithm 1 and line 17-19 in Algorithm 2), these inferential dynamics can be replaced by forward
passes in simulation. For the single-layer model the retrieval RtPC(q) can be directly obtained
by RtPC(q) = Wf(q) with the learned W, while for the 2-layer model the retrieval xµ−1 can
be obtained by first forward passing the latent ẑµ = WHf(ẑµ−1) and then set the retrieval as
RtPC(q) = WF f(ẑ

µ). Effectively, setting the retrieval directly by forward passes will result in the
same retrieval as performing the inferential iterations as they are the fixed points of the inferential

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



dynamics. However, obtaining the retrievals via iterative methods allows us to implement the
computations in the plausible neural circuits in Fig. 1 whereas forward passes cannot. Code will be
available upon acceptance.

2 Proof of Property 1

Here we present the proof for Property 1 in the main text, that the single-layer tPC can be viewed
as a “whitened” version of the AHN. Without loss of generality, assume a sequence of zero-mean,
real-valued patterns xµ, µ = 1, ..., P + 1 is given to the model to memorize. The step-wise objective
with an identity non-linearity f(·) for single-layer tPC is:

Fµ(W) = ∥xµ −Wxµ−1∥22 (1)

The weight W is then updated at each time-step once, and the whole sequence is presented for
multiple iterations until W converges. We now consider the case where we presented the sequence at
once i.e., the model now minimizes the following objective at each learning iteration:

F =

P∑
µ=1

∥xµ+1 −Wxµ∥22 (2)

which can be viewed as a “batched” version of Eq. 1. Since the objective is now convex (with identity
f(·), the fixed point obtained by these two objectives will be the same. The gradient descent update
of W on F is then:

∆W = − ∂F
∂W

=

P∑
µ=1

xµ+1(xµ)⊤ −W

P∑
µ=1

xµ(xµ)⊤ (3)

By setting ∆W to 0, we could obtain the optimal W, which we call WtPC :

WtPC =

(
P∑

µ=1

xµ+1(xµ)⊤

)(
P∑

µ=1

xµ(xµ)⊤

)−1

=

P∑
µ=1

xµ+1(xµ)⊤
(
X⊤X

)−1
(4)

where we define X =
[
x1, ...,xP

]⊤
, the P × N data matrix. Recall that when presented with a

query q, the single-layer tPC update its value nodes to minimize:

Fµ(x̂
µ) = ∥x̂µ −WtPCq∥22 (5)

which will converge to RtPC(q) = WtPCq due to convexity. We can now substitute WtPC with
the expression from Eq. 4 to obtain the retrieval:

RtPC(q) = WtPCq =

P∑
µ=1

xµ+1(xµ)⊤
(
X⊤X

)−1
q (6)

It can be immediately seen that the retrieval function of tPC is a special case of the UHN framework,
where the similarity function is defined as sim(xµ,q) = (xµ)⊤

(
X⊤X

)−1
q and the separation

function is identity. Notice that since we assumed a zero-mean sequence (sequences with non-zero
mean can be accounted for with a bias term in the objective function Eq. 2), the term X⊤X is exactly
the covariance matrix of the sequence. Defining it as ΣΣΣ, the retrieval can be written as:

RtPC(q) = WtPCq =

P∑
µ=1

xµ+1(xµ)⊤ΣΣΣ−1q (7)

Assume a positive definite covariance ΣΣΣ, it is possible to decompose ΣΣΣ−1 as follows:

ΣΣΣ−1 = M⊤M (8)

2



Memory

MCAHN online

tPC online

MCAHN o�ine

tPC o�ine

time

Figure 1: Visual results with CIFAR10 sequences.

The matrix M is called the whitening matrix, which does not hold a unique value e.g., M = ΣΣΣ− 1
2 or

M = L⊤ where L is the Cholesky decomposition of ΣΣΣ−1 [1]. Here, we are agnostic about its exact
value. When applied to the data sequence, it whitens the data such that (i.e., Eq.16 in the main text):

⟨Mxµ(Mxµ)⊤⟩µ = IN (9)

Therefore, the retrieval of our single-layer tPC with an identity f(·) can be written as:

RtPC(q) =

P∑
µ=1

xµ+1(Mxµ)⊤Mq (10)

by decomposing ΣΣΣ−1 in Eq. 7 into M⊤M, which is Eq.15 in the main text and concludes the proof.

3 Generation of binary patterns

For the experimental results in Fig. 2A and B, the correlated binary patterns are generated following
the approach mentioned in [2]. For a particular pattern dimension N , a template xtemp ∈ {−1, 1}N
is first generated. Then, for each of the µ = 1, ..., P patterns, the ith entry of xµ is equal to the
ith entry of xtemp with probability 0.5 + 0.5b where b is the parameter controlling bias. We also
invert the sign of each pattern by chance to keep the level of activity constant for each neuron. This
whole process is then repeated for multiple trials to average out randomness. The capacity Pmax

is calculated as the maximum P such that the percentage of erroneous entries across these trials
is below 0.01. It can be shown that the correlation between two features of the generated patterns
r(xµ

i ,x
µ
j ) is −b2 or b2, by using the identity r(xµ

i ,x
µ
j ) = ⟨x

µ
i x

µ
j ⟩µ − ⟨x

µ
i ⟩µ⟨x

µ
j ⟩µ.

4 Additional results with CIFAR10 and MovingMNIST

In Fig. 1 we present additional visual results when MCAHN and single-layer tPC are trained to
memorize a random CIFAR10 sequence of 32 images and are queried both online and offline
during recall. It can be seen that MCAHN, like what we have shown in the main text, recalls
memories preceded with images with large pixel values (images are presented to the models as
32 × 32 × 3 = 3072-dimensional vectors where 3 represents the RGB channels) in both online
and offline recall regimes, whereas tPC does not suffer from this problem because of the whitening
procedure. However, it can be seen that the recall by tPC will gradually become more blurry and
noisier when queried offline because the recall errors will accumulate temporally.

These observations are consistent with our numerical results shown in Fig. 3. In Fig. 3A we show
the online recall MSE of CIFAR10 sequences by single-layer tPC (with linear f(·)) and MCAHN.
MCAHN has a much larger MSE than that of the tPC because of the entirely wrong recalls. In
offline recalls in Fig. 3B however, tPC will have exploding MSE as soon as P reaches 64 because of
the accumulating recall errors. It is worth mentioning that for these experiments, we used a tanh
nonlinearity, as the recall error will accumulate to infinity with an identity f(·). This is the only case
where identity and tanh are different in our experiments.

In Fig. 2 we also present the online recall results of the models in MovingMNIST, CIFAR10 and
UCF101. The results with CIFAR10 are consistent with the discussions above, and the results

3



Memories

MCAHN

tPC

Memories

MCAHN

tPC

Memories

MCAHN

tPC

A B

C

Figure 2: Online recalls with A: MovingMNIST; B: CIFAR10; C: UCF101.

A B C

Figure 3: Numerical results with CIFAR10 and MovingMNIST. A: Online recall MSE of random
CIFAR10 sequences; B: Offline recall MSE of random CIFAR10 sequences, with a tanh nonlinearity;
C: Offline recall MSE of movingMNIST dataset, with a tanh nonlinearity.

with UCF101 is clearer with online queries than those with offline queries. Moreover, although in
MovingMNIST MCAHN still suffers from the wrong attractor problem (red triangle in Fig. 2A), the
online query can prevent it from staying in the wrong attractor. This is consistent with our numerical
obervation in Fig. 3C, where the performance of MCAHN in online recall of MovingMNIST is better
than that of the tPC models.

5 A natural example of aliased sequences from UCF101

In Fig 4 we show a natural example of aliased sequences where a movie of a human doing push-ups is
memorized and recalled by the model. The frames at the second and the fifth steps are almost identical,
leading to inaccurate predictions of the single-layer models (including MCAHN and single-layer
tPC) at the next time steps. On the other hand, the 2-layer tPC performs well and produces sharp and
correct recalls.

6 Implementation details of tPC

The following table provides the hyperparameters used in our experiments and their corresponding
figures. Note that for the 2-layer tPC, we used fixed inference step size 1e-2 and inference steps 100
for Eqs.11 and 14 in the main text, as we did not find any significant impact of these variables on
the results. All computations were performed on a single Tesla V100 GPU. Code is available at:
https://github.com/C16Mftang/sequential-memory.

4

https://github.com/C16Mftang/sequential-memory


1 5

Memory

MCAHN

tPC (1 layer)

tPC (2 layers)

32 4 6

Figure 4: A natural aliased example from the UCF101 dataset, showing a human doing push-ups.

Data Figures Model Input size Latent size Learning rate Learning epochs
Binary 2A&B,5A&B 1-layer varying N/A 5e-1 800
MNIST 2C,3A 1-layer 784 N/A 1e-4 800
MNIST 6A&B 2-layer 784 480 1e-4 800

MovingMNIST 3B,4A 1-layer 1024 N/A 2e-4 800
MovingMNIST 3B 2-layer 1024 630 2e-4 800

CIFAR10 4B 1-layer 3072 N/A 2e-5 1000
UCF101 4C 1-layer 12288 N/A 1e-5 1000
UCF101 4C 2-layer 12288 7600 1e-5 1000

One-hot “letters” 5 2-layer varying 6 5e-2 300
rotatingMNIST 6D&E&F 2-layer 784 480 1e-4 800

Table 1: Hyperparameters when training tPC models

References
[1] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorrelation. The

American Statistician, 72(4):309–314, 2018.

[2] Rafal Bogacz and Malcolm W Brown. Comparison of computational models of familiarity
discrimination in the perirhinal cortex. Hippocampus, 13(4):494–524, 2003.

5


	Algorithms
	Proof of Property 1
	Generation of binary patterns
	Additional results with CIFAR10 and MovingMNIST
	A natural example of aliased sequences from UCF101
	Implementation details of tPC

